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Abstract. These are notes on ∞-categories which are (mostly) adapted from
Lurie’s digital text [15]. The main distinctions are the length of the document,

the order of presentation, and the use of selective omission. We also deviate

from [15] in that we focus on derived categories and dg categories as our
primary examples of interest. In comparing with [13], we completely avoid

the use of model structures, though this approach is already adopted in [15].

In a certain language, our presentation is fundamentally analytic rather than
synthetic.

We provide introductions to Kan complexes, ∞-categories, functors be-

tween ∞-categories, functor categories, and other basic topics. The text ter-
minates with an extensive discussion of mapping spaces, with special attention

to the dg setting. We demonstrate the (well-established) fact that a functor

between ∞-categories is an equivalence if and only if it is fully faithful and
essentially surjective, and we compute mapping spaces for the dg nerve of a

dg category via the Eilenbergh-MacLane spaces of its morphism complexes.
In the adjoining texts, Parts II and III, we cover cocartesian fibrations

and transport, limits and colimits in ∞-categories, Yoneda embedding, and

presentable and stable ∞-categories.
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0. Preliminary remarks and outline

0.1. Claims to originality. As the title suggests, this document is essentially
a reorganization, and selective re-presentation, of materials from Lurie’s Kerodon
[15]–though all of the sinew materials are of my own creation. In normal human
terms, we’ve simply produced a remix of the text [15].
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To speak to some specifics, our discussion of the derived category deviates from
that of [14], and the materials of Section 13 were developed independently by my-
self. Outside of these particular instances, I make not claims to originality in this
work and have made copious references to the original text [15] throughout. Most
importantly, the vast majority of the arguments employed below are adapted from
[15]. The reader might therefore find, and reference, the original texts where ap-
propriate.

0.2. For algebraists. By “for algebraists” we mean two things:

(1) We focus on derived categories, or more generally∞-categories constructed
from dg categories, as our motivating examples.

(2) We avoid all references to model structures.

An interesting point in this regard is that, while Higher Topos Theory [13] is lit-
tered with references to model structures, there is not a single reference to model
categories throughout the entirety of Kerodon [15].

Despite our algebraic inclinations however, we do not take the perspective that
vector spaces are somehow preferable to topological spaces (Kan complexes). Our
perspective is instead that one might think of ∞-categories as a reformulation of
the theory of dg categories where one replaces cochains and cohomology with spaces
and their homotopy groups.

0.3. Additional topics. We do not address (co)cartesian fibrations and transport,
limits and colimits in ∞-categories, presentability, or stability. These topics do
appear in the sibling texts, Parts II and III, however. Monoidal structures, operads,
En-algebras, derived schemes, and other “higher level” topics are not addressed at
all.

0.4. Why this document exists. These notes were, in essence, constructed for
my own purposes as an individual. I have edited them and made them public,
however, in the hopes that they can serve some purpose within the public domain.
In particular, it seems at the moment that there are not many resources on this
topic which are relatively short, do not rely on advanced topological notions, which
take an algebraic perspective, and which are rigorous in their treatment of the
topic. With that point in mind I hope that, for some select group of readers, this
document might be consumable in finite time and serve as a starting point for
further investigations into ∞-categories and their applications.

To highlight a few other references which are both rigorous and readily consum-
able, let me bring the reader’s attention to three other fairly concise treatments:

• Land, Introduction to infinity-categories [11].
• Rezk, Introduction to quasicategories [17].
• Cisinki, Higher categories and homotopical algebra [3].

Of these three works, our perspective synergizes most closely with the presentation
of Land. Land also covers (co)cartesian fibrations and (co)limits in his work. We
strongly encourage the reader to consider the references above, as well as all other
works on the topic which they find compelling.

0.5. Historical comments. [I should add references to the appropriate documents
in order to construct an accurate picture of this history of this subject. Clearly some
of the topics here are more appropriately attributed to Joyal, rather than directly
to Lurie, e.g..]

https://c-negron.github.io/infty_partII.pdf
https://c-negron.github.io/infty_partIII.pdf
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0.6. Structure of the text. In Section 1 we provide a soft introduction to ∞-
categories. This includes the definition of an ∞-category and the construction of
the homotopy category of an ∞-category. Following this minimal introduction, we
discuss a number of basic examples of ∞-categories in Section 2. These include
examples produced from differential graded, and simplicial categories.

In Sections 3 and 4 we begin our investigations in earnest with a detailed study of
Kan complexes. Subsequently we discuss basics for∞-categories in Section 5. This
includes constructions of functor categories, overcategories and undercategories,
and the associated Kan complex functor.

In Section 6 we discuss homotopy pullbacks for Kan complexes and ∞-categories.
One might think of these operations as “derived pullbacks” in the ∞-categorical
setting.

In Sections 7 and 8 we define mapping spaces for ∞-categories, and prove that a
functor between ∞-categories is an equivalence if and only if it is fully faithful and
essentially surjective. Then in Section 9 we define composition functions for map-
ping spaces, which exist at the level of the homotopy category of Kan complexes.
We subsequently define the hKan-enriched category associated to an∞-categories.

Section 10 is dedicated to an analysis of pinched mapping spaces, which are simply
a homotopy equivalent alternative to the standard mapping spaces introduced in
Section 7.

In Sections 11 and 12 we describe mapping spaces for those ∞-categories which
come from dg categories. We prove furthermore that a functor between dg cate-
gories is fully faithful (resp. an equivalence) if and only if the induced functor on
their ∞-categories is fully faithful (resp. an equivalence).

In Section 13 we prove that the derived ∞-category of an abelian category with
enough injectives and projectives can be equivalently constructed from K-injective,
or K-projective complexes.

In Section 14 we introduce adjoint functors between ∞-categories, and provide
examples from the dg and simplicial settings.

1. Definitions and preliminary discussion for ∞-categories
sect:1

Here we give a light introduction, and provide bare-bones definitions of simplicial
sets, Kan complexes, and ∞-categories. In Section 2 we provide a number of basic
examples, and subsequently begin our discussions of these topics in earnest.

1.1. What is an ∞-category, in principle. An ∞-category A is, in the barest
sense of things, a special type of simplicial set. We think about an ∞-category
as a type of “category” by considering the 0-simplices in A as objects, and the
1-simplices as morphisms. The 2-simplices ζ : ∆2 → A are choices of compositions
f◦g ≈ζ h, where we view ζ itself as a type of homotopy between the raw composition
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and the map h,

ζ : Z
f

��
X

g
>>

Y

⇝ Z

��
X

>>

h
// Y

We note that without ζ this raw composition “f ◦ g”, which is simply the choice
of two 1-simplices with a shared vertex, is unstructured information in A . So, the
composition does not have a meaning without ζ.

Note that, given our presentation above, we want A to admit compositions of
functions. Rather, for any two 1-simplices f, g : ∆1 = {0, 1} → A with matching
vertices g(1) = f(0) we require the existence of some filling ζ : ∆2 = {0, 1, 2} → A
with ζ|{0,1} = g and ζ|{1,2} = f . This choice of filling ζ shouldn’t matter, up to

some 3-simplex γ : ∆3 → A , and so on. . . . The notion of an ∞-category is some
completion of this thought.

In this section we recall the necessary (simplicial) set theoretic background, then
formally define the notions ∞-categories and functors between such objects.

1.2. Preliminary words on sets and universes. We work with ZFCU. So, we
suppose that each set X lives in a (Grothendieck) universe math U. That is, for
each set X we assume the existence of an additional set of sets U in which X lives
as a member. This collection U is assumed to contain the first infinite ordinal ω,
and to be closed under all basic operations in set theory, including the formations
of power sets. Colloquially, U provides a “universe” in which we can do set theory.
Given a Grothendieck universe U, we say a set X is U-small if X ∈ U.

An important feature of the universe axiom is that each universe U is itself a set,
and hence lives in a (larger) universe. Furthermore, given a set Y , we can choose a
universe U′ with Y ∪ U in U′. Hence for any given Y we can always enlarging our
universe in order to do mathematics with both Y and all members of our smaller
universe U. As long as our arguments are universe independent, this enlarging of
the universe will cause no problems.

We note that the existence of universes is not at all implied by the usual axioms of
ZFC, and requires the introduction of the new axiom “U”. This axiom is equivalent
to the existence of extremely large cardinals, called inaccessible cardinals, via the
von Neumann hierarchy.

Throughout this text we implicitly fix four universes, each of which is larger than
the last,

Usm ⊊ Umed ⊊ Ubig ⊊ Uhug.

The universe Usm specifies our class of “small” sets. Small sets can be thought of
as “indexing sets”. The universe Umed of “medium” sets is where we do category
theory. In particular, any discrete category or ∞-category is assumed to be of a
medium size, with the specific exceptions of categories of categories. Categories of
categories live in the universe Ubig of “big” sets, and on the rare occasion that we
would like to speak of a theory of categories of categories we work in the universe
Uhug of “huge” sets.

1.3. Simplicial sets. Let ∆ denote the category of linearly ordered, non-empty,
finite sets with weakly increasing functions. In ∆ we have the objects [n] =
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{0, 1, . . . , n}, with their natural ordering, which exhaust all objects up to isomor-
phism. A simplicial set is a functor S : ∆op → Set valued in the category of
(medium sized) sets, and we have the category of simplicial sets

sSet = { functors ∆op → Set, with natural transformations }.
Amongst simplicial sets one has the standard n-simplices, which are the repre-
sentable functors

∆n := Hom∆(−, [n]).
A map f : ∆n → S to some simplicial set S is then equivalent to choice of element
f(id) ∈ S([n]), and we refer to these elements as the n-simplices in S. We let S[n]
denote the set of n-simplices in S, as a shorthand.

To make this more clear, any natural transformation f : ∆n → S is just a
collection of compatible maps between sets f = fJ : ∆n(J)→ S(J), for all linearly
ordered sets J , and for any r ∈ ∆n(J) = Hom∆(J, [n]) we have r = r∗(id[n]) so
that

f(r) = f(r∗(id[n])) = r∗(f(id[n])).

Hence f is determined by the value f(id[n]) ∈ S[n]. Conversely, any element x ∈
S[n] determines such a functor f : ∆n → S, fJ(ζ) := ζ∗S(x). This is obviously some
kind of Yoneda tomfoolery, and Yoneda tells us directly that the map

∆→ sSet, J 7→ ∆J ,

is fully faithful.
Let us also define the boundary ∂∆n ⊆ ∆n and the i-th horn Λn

i ⊆ ∂∆n. We
have, for each j ≤ n, the j-th face map dj : [n − 1] → [n], which is the unique
increasing map with j not in its image. The boundary ∂∆n in ∆n is the simplicial
subset consisting of all maps r : J → [n] which factor though some face r = r′dj ,
0 ≤ j ≤ n. The i-th horn Λn

i in ∆n is the simplicial subset consists of all maps
r : J → [n] which factor through some face map r = r′dj with j not equal to i. So,
for example, the i-th face map itself di : [n − 1] → [n] lies in the boundary ∂∆n,
but does not lie in the i-th horn Λn

i .
The category of simplicial sets has products and coproducts, which are defined

in the näıve ways

(K × S)(J) = K(J)× S(J) and (K ⨿ S)(J) = K(J)⨿ S(J).

We similarly have fiber products and coproducts

K1 ×S K2
//

��

K2

��
K1

// S

S //

��

K1

��
K2

// K1 ⨿S K2,

whose values on any linearly ordered set J are the fiber product and coproduct of
the corresponding sets. Indeed, the category of simplicial sets is both complete and
cocomplete, with

(lim←−
i∈I

Ki)(J) = lim←−
i∈I

Ki(J) and (lim−→
i∈I

Ki)(J) = lim−→
i∈I

Ki(J),

and any simplicial set K is reconstructible from the simplices ∆n as the colimit

lim−→
∆n→K

∆n ∼−→ K.
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Remark 1.1. This reconstruction of K from its simplices can be compared with
the reconstruction of a scheme X from the category of affine schemes over X,
Spec(R)→ X, or from its Zariski site when X is separated.

Remark 1.2. We note that, for any linearly ordered set J , there is a unique
isomorphism J ∼= [|J |] in ∆. It follows that any simplicial set K : ∆op → Set
is determined up to unique isomorphism by its restriction to the full subcategory
∆# ⊆ ∆ whose objects are the linearly ordered sets [n]. So we could define a
simplicial set simply as a functorK : ∆op

# → Set. At times, however, it is convenient
to employ the larger category ∆.

1.4. ∞-categories. An∞-category is, at the base of it, a certain type of simplicial
set. We begin with a stronger notion.

Definition 1.3. A Kan complex X is a simplicial set such that, for each positive
integer n, index i ∈ [n], and map of simplicial sets σ̄ : Λn

i → X , there exists an
extension of σ̄ to an n-simplex σ : ∆n →X .

We will refer to such an extension σ as a “filling” for the given map σ̄ : Λn
i →X .

We think of such X as a type of category, with objects given by the 0-simplices
X [0] and morphisms given by the 1-simplices X [1]. Restricting along the inclusions
d0, d1 : [0]→ [1] give the source and target objects for a given morphism f ∈X [1].
Any map σ̄ : Λ2

1 →X is determined by the two 1-simplices g ∈X [1] and f ∈X [1]
which are the images of the two maps

∆1
d∗
2 //

d∗
0

// Λ2
1

// X .

The choice of a filling ∆2 →X specifies a third morphism h ∈X [1] which provides
the third face for the map ∂∆2 → X and the complete filling ∆2 → X witnesses
an identification “f ◦ g = h”:

x1

f

!!
x0

g
==

h

σ
// x2.

The higher filling axioms tell us that this filling procedure is more-or-less unique, in
a way which is not transparent but which we leave unarticulated for the moment.

The identity morphism from an object x ∈ X [0] to itself is the image of x in
X [1] along the structural map id? : X [0] → X [1] dual to the unique morphism
[1] → [0]. One similarly has higher identity morphisms at a given object x, which
are the images of x under the structural maps idn? : X [0]→X [n] which are again
determined by the unique morphism [n]→ [0].

Now, a Kan complex has a much more rigid structure than one needs to form
such a “essentially-coherent” composition. Indeed, by considering maps Λ2

0 → X
and Λ2

2 →X , one sees that all morphisms in a Kan complex are in fact invertible.
We therefore arrive at the notion of an ∞-category.

Definition 1.4. An ∞-category is a simplicial set C such that, for each positive
integer n, internal index 0 < i < n, and σ̄ : Λn

i → C , there exists an extension of
σ̄ to an n-simplex σ : ∆n → C . A functor F : C → D between ∞-categories is
simply a map of simplicial sets.
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Note that we’ve now excluded the external horns Λn
0 and Λn

n in our filling con-
dition. So in particular this condition is vacuous for 1-simplices. Note also that a
Kan complex is a specific type of ∞-category.

Remark 1.5. What we call an∞-category is also called an (∞, 1)-category, and/or
a weak Kan complex, and/or a quasi-category.

Remark 1.6. Note that a functor between ∞-categories F : C → D needn’t be
“compatible” with “composition” of morphisms in C and D , in whatever ways one
might make sense of such a statment (cf. A∞-categories). Instead, F specifies a
coherent rule which assigns to each composition “f ◦ g = z” which we witness in C
a corresponding composition “F (f) ◦ F (g) = F (h)” which we witness in D .

ex:Delta_infty Example 1.7. The simplicial set ∆n is an∞-category. Indeed, any map Λm
i → ∆n

from an inner horn is specified by a collection of maps ∆[m]−{j} → ∆n, i.e. maps
rj : [m] − {j} → [n], which agree on their shared boundaries. Since the subsets
[m] − {j} cover [m], when m > 1, the rj glue to a unique map r : [m] → [n]. To
see that r is weakly increasing, note first that m ≥ 2 in order for there to exist a
inner horns for ∆m and take any l ∈ [m]. Then l and l + 1 are both in [m] − {0}
or [m] − {m}. Therefore the fact that the restrictions of r along the inclusions
[m] − {0} → [m] and [m] − {m} → [m] return weakly increasing maps to n, by
hypothesis, tells us that r is weakly increasing.

Now, the above argument does not work when we consider possible fillings for
the outer horns Λ2

0 → ∆n or Λ2
2 → ∆n, when n ≥ 1. Indeed, consider the map

Λ2
0 → ∆n specified by the two functions r1 : {0, 2} → [n], r1(0) = r1(2) = 0, and

r2 : {0, 1} → [n], r2(0) = 0 and r2(1) = 1. These ri extend to a unique set map
r : [2] → [n] given by r(0) = 0, r(1) = 1, r(2) = 0. This function is clearly not
weakly increasing. So we see that the positive dimensional standard simplices ∆n

are not Kan complexes.

ex:Sing_wk Example 1.8. Let X be a topological space, and define the simplicial set Sing(X)
by taking

Sing(X)[n] := HomTop(|∆n|, X),

where |∆n| is the standard topological n-simplex in Rn. Since each inclusion of a
horn horn |Λn

i | → |∆n| admits a retract |∆n| → |Λn
i | one sees that these singularity

sets Sing(X) are Kan complexes.

Remark 1.9. Up to homotopy equivalence, all Kan complexes are of the form
Sing(X). We elaborate on this point in Section 4.7.

1.5. The homotopy category of an ∞-category. We construct a discrete (aka
non-∞) category hC for any ∞-category C whose morphisms are certain equiv-
alence classes of 1-simpleces ∆1 → C . The first lemma defines the appropriate
equivalence relation on maps in C .

lem:200 Lemma 1.10. For any two 1-simplices α, α′ : x → y in an ∞-category C , the
following are equivalent:

(a) There exists a 2-simplex σ : ∆2 → C with σ|∆{0,1} = α, σ|∆{0,2} = α′,
and σ|∆{1,2} = idy.

(b) There exists a 2-simplex σ with σ|∆{0,1} = α′, σ|∆{0,2} = α, and σ|∆{1,2} =
idy.
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(c) There exists a 2-simplex σ with σ|∆{0,1} = idx, σ|∆{0,2} = α′, and σ|∆{1,2} =
α.

(d) There exists a 2-simplex σ with σ|∆{0,1} = idx, σ|∆{0,2} = α, and σ|∆{1,2} =
α′.

Sketch proof. We prove the equivalence between (a) and (b), and (a) and (c). For
(a) ⇒ (b) consider the horn Λ3

1 → C which appears as

y

id

��

id

��

x

α

??

α //

α′
��

y

y.

id

??

One of the sides is given by σ, and the others are given by the identity 2-simplex on
y, and by expanding α along the surjective map r : [2]→ [1] with r(1) = r(2) = 1.
We fill this horn to find the simplex required by (b). One finds (b) ⇒ (a) by
swapping the roles of α and α′ in the above argument.

For (a) ⇒ (c) consider the horn Λ3
2 → C which appears as

x
α

  

α

��

x

id

>>

α′
//

α
��

y

y.

id

??

with sides given by σ from (a), and by expanding α along the two weakly increasing
surjections r : [2] → [1]. We fill the horn to provide the necessary 2-simplex for
(c). For the implication (c) ⇒ (a) one fills the horn Λ3

1 → C which appears as
above. □

For two 1-simplices α, α′ : x → y let us write α ∼ α′ if any of the equivalent
conditions of Lemma 1.10 are satisfied. After recalling that we can expand any
map α : x→ y to a 2-simplex of the form

y

id

��
x

α

??

α
// y,

by restricting along the corresponding surjection [2]→ [1], we see that α ∼ α. This
observation, along with the characterization of Lemma 1.10, assures that ∼ defines
an equivalence relation on the set C [1] of edges in C .

Let us say that a 2-simplex s : ∆2 → C exhibits a morphism η : x → z as a
composite or morphisms α : x→ y, and β : y → z, if

s|∆{0,1} = α, s|∆{1,2} = β, and s|∆{0,2} = η.
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Lemma 1.11. Suppose we have two 1-simplices α : x → y and β : y → z in
an ∞-category C , and 2-simplices s, s′ : ∆2 → C which exhibits two 1-simplices
η, η′ : x→ z as composites of α and β in C . Then η and η′ are equivalent.

Proof. The result follows by filling the inner horn Λ3
2 → C which appears as

y
β

��
β

��

x

α

??

η //

η′
  

z

z
id

??

.

□

lem:346 Lemma 1.12. Consider equivalent morphisms α, α′ : x → y and β, β′ : y → z in
C . Then for a morphism η : x→ z the following are equivalent:

(a) There exists a 2-simplex s : ∆2 → C exhibiting η as a composite of α with
β.

(b) There exists a 2-simplex exhibiting η as a composite of α′ with β.
(c) There exists a 2-simplex exhibiting η as a composite of α with β′.
(d) There exists a 2-simplex exhibiting η as a composite of α′ with β′.

Sketch proof. For (a) ⇔ (b), and (a) ⇔ (c), one fills an inner horns Λ3
i → C of the

form

y
β

��

id

��

y
β

��

id

��

x

α

??

η //

α′
��

z and x

α

??

η //

α
��

z

y

β

@@

y
β′

@@

,

where i = 1 and 2. By replacing β with β′ in the argument for (a) ⇔ (b) one finds
(c) ⇔ (d). □

By Lemma 1.12 we can take

HomhC (x, y) := {α : ∆1 → C : α|0 = x and α|1 = y}/ ∼

to obtain a well-defined composition operation

◦ : HomhC (y, z) ◦HomhC (x, y)→ HomhC (x, z). (1) eq:374

This composition explicitly sends a pair of classes [β] : y → z and [α] : x → y to
the class [β] ◦ [α] = [η] of any composite of α with β, i.e. the class of any morphism
η : x→ z which admits a 2-simplex exhibiting η as a composite of α with β.

lem:379 Lemma 1.13. The above composition operation (1) is associative.

Proof. Suppose we have a 2-simpleces realizing compositions η = β◦α and ζ = γ◦β.
Suppose we have a 2-simplex exhibiting ϑ : x→ a as a composite of α with ζ = β◦γ.
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Fill an the inner horn Λ3
1 → C of the form

y
ζ

��
β

��

x

α

??

ϑ //

η
  

a

z

γ

??

.

to find a 2-simplex exhibiting ϑ as a composite of γ with η = β ◦ α.
([γ] ◦ [β]) ◦ [α] = [ζ] ◦ [α] = [ϑ] = [γ] ◦ [η] = [γ] ◦ ([β] ◦ [α]).

□

Lemmas 1.10–1.13 imply that we have a well-defined category whose objects are
the 0-simplices in C and whose morphisms are equivalence classes of 2-simplices in
C .

def:hC Definition 1.14. The homotopy category hC of an∞-category C is the category
hC whose objects are the 0-simplices C [0] and whose morphisms HomhC (x, y)
are equivalence classes of 1-simplices {α ∈ C [1] : α|0 = x and α|1 = y}, under
the equivalence relation of Lemma 1.10. Composition is defined via fillings of 2-
simplices, as in (1).

Remark 1.15. In [13] the object hC denotes two significantly different objects.
One is a category enriched in the homotopy category of topological spaces, which
one might write as πC , the other is the discrete category of Definition 1.14. We
have hC = π0(πC ), so that these two categories are explicitly related.

We avoid any substantive reference to the enriched category πC until the final
section of the text.

sect:fun

1.6. Functor categories.

Definition 1.16. For simplicial sets K and S, we let Fun(K,S) denote the sim-
plicial set with simplices defined by maps of simplicial sets

Fun(K,S)[n] := HomsSet(∆
n ×K,S).

As for the structure maps, for any map a : [m]→ [n] in ∆ we have the induced
transformation a∗ : ∆m → ∆n, and we restrict along a∗ to obtain the required
structural morphisms

a∗ : HomsSet(∆
n ×K,S)→ HomsSet(∆

m ×K,S), F 7→ F |a∗×idK
.

To unravel things slightly, one sees that 0-simplices in Fun(K,S) are maps of sim-
plicial sets, and any 1-simplex F : ∆1 × K → S restricts to provide two maps of
simplicial sets

f0 = F |0 : K ∼= K × {0} → S, f1 = F |1 : K → K × {1} → S.

We therefore view F as a homotopy, or a transformation, between these two maps
fi. Or rather, we define homotopies in this way, and higher simplices provide higher
homotopies between their faces.

The following results are fundamental, and will be proved (much) later.

thm:fun Theorem 1.17 ([13, Proposition 1.2.7.3][15, 00TN]). Let K be any simplicial set.

https://kerodon.net/tag/00TN
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(i) If C is an ∞-category, then the functor category Fun(K,C ) is an ∞-
category.

(ii) If X is a Kan complex, then Fun(K,X ) is a Kan complex.

These points are quite important, as they will be used to construct (arbitrary)
limits and colimits of diagrams of (small) spaces and ∞-categories. The first point
is proved at Corollary 5.8 and the second point is proved at Corollary 3.12 below.

1.7. The simplicial categories of categories. We note that the functor spaces
admit natural composition maps

◦ : Fun(K ′,K ′′)× Fun(K,K ′)→ Fun(K,K ′′) (2) eq:comp1

which one defines in the obvious way. Namely, if we restrict to n-simplices we have

◦n : Fun(K ′,K ′′)[n]× Fun(K,K ′)[n]→ Fun(K,K ′′)[n],

gn ◦n fn := ∆n ×K
δ×id−→ ∆n ×∆n ×K

id×fn−→ ∆n ×K ′ gn→ K ′′,

where δ : ∆n → ∆n×∆n is the diagonal map x 7→ (x, x). One observes associativity
of this composition operation via coassociativity of the diagonal map δ.

The above composition maps, and functor spaces Fun, provide the category of
simplicial sets sSet with the structure of a simplicial category. (To be clear about
size constraints here, we obtain a simplicial category in our large universe whose
objects are simplicial categories in our universe of medium sized sets.) When we
restrict to the full subcategories of Kan complexes and∞-categories, this simplicial
enrichment restricts to provide simplicial structures on the discrete categories Kan
and Cat∞.

Lemma 1.18. The simplicial sets Fun(K,K ′), and composition (2), provide sSet,
Cat∞, and Kan with natural simplicial structures.

Notation 1.19. We let

sSet, Cat∞, and Kan

denote the simplicial categories of (medium sized) simplicial sets, (medium sized)
∞-categories, and (medium sized) Kan complexes respectively.

Remark 1.20. For reasons which will become clear in short order, the simplicial
category Cat∞ does not proceed a construction of an “∞-category of∞-categories”.
We introduce in Section 5.11 a refinement Cat+∞ ⊆ Cat∞ which serves the afore-
mentioned purpose.

2. Basic examples
sect:basic_examples

Before beginning our study of ∞-categories in earnest let us record some basic
examples. Our main examples come from taking nerves of various enriched cate-
gories. In particular, we define the nerve of a plain category, a dg category, and a
simplicial category. In all cases our nerve operation extends to a functor

NE : {E-enriched categories} → Cat∞,

where Cat∞ denotes the plain (i.e. not simplicial) category of ∞-categories with
∞-functors.
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2.1. The nerve of a plain category.

Definition 2.1. Let A be a plain category. The nerve N(A) of A is the simplicial
set with n-simplices s : ∆n → N(A) specified by a choice of objects X0, . . . , Xn and
an

(
n
2

)
-tuple of maps

s := {fij : Xi → Xj : i < j, fjkfij = fik whenever i < j < k}.

Equivalently, n-simplices are functors s : [n] → A. Restriction r∗ : N(A)[n] →
N(A)[m] along maps r : [m]→ [n] are given by restricting functors.

So the nerve N(A) is a certain simplicial set which one assigns to a plain category.
Now, an inner horn Λn

i → N(A), for n > 2, is specified by a collection of maps
fab : Xa → Xb for all a < b with fbcfab = fac for all triples a < b < c. So,
such a horn extends uniquely to a simplex ∆n → N(A). At n = 2 an inner horn
Λ2
1 → N(A) is a choice of two maps f01 : X0 → X1 and f12 : X1 → X2, which again

extends uniquely to a 2-simplex ∆2 → N(A). So the nerve of a plain category is an
∞-category.

In addition, for any functor F : A → B we obtain a map between ∞-categories
NF : N(A) → N(B), which is simply defined by composing functors [n] → A with
F . These assignments

N : A 7→ N(A), F 7→ N(F )

define a functors from the category of categories to the category of ∞-categories.

Proposition 2.2. The nerve of any plain category is an∞-category. Furthermore,
any map between ∞-categories f : N(A) → N(B) is of the form f = N(F ) for a
unique functor F : A → B. This is to say, the nerve operation defines a fully
faithful embedding N : Cat→ Cat∞.

To see that the nerve of a generic category A is not a weak Kan complex, a
stronger notion of course, one need only consider the category [n]. Here we have
N([n]) = ∆n, and we have already seen in Example 1.7 that ∆n is an ∞-category
but not a weak Kan complex whenever n > 0.

We note that for any ∞-category C we have an obvious map of simplicial sets

p : C → N(hC ), (s : ∆n → C ) 7→ ( [s|∆{i,j} ] : 0 ≤ i < j ≤ n),

which is then by definition an ∞-functor between ∞-categories. One sees immedi-
ately that p is an isomorphism whenever C = N(A) for some plain category A, and
we thus find that p is an isomorphism of∞-categories exactly when C is isomorphic
to the nerve of some plain category.

The functor p is natural in C , and so provides a natural endomorphism on the
category of ∞-categories. Indeed, p provides the unit for an adjunction between
the homotopy category functor h : Cat∞ → Cat and the nerve functor.

lem:p_C Lemma 2.3. For any ∞-category we have a natural projection pC : C → N(hC ),
which is defined by taking an n-simplex s in C to the corresponding tuple of mor-
phisms ( [s|∆{i,j} ] : 0 ≤ i < j ≤ n) in the homotopy category. These projection
operators realize the nerve functor N : Cat → Cat∞ as right adjoint to the homo-
topy category functor h : Cat∞ → Cat.
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sect:dg_nerve
2.2. Nerves of dg categories. Let A be a dg category. We define the dg nerve
Ndg(A) to be the simplicial set with each n-simplex ∆n → Ndg(A) specified by a
choice of objects {x0, . . . , xn} in A and maps

fI ∈ Hom
−|I|+2
A (xmin I , xmax I)

for all subsets I ⊆ [n] of order |I| ≥ 2 which satisfy

d(fI) =
∑

t∈I−{min I,max I}

(−1)|I>t|(fI≥t
◦ fI≤t

− fI−{t}). (3) eq:419

Here I inherits its ordering from [n], so that I≥t = {a ∈ I : a ≥ t} for example.1

For any weakly increasing map r : [m]→ [n] the restriction

r∗ : Ndg(A)[n]→ Ndg(A)[m], {fI : I ⊆ [n]} 7→ {fr,J : J ⊆ [m]}.

is defined by taking fr,J = fr(J) if r|J is injective, fr,J = idxr(j)
if J = {j, j′} and

r(j) = r(j′), and fr,J = 0 otherwise. For example, pulling back s∗ : Ndg(A)[1] →
Ndg(A)[2] along the weakly increasing surjection s : [2]→ [1] with s(0) = s(1) = 0
can be illustrated as

x
f // y

s∗7−→ x
f

  
x

id

??

f
//

0

y.

Lemma 2.4. The tuple {fr,J : J ⊆ [m]} is in fact an m-simplex in Ndg(A), and
for a sequence of maps r2r1 : [l] → [m] → [n] the composite r∗1r

∗
2 equals (r2r1)

∗.

This is to say, Ndg(A) is in fact a simplicial set.

Proof. The second point follows from the fact that the composite r2r1 has injective
restriction to K ⊆ [l] if and only if r1 has injective restriction fo K and r2 has
injective restriction to r1(K).

For the first claim, fix r : [m] → [n] and take for any J ⊆ [m], f ′
J = fr,J . We

need only establish an equality

0 =
∑

t∈J−{min J,max J}

(−1)|I>t|(f ′
J≥t
◦ f ′

J≤t − f ′
J−{t}) (4) eq:440

when r|J is not injective. When r|J has more than two repeated values, then all
summands in the above expression are 0, so that the equality holds immediately.
So we may suppose that r|J has precisely two repeated values r(j) = r(j′), with j
and j′ necessarily neighbors. If |J | = 2 then the right above summand is empty,
and thus necessarily 0 = d(id). So we suppose additionally that |J | > 2. We
therefore want to establish (4) when |J | > 2 and r|J has precisely two repeated
values r(j) = r(j′).

In the case where that j = min J or j′ = max J the above sum has only one
non-vanishing summand,

(−1)|I>j |(fJ≤j
◦ id− fJ−{j}) = (−1)|I>j |(fJ≤j

− fJ≤j
) = 0

1Our particular expression of the dg nerve comes from [15], and not [13]. There is a slight difference
in signs between the two sources.
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or

(−1)|I>j′ |(id ◦ fJ≥j′ − fJ−{j′}) = (−1)|I>j |(fJ≥j′ − fJ≥j′ ) = 0,

so that the desired equation holds. When both j and j′ lie in the interior of J , the
sum has precisely two summands giving explicitly

±(fJ≥j
◦ 0− fJ−{j} − 0 ◦ fJ≤j′ + fJ−{j′}) = 0.

We therefore establish (4), and see that r∗ does map n-simplices to m-simplices. □

Remark 2.5. We note that there is a functor dg : ∆→ dgCat so that n-simplices
in Ndg(A) are identified with dg functors HomdgCat(dg[n],A). So the dg nerve can
be constructed in a manner similar to the nerve of a plain category. Furthermore,
if we view any additive category A as a dg category over Z, with all maps in degree
0, then N(A) = Ndg(A).

Now, suppose we have an inner horn a : Λn
i → Ndg(A). Such a map of simplicial

sets is specified by a tuple of morphism (fI : I ⊆ [n], [n]−{i} ⊈ I) which solve the
equations (3), and an extension of such a to an n-simplex is an additional choice of
degree n−3 and n−2 maps f[n]−{i} and f[n] respectively which have the appropriate
derivatives.

Proposition 2.6 ([15, 00PW]). The dg nerve Ndg(A) of any dg category A is an

∞-category. Specifically, for an inner horn σ̄ : Λn → Ndg(A) as above, the choices
f[n] = 0 and

f[n]−{i} = f{i,...,n} ◦ f[i] +
∑

0<t<n, t̸=i

(−1)−t+i(f{t,...,n} ◦ f[t] − f[n]−{t}). (5) eq:469

determine an extension σ : ∆n → Ndg(A) of σ̄ to an n-simplex.

Proof. We take the differential to find

d(f[n]−{i}) = (
∑

t<i(−1)n−tf[n]−{t,i}) + (
∑

i<t(−1)n−(t+1)f[n]−{i,t})

−(
∑

t<i(−1)n−tf[t,n]−{i} ◦ f[t])− (
∑

i<t(−1)n−t−1f[t,n] ◦ f[t]−{i})

+ other terms

=
∑

t∈I−{min I,max I}(−1)|I>t|(fI≥t
◦ fI≤t

− fI−{t})

+ other terms.

In the above expression I = [n] − {i} and [t, n] = {t, . . . , n}, and the summands
which we’ve written explicitly come from differentiating the term∑

0<t<n, t̸=i

(−1)−t+i(f{t,...,n} ◦ f[t] − f[n]−{t})

in (5). So, we want to show that these “other terms” vanish.

https://kerodon.net/tag/00PW
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We have

(−1)n−iother terms =

(−1)n−id(f[i,n])f[i] − f[i,n]d(f[i])

+
∑

0≤l<m<n, l,m̸=i(−1)l+mf[n]−{l,m} + (−1)m+l−1f[n]−{l,m}

−
∑

0≤l<m<n, l,m̸=i(−1)l+mf[n,l]−{m}f[l] + (−1)m+l−1f[n,l]−{m}f[l]

−
∑

0≤l<m<n, l,m̸=i(−1)m−l+1f[n,m]f[m]−{l} + (−1)−l−mf[n,m]f[m]−{l}

+
∑

t<i(−1)i+tf[n,i]f[t,i]f[t] − (−1)i+tf[n,i]f[i]−{t}

+
∑

i<t(−1)t−i−1f[n,t]f[i,t]f[i] − (−1)t+i+1f[n,i]−{t}f[i].

= −f[i,n]d(f[i]) +
∑

t<i(−1)i+tf[n,i]f[t,i]f[t] − (−1)i+tf[n,i]f[i]−{t}

(−1)n−id(f[i,n])f[i] +
∑

i<t(−1)t−i−1f[n,t]f[i,t]f[i] − (−1)t+i+1f[n,i]−{t}f[i]

= 0.

So we see that the other terms vanish, and hence that any inner horn Λn
i → Ndg(A)

admits the proposed extension to an n-simplex. □

From a direct consideration of the equation (3) it is clear that any dg functor
η : A→ B defines an associated map of ∞-categories

Ndg(η) : Ndg(A)→ Ndg(B),

{
x 7→ F (x) for 0-simplices
(fI : I ⊆ [n]) 7→ (η(fI) : I ⊆ [n]) for n-simplices, n > 0.

Proposition 2.7. The dg nerve defines a functor Ndg : dgCat→ Cat∞.

rem:dg_v_infty Remark 2.8. The dg nerve defines an equivalence from a homotopy category of
dg categories, over a given base k, to the homotopy category of (certain) linear ∞-
categories [4, Corollary 5.5]. In this sense, dg categories are identified with linear
∞-categories via the dg nerve functor, in some appropriate sense.

Remark 2.9. In [14, Construction 1.3.1.13] one finds an alternate construction
of a “dg nerve” via Dold-Kan. This Dold-Kan approach yields a functor which is
isomorphic to the one given above. See [14, Proposition 1.3.1.17].

sect:dg_alg_ex
2.3. An integral dg example with one object. We provide a few silly examples
which illustrate some distinctions between dg categories, or A∞-categories, and∞-
categories. Of course, the popular adage here is that ∞-categories are somehow
more “flexible” than dg categories.

Let p be any positive integer and consider the dg category Ap over Z with a
single object ∗ and endomorphisms

HomAp(∗, ∗) = 0→ pZ→ Z→ 0,

where the differential pZ → Z is just the inclusion. So, Ap is just a dg algebra
which we view as a dg category. We also have the dg algebra Z/pZ with a single
object and endomorphisms Z/pZ. Let Ap and Zp be the corresponding dg nerves
of these dg categories. We describe these∞-categories explicitly, and show that the
dg algebra quasi-isomorphism Ap → Z/pZ admits an section Zp → Ap at the level
of∞-categories, despite the fact that there are no A∞-algebra maps Z/pZ→ Ap at
all. where the differential pZ→ Z is just the inclusion. So, Ap is just a dg algebra



18 CRIS NEGRON

which we view as a dg category. We also have the dg algebra Z/pZ with a single
object and endomorphisms Z/pZ. Let Ap and Zp be the corresponding dg nerves
of these dg categories. We describe these∞-categories explicitly, and show that the
dg algebra quasi-isomorphism Ap → Z/pZ admits an section Zp → Ap at the level
of ∞-categories, despite the fact that there are no A∞-algebra maps Z/pZ → Ap

at all.
An n-simplex in a : ∆n → Zp is a tuple of numbers a = {aij : i < j ∈ [n]} with

aijajk = aik for all triples i < j < k. (This is the same as the usual nerve of Z/pZ
as a plain category.) A 1-simplex in Ap is a choice of element b ∈ Z ⊆ Ap and a 2-
simplex b : ∆2 → Ap is a choice of a triple of a triple of elements {b01, b12, b02} ⊆ Z
and b123 ∈ pZ such that

b123 = b02 − b01b12. (6) eq:560

In particular, b123 is specified uniquely by the boundary elements bij , so that a
2-simplex is simply a triple of elements satisfying b01b12 = b03 mod p.

For degree reasons, if we have an n-simplex b : ∆n → Ap all functions bI ∈ A
|I|−2
p

indexed by subsets I ⊆ [n] of size > 3 vanish, and the equations

d(bI) =
∑
±(bI≥t

bI≤t
− bI−{t}) (7) eq:570

are vacuous when |I| > 4, as both sides live in A
|I|−3
p = 0. We have already

examined the above equation when |I| = 3, and the condition on |I| = 2 just says
that all bI with |I| = 2 are degree 0 cocycles. So we need only investigate the case
|I| = 4. That is to say, in order to characterize Ap as an ∞-category we need only
classify its 3-simplices.

Consider a 3-simplex b : ∆3 → Ap. Such an object is specified by a collection of
elements {bI : I ⊆ [3]} with all bijk = bik − bijbjk and b0123 = 0 for degree reasons.
This first condition is equivalent to the equation (7) for I of size 3, and for the
unique subset of size 4 we need to check the equation

0 = d(b0123) = b023 − b01b123 − b013 + b012b23.

But we simply expand, and (only) employ the 2-simplex equation (6), to find

b023 − b01b123 − b013 + b012b23
= b03 − b02b23 − b01(b13 − b12b23)− b03 + b01b13 + (b02 − b01b12)b23
= b03 − b02b23 − b01b13 + b01b12b23 − b03 + b01b13 + b02b23 − b01b12b23
= 0.

So we see that equation (7) at |I| = 4 is redundant, and thus observe a complete
description of the n-simplices in Ap,

Ap[n] =
{
tuples (bij : 0 ≤ i < j ≤ n) : bijbjk = bik mod p whenever i < j < k

}
The map of∞-categories π : Ap → Zp implied by the dg algebra quasi-isomorphism
Ap → Z/pZ is defined as expected

π : Ap → Zp, (bij : 0 ≤ i < j ≤ n) 7→ (b̄ij : 0 ≤ i < j ≤ n).

For any class a ∈ Z/pZ define a′ ∈ Z to be the unique element in {0, . . . , p−1} ⊆
Z such that ā′ = a. We define a section π∨ : Zp → Ap on n-simplices

π∨
n : Zp[n]→ Ap[n], (aij : 0 ≤ i < j ≤ n) 7→ (a′ij : 0 ≤ i < j ≤ n).

One sees immediately that the composite

Zp
π∨

−→ Ap
π−→ Zp
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is seen to be the identity. This point is remarkable, given that there aren’t even
any maps Z/pZ → Ap of Z-modules, and highlights the content of the discussion
of Remark 2.8.

We claim furthermore that π : Ap → Zp is an equivalence of ∞-categories with
weak inverse π∨, whatever that means (see Section ??).

sect:dg_alg_ex2
2.4. More examples with one object. We can similarly take a positive degree
polynomial q ∈ S = C[t] and consider the dg algebras Aq = 0→ qS → S → 0 and
S/qS. We have the associated∞-categories Aq and Sq, and the above presentation
applies verbatim to provide a complete description of the simplicial set Aq,

Aq[n] = {(bij : 0 ≤ i < j ≤ n) : bijbjk = bkl mod q}.

We have the projection π : Aq → Sq implied by the dg algebra quasi-isomorphism
Aq → S/qS and easily constructs an “inverse”

π∨ : Sq → Aq, (aij : 0 ≤ i < j ≤ n) 7→ (a′ij : 0 ≤ i < j ≤ n)

by taking a′ij to be the unique lift of aij ∈ S/qS to a degree < deg(q) element in S.
Now that we’re over C however, there does exist an A∞ quasi-inverse ι : S/qS →

Aq. The construction of ι requires a choice of C-linear section ι0 : S/qS → Aq and a
corresponding degree −1 solution ι1 : S/qS ⊗C S/qS → Aq to a quadratic equation
d(X) = poly(ι0). This quadratic equation is essentially just the equation (6), which
we understand has unique solutions. So we see that in the A∞-categorical setting
we must keep track of certain irrelevant information which the∞-categorical allows
us to ignore. We also note that the∞-category map π∨ can be defined by any choice
theoretic section π∨

1 : S/qS = Sq[1] → Aq = Aq[1], and so disregards linearity as
well.

As a last toy example we consider the Chevalley-Eilenberg dg algebra

CE(g) = 0→ C 0→ g∗
d→ g∗ ∧ g∗ → · · · → det(g∗)→ 0.

Here g is a Lie algebra and the differential is specified by the dual of the bracket
d1 = [−,−]∗ : g∗ → g∗ ∧ g∗. The cohomology of this dg algebra is the algebra of
extensions of the trivial representation

H∗(CE(g)) = ExtU(g)(C,C),

calculated in the category of arbitrary U(g)-modules. We consider the associated
∞-category C E (g).

Here there are no non-zero negative degree elements in CE(g) to speak of, so
that the unit map C→ CE(g) induces an isomorphism of ∞-categories

N(C)
∼=→ CE (g).

This is despite the fact that the unit map is far from a quasi-isomorphism in general.
This example simply abuses the fact that the dg nerve functor cannot see in-

formation in a dg category A which is strictly contained in positive cohomological
degrees. We also note that this kind of tomfoolery will not occur if we restrict our
attention to dg categories with an appropriate shift operation (e.g. pre-triangulated
dg categories [4, Definition 2.16]).
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sect:derived_cat
2.5. Derived categories for abelian categories. Let A be an abelian category.

def:K_inj Definition 2.10. A complex I over A is called K-injective if the Hom complex
functor

Hom∗
A(−, I) : Ch(A)op → Ch(Z)

preserves acyclic complexes.

Equivalently, I isK-injective if the Hom complex functor preserves quasi-isomorphisms.

Theorem 2.11 ([18, Theorem 3.13]). If A is a Grothendieck abelian category, then
every (possibly unbounded) complex M admits a quasi-isomorphism M → I to a
K-injective complex I.

Examples of Grothendieck abelian categories include categories of arbitrary R-
modules Mod(R), for an arbitrary ring R, categories of quasi-coherent sheaves
QCoh(X) on an arbitrary scheme or algebraic stack X [6] [16, 0781], categories of
representations Rep(G) for an algebraic group G, and categories of cohomodules
Comod(C) for a coalgebra C. So, basically all reasonable abelian categories which
arise in algebra and representation theory are Grothendieck abelian, provided they
are cocomplete.

Now, for a general abelian (or even additive) category, we can form the dg nerve

Ndg(Ch(A)) of the dg category of cochains. Here we find

• Ndg(Ch(A))[0] = {the collection of complexes over A}.

• Ndg(Ch(A))[1] = {maps f : M → N of cochains}.

• Ndg(Ch(A))[2] = quadruples f : L→M, g : M → N, h : L→ N, z : L→ N
such that f , g, and h are degree 0 cocyles, i.e. maps of cochains

and h = fg − d(z).

 .

From this description of 0, 1, and 2-simplices one observes a calculation of the
homotopy category.

prop:813 Proposition 2.12. Let A be an additive category. The homotopy category of the
dg nerve for Ch(A) is the usual homotopy category of dg modules for A, i.e. the
category of dg modules with homotopy classes of maps

hNdg(Ch(A)) = K(A).

We refer to the dg nerve Ndg(Ch(A)) the homotopy ∞-category for A,

K (A) := Ndg(Ch(A)).

We consider inside the dg category of cochains the full subcategory ofK-injective
complexes

Ch(A)Inj :=
{

The full dg subcategory of
K-injective complexes in Ch(A)

}
.

Definition 2.13. For a Grothendieck abelian category A, the derived ∞-category
is the dg nerve

D(A) := Ndg(Ch(A)Inj).

https://stacks.math.columbia.edu/tag/0781
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From Proposition 2.12 we have

hD(A) =
{

The homotopy cat of K-
injective complexes over A

}
∼= D(A),

so that D(A) provides an ∞-categorical lift of the usual derived category.

Remark 2.14. In ring theoretic situations one also has enough K-projectives. As
one expects, these are cochains P for which the functor

Hom∗
A(P,−) : Ch(A)→ Ch(Z)

preserves acyclicity. One can consider the dg category Ch(A)Proj of K-projective
complexes in Ch(A) and, when Ch(A) has enough K-projectives, one can show
that there is an equivalence of ∞-categories

D(A) = Ndg(Ch(A)Inj)
∼→ Ndg(Ch(A)Proj)

which is uniquely determined via some constraints. Hence one can employ either
an “injective model” or a “projective model” when working with the derived ∞-
category, as is traditional. We discuss this injective-projective comparison in detail
in Section 13 below.

Remark 2.15. The derived ∞-category D(A) can be identified via a universal
property as the localization K (A)[Qiso−1] at the∞-level, or alternatively as the lo-
calization of the plain category of cochains Ch(A)[Qiso−1] [15, Propositions 1.3.4.5,
1.3.5.15] [14, Proposition 1.3.4.5]. As far as the author’s understanding of mathe-
matics is concerned, the latter expression is not predictable, or predictable, from
any phenomena in the theory of discrete, dg, or A∞-categories.

Given some finiteness condition F for objects in A we take

D(A)F =

{
The full ∞-subcategory of objects in

D(A) whose cohomology have property F

}
For example we can consider the derived categories

D(Rep(G))fin and D(QCoh(X))coh

of dg G-representations with finite-dimensional cohomology and of quasi-coherent
dg sheaves with coherent cohomology. We define the bounded, bounded above, and
bounded below derived categories

Db(A), D−(A), D+(A)

similarly.

Remark 2.16. It is shown in work of Antieau [1, Corollaries 2, 5] that the plain
derived category D(A) admits a unique enhancement. This is to say, there is a
unique (stable) ∞-category D , up to equivalence, whose homotopy category recov-
ers D(A) (as a triangulated category). So, from a high level perspective, it does
not matter what ∞-categorical construction one employs in their production of a
derived ∞-category as long as the homotopy category is as prescribed.
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2.6. Derived categories for dg modules. Consider a dg algebra R and the
category Mod(R) of arbitrary dg R-modules. In this instance Mod(R) still admits
enough K-injectives and K-projectives [10]. So we define the derived ∞-category
again as the dg nerve of the dg category of K-injectives

D(R) := Ndg(Mod(R)Inj).

We again have a unique identification

D(R) = Ndg(Mod(R)Inj)
∼→ Ndg(Mod(R)Proj).

See Section 13.
sect:hc_nerve

2.7. Nerves of simplicial categories. Before providing the appropriate nerve in
this setting let us first we construct a simplicial category for the simplices ∆n [13,
Definition 1.1.5.1]. We take Path∆n to be the simplicial category with objects
obj(Path∆n) = [n] and m-simplices

Hom∆n(a, b)[m] = HomPath∆n(a, b)[m] =


length m+ 1 sequences of subsets

Im ⊆ · · · ⊆ I0 ⊆ [n]
with a = min Ij and b = max Ij

for all 0 ≤ j ≤ m

 .

We note that each inclusion Ij+1 ⊆ Ij may be an equality in the above presentation,
that these simplicial Hom sets vanishes if and only if a > b, and that all simplices
of size ≥ n are degenerate. For any weakly increasing function r : [l] → [m] the
corresponding structure map is as expected,

r∗ : Hom∆n(a, b)[m]→ Hom∆n(a, b)[l], {Im · · · ⊆ I0} 7→ {Ir(l) · · · ⊆ Ir(0)}

and composition is given by taking unions

{I ′m · · · ⊆ I ′0} ◦ {Im · · · ⊆ I0} =
{
(Im ∪ I ′m) · · · ⊆ (I0 ∪ I ′0)

}
.

Remark 2.17. For fixed 0 ≤ a, b ≤ n we have the partially ordered set Subsetsa,b
of subsets S in [n] which contain a as their minimal element and b as their max-
imal element, ordered with respect to inclusion. We may consider Subsetsa,b as a
category, and obtain an identification with the nerve of the opposite category

Hom∆n(a, b) = N(Subsetsopa,b).

For any weakly increasing function f : [k] → [l] in ∆ we obtain a simplicial
functor f∗ : Path∆k → Path∆l which is defined as f on objects, and on morphisms

f
(
{Im · · · ⊆ I0}

)
:=

{
f(Im) · · · ⊆ f(I0)

}
.

So this path operation defines a functor Path : ∆→ sCat.

Definition 2.18. For a simplicial category A we define the homotopy coherent
nerve Nhc(A) to be the simplicial set with simplices

Nhc(A)[n] = FunsCat(Path∆
n,A)

and restriction maps f∗ := FunsCat(f∗,A), for each weakly increasing map f :
[m]→ [n].
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We recall that all simplices in Hom∆n(a, b) of degrees ≥ n are degenerate, so
that any simplicial functor Path∆n → A is determined by its values on objects
and on the m-simplices Hom∆n(a, b)[m] for m < n. We have directly

Nhc(A)[0] = obj(A)

Nhc(A)[1] = {pairs of objects with a specified map f : x→ y}.

lem:2simp_hc Lemma 2.19. For any simplicial category A, a 2-simplex in the homotopy coherent
nerve σ : ∆2 → Nhc(A) is determined by the following data: a triple of objects
(x0, x1, x2), choices of maps between these objects fij : xi → xj for all i < j, and a
1-simplex h : ∆1 → HomA(x0, x2) which satisfies

h|{0} = f12f01, h|{1} = f02.

Proof. Such an 2-simplex σ is, by definition, a simplicial functor σ : Path∆2 → A.
The fij are the images of the unique 0-simplices I0 ⊆ [2] in Hom∆2(i, j) with
|I0| = 2. The other 0-simplex in Homδ2(0, 2) is sent to f12f01 via compatibility of
σ with composition. The 1-simplex h is the image of the unique non-degenerate
1-simplex I1 = {0, 2} ⊆ I0 = {0, 1, 2} ⊆ [2] in Hom∆2(0, 2).

Note that ∆0 ∼= Hom∆2(i, i + 1) and that the unique 1-simplex in Hom∆2(0, 2)
provides an isomorphism ∆1 ∼= Hom∆2(0, 2). Hence the functor σ is determined
precisely by the data {xi : 0 ≤ i ≤ 1}, fij , h. □

We have the following fundamental result from [13], or [15].

prop:11510 Proposition 2.20 ([15, 00LJ]). If A is a simplicial category in which all of the
morphism complexes HomA(x, y) are Kan complex, then the homotopy coherent

nerve Nhc(A) is an ∞-category.

The proof requires an analysis of lifting properties for maps into Kan complexes
which we won’t recall. Our main examples of interest come from the simplicial
categories of Kan complexes and ∞-categories, though we must to develop more
background in order to deal with these examples in detail. (See Sections 3.6 and
5.11 below.)

We note that the characterization of 2-simplices in Nhc(A), from Lemma 2.19,
provides an explicit description of the homotopy category

hNhc(A) =


The plain category with objects obj(A)
and morphisms given by equiv. classes of 0-simplices
f : x→ y in HomA(x, y), where f ∼ f ′ if there
exists a 1-simplex h with h|{0} = f and h|{1} = f ′.

(8) eq:hc_htop

3. The category of Kan complexes
sect:kan

In order to study dg categories effectively one must, of course, have some ba-
sic understanding of the underlying category of cochains. In this setting there is
(arguably) not much to do here; one understands the definition, understands the
construction of cohomology, and understands the subsequent notions of acyclicity,
contractibility, and quasi-isomorphisms.

In comparing with the role of cochains for dg categories, the category of “spaces”,
i.e. Kan complexes, serves a similar purpose for ∞-categories. For objects x and
y in an ∞-category C , we will have a mapping space MapC (x, y). This space has
homotopy groups, a homotopy class, components, etc. The homotopy groups in

https://kerodon.net/tag/00LJ
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particular, can be thought of as a direct analog of cohomology groups for a complex.
Indeed, one might think of an∞-category as a type of non-linear dg category which
is enhanced in “spaces” which we view as a type of de-linearization of cochains (cf.
Theorem 11.12 below). So, we study Kan complexes as a prerequisite to our study
of ∞-categories.

In the following two sections we provide a baseline analysis of Kan complexes are
their interpretations as spaces. Here we focus on first-order issues, i.e. definitions
and basic properties, then in Section 4 we approach the category of Kan complexes
through a more detailed and explicitly topological lense.

3.1. Some language for simplicial sets. A simplex s : ∆n → K in a simplicial
set K is said to be non-degenerate if s admits no factorization though a simplex
∆m → K of lower dimension, i.e. with m < n. We see that K is constructed as the
colimit

K = lim−→
(∆/K)non-deg

∆n, (9) eq:465

where (∆/K)non-deg is full subcategory in sSet /K whose objects are simplices σ :
∆n → K which satisfy one of the following: (a) σ is non-degenerate, or (b) σ

factors as σ = σ′′σ′ : ∆n → ∆n′ → K with both σ′ and σ′′ non-degenerate. So, the
category (∆/K)non-deg locally looks like

(∆/K)non-deg : ∆n

non-degen

!!
...

∆p

a face

<<

maybe not a face !!

// ∆m // K

∆l

non-degen

==
...

Let us say that a subcomplex K ′ → K is obtained from K by deleting a given
simplex s : ∆n → K if the simplices in K ′, ∆m → K ′ are precisely all of those
simplices in K through which s admits no factorization ∆n → ∆m → K ′. Note
that if K ′ is obtained by deleting a non-degenerate n-simplex s, then K ′

<n = K<n,
since by definition s admits no factorizations through lower dimensional simplices.

Below, by a lifting problem between maps of simplicial sets i : A → B and
f : K → S we mean any diagram of the form

A

i

��

// K

f

��
B // S.

A solution to a lifting problem is a choice of map ζ : A → K which produces a
diagram

A

i

��

// K

f

��
B //

ζ

>>

S.
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In order to distinguish, semantically, between a lifting problem and a generic com-
mutative square, we generally present a lifting problem as follows:

A

i

��

// K

f

��
B //

>>

S.

Now, if we go back in time, we see that a Kan complex is a simplicial set X such
that all lifting problems of the form

Λn
i

i

��

// X

��
∆n //

==

∗.
admit a solution. Similarly ∞-categories are characterized by the existence of
solutions to certain lifting problems.

Throughout the text monomorphisms between simplicial sets play an important
role. Such morphisms admit the expected description.

Lemma 3.1. A map between simplicial sets t : A→ B is a monomorphism, in the
categoricial sense of the term, if and only if at each index n ≥ 0 the map of sets
t[n] : A[n]→ B[n] is injective.

Proof. The latter property says that for each pair of simplices σ, σ′ : ∆n → A,
we have tσ = tσ′ if and only if σ = σ′. Clearly this is necessary and sufficient to
distinguish p as a monomorphism in sSet. □

sect:kf_anodyne
3.2. Kan complexes, Kan fibrations, and anodyne maps. Let’s consider a
class of maps Classp in sSet with a prescribed property p. (For example, we
can consider the class of horn maps, or inner horn maps Λn

i → ∆n.) Then this
class generates a larger class Classp by closing the initial collection Classp under a
number of operations.

We say a class of maps Classp is saturated [8] if it satisfies the following:

(a) Classp contains all isomorphisms.
(b) Classp is closed under small coproducts.
(c) Classp is closed under pushouts: If L→ K is a map in Classp and

L

��

// M

f

��
K // N

is a pushout diagram, then f : M → N is in Classp.
(d) Classp is closed under retracts: If we have a diagram

L

f ′

��

// M

f

��

// L

f ′

��
K // N // K

where the horizontal composites are the identity, and f is in Classp, when
f ′ is in Classp.
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(e) Classp is closed under countable composites: If

K0 → K1 → K2 → . . .

is a N-indexes sequence of morphisms in Classp, then the structure map
K0 → lim−→n

Kn is in Classp.

The minimal saturated class Classp containing some specified collection of mor-
phisms Classp is called the saturated class generated by Classp. Note that condi-
tion (e) says that any saturated class of morphisms is closed under composition.

Definition 3.2. The class of anodyne morphisms in sSet is the saturated class of
maps generated by the inclusions

{Λn
i → ∆n : n ≥ 1, i ∈ [n]}

We note that the class of monomorphisms is itself saturated, so that anodyne
maps are in particular injective.

lem:919 Lemma 3.3. A simplicial set X is a Kan complex if and only if each lifting prob-
lem

A //

i

��

X

��
B

>>

// ∗,

in which the constituent map i : A→ B is anodyne, admits a solution.

Proof. Since the class of anodyne maps includes arbitrary horns Λn
i → ∆n, any

simplicial set with the left lifting property against anodyne maps is a Kan complex.
For the converse, it suffices to show that the class LLPKan of maps i : A→ B having
the left lifting property to a Kan complex X is saturated. All of the conditions
(a)–(e) are clear, save for possibly (e). Take a sequence of maps

A0
i1→ A1

i2→ A2 → . . .

is LLPKan and consider the structure map

lim←−
n

Hom(An,X ) = Hom(lim−→
n

An,X )→ Hom(A0,X ). (10) eq:514

We want to say that this map is surjective.
By the left lifting property, we understand that each map i∗l : Hom(Al,X ) →

Hom(Al+1,X ) in the sequence defining the limit in (10) is surjective. We also
understand that each of the map i∗0l : Hom(Al,X ) → Hom(A0,X ) defining the
morphism (10) is surjective, where i0l = il . . . i1. One applies Zorn’s lemma to see
that the corresponding map from the limit (10) is in fact surjective. So the set
LLPKan is in fact saturated, and since

{Λn
i → ∆n : n ≥ 1, i ∈ [n]} ⊆ LLPKan

we see that anodyne maps have the left lifting property relative to maps into Kan
complexes. □

We also have a relative notion of Kan complexes.
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Definition 3.4. A morphism f : X → S is called a Kan fibration if any lifting
problem

A

��

// X

f

��
B //

>>

S

in which A→ B is anodyne admits a solution.

A simplicial set X is a Kan complex if and only if the terminal map X → ∗ is
a Kan fibration. Just as in the case S = ∗, one can test Kan-ness of a morphism
X → S by examining the lifting property relative to the horn inclusions Λn

i → ∆n.
By the universal property of pullback, one sees that the class of Kan fibrations is
closed under pullback.

lem:821 Lemma 3.5. Suppose that f : X → S is a Kan fibration, and that

X ′

f ′

��

// X

f

��
S′ // S

is a pullback diagram. Then f ′ is a Kan fibration.

By the above lemma one can view a Kan fibration as a family of Kan com-
plexes parametrized by the base S. One can compare, for example, with notions of
smoothness for varieties, and smooth morphisms. We have now defined Kan fibra-
tions relative to anodyne maps. We have the following “inverse” characterization
of anodyne maps which we’ll never use.

Proposition 3.6 ([9, Corollary 1.4.1]). A map i : A → B is anodyne if and only
if any lifting problem

A

i

��

// X

��
B //

>>

S

in which X → S is a Kan fibration admits a solution.

The following lemma will be of use momentarily.

lem:850 Lemma 3.7. Consider two monomorphisms of simplicial sets i : A → B and
j : K → L. If either of i or j is an anodyne morphism, then the induced map from
the pushout

(A× L)
∐

(A×K)

(B ×K)→ (B × L)

is anodyne as well.

The proof is somewhat technical and can be found in [15, 014D], or [8, Corollary
4.6].

https://kerodon.net/tag/014D
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3.3. Trivial Kan fibrations.

def:trivial_kan Definition 3.8. A morphism f : X → S is called a trivial Kan fibration if any
lifting problem of the form

A

��

// X

f

��
B //

>>

S,

(11) eq:864

in which A → B is a monomorphism, admits a solution. A simplicial set X is
called contractible if the terminal map X → ∗ is a trivial Kan fibration.

Clearly any trivial Kan fibration is a Kan fibrations.

Proposition 3.9. A map f : X → S is a trivial Kan fibration if and only if all
lifting problems of the form

∂∆n

incl

��

// X

f

��
∆n

<<

// S,

for n ∈ Z≥0, admit a solution.

Sketch proof. The point is that the saturated class of morphisms generated by the
boundary inclusions {∂∆n → ∆n : n ≥ 0} is the class of all monomorphisms [9,
Section 1.4] [15, 0077] □

3.4. Exponents for Kan complexes. For simplicial sets K and S we have the
mapping complex Fun(K,S) defined in Section 1.6. We also have the evaluation
map

ev : Fun(K,S)×K → S (12) eq:eval

which is defined on simplices by

HomsSet(∆
n ×K,S)×K[n]→ S[n], (f, x) 7→ f(id[n], x).

The fact that f is a map of simplicial sets, in the above expression, implies that
evaluation, defined as above, is also a map of simplicial sets.

Lemma 3.10 ([8, Proposition 5.1]). The evaluation morphism (12) defines an
isomorphism of sets

HomsSet(L,Fun(K,S))
∼=−→ HomsSet(L×K,S)

η 7→ ev(η × idK)

which is natural in L, K, and S.

Proof. Take η! := ev(η × idK). The inverse to the map η 7→ η! is given by sending
a function g : L×K → S to the maps

g! : L→ Fun(K,S), y 7→ [ ∆n ×K → S, (t, x) 7→ g(t∗y, x) ] .

Indeed, we have explicitly

(η!)! : L→ Fun(K,S), y 7→ {(x, t) 7→ η!(x, t∗y) = ev(t∗η(y), x)}
and ev(t∗η(y), x) = t∗η(y)(id[m], x) = η(y)(t, x). So (η!)! = η. One checks also

(g!)
! : L×K → S, (x, y) 7→ ev(g! × idK) =

[
(y, z) 7→ g!(y)(id[n], z)

]

https://kerodon.net/tag/0077
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and g!(y)(id[n], z) = g(y, z), so that (g!)
! = g. Naturality can be verified directly.

□

The above lemma says that the functor complexes Fun(−,−) provide inner-Homs
for the monoidal category of simplicial sets, with the symmetric monoidal structure
provided by the product.

prop:tech1 Proposition 3.11 ([8, Proposition 5.2]). Suppose that f : X → S is a Kan fi-
bration and that i : K → L is a monomorphism between arbitrary simplicial sets.
Then the map

Fun(L,X )→ Fun(K,X )×Fun(K,S) Fun(L, S) (13) eq:903

associated to the diagram

Fun(L,X )
i∗ //

f∗

��

Fun(K,X )

f∗

��
Fun(L, S)

i∗
// Fun(K,S)

is a Kan fibration. When i : K → L is furthermore anodyne, or f : X → S is a
trivial fibration, the map (13) is a trivial Kan fibration.

Proof. First, let A → B be an anodyne map. The existence of a splitting for a
given diagram

A

��

// Fun(L,X )

��
B //

∃?

44

Fun(K,X )×Fun(K,S) Fun(L, S)

is equivalent to the existence of a splitting for the corresponding diagram

(A× L)⨿(A×K) (B ×K)

��

//

��

X

f

��
(B × L) //

∃?

44

S,

(14) eq:925

which one obtains via adjunction for inner Homs. By Lemma 3.7 the left hand
vertical map in (14) is anodyne, and the map f : X → S is a Kan fibration by
hypothesis, so that such a splitting is seen to exist. It follows that the map (13) is
a Kan fibration. When the map i : K → L is furthermore anodyne, or f : X → S
is trivial, the above argument can be carried out for any monomorphism A → B,
from which one concludes that (13) is a trivial Kan fibration in this case. □

We find a number of interesting corollaries.

cor:Fun_kan Corollary 3.12. (1) For any simplicial set L, and Kan fibration f : X → S,
the induced map

f∗ : Fun(L,X )→ Fun(L, S)

is a Kan fibration.
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(2) For any monomorphism i : K → L, and Kan complex X , the induced map

i∗ : Fun(L,X )→ Fun(K,X )

is a Kan fibration.
(3) For any anodyne morphism i : K → L, and Kan complex X , the induced

map
i∗ : Fun(L,X )→ Fun(K,X )

is a trivial Kan fibration.
(4) For any simplicial set L, and Kan complex X , the simplicial set of functors

Fun(L,X ) is a Kan complex.

Proof. Follow by considering the cases K = ∅ and S = ∗, independently then
together. □

3.5. Why maps from simplicial sets? In the previous subsection we have em-
phasized maps Fun(K,X ) from some simplicial set K into a given Kan complex.
Of course, a simplicial set is, in general, neither a Kan complex nor an∞-category.
So, one might ask: Why consider simplicial sets at all here?

The reason is rather simple. We view a map p : K →X from a simplicial set as
a “diagram” in X . Then to consider the dynamics of the category Fun(K,X ) is to
consider the dynamics of K-shaped diagrams in X . This will be important in both
the Kan and∞-context when we want to speak, for example, of limits and colimits
of diagrams in a given Kan complex or ∞-category (see Section II-13). So it’s
actually quite important that we develop a relatively sophisticated understanding
of diagrams in a generic Kan complex, or ∞-category.

sect:infty_kan
3.6. The ∞-category of spaces. As observed in Corollary 3.12 above, the func-
tor complexes Fun(X ,Y ) between Kan complexes are themselves Kan complexes.
Hence the simplicial category Kan from Section 1.6 is enriched in Kan complexes.
We therefore apply Proposition 2.20 to obtain the following.

Theorem 3.13. The homotopy coherent nerve of the simplicial category of (medium

sized) Kan complexes Nhc(Kan) is a (large sized) ∞-category.

Definition 3.14. We take
Kan := Nhc(Kan),

and call Kan the ∞-category of Kan complexes.

Let us describe this ∞-category in low dimensions. The objects in Kan are
Kan complexes, and 1-simplices are arbitrary maps of Kan complexes f : X → Y .
According to Lemma 2.19, a 2-simplex in Kan is a not-necessarily-commuting
diagram

X1

f12

!!
X0

f01

==

f02

// X1

in Kan, along with a map of simplicial sets h : ∆1 × X0 → X1 which satisfies
h|{0} = f12f01 and h|{1} = f02. Here one should think of h as a homotopy between
the strict composite f12f01 and f02 which establishes f02 as a “homotopy composite”
of the two maps.

Let us record a small piece of notation.

https://c-negron.github.io/infty_partII.pdf
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Definition 3.15. For points in a Kan complex x, y : ∗ → X , write x ∼ y if there
exists a map of simplicial sets ζ : ∆1 →X with ζ|{0} = x and ζ|{1} = y. We take

π0(X ) = X [0]/ ∼= HomhKan(∗,X ).

Remark 3.16. The fact that X is a Kan complex assures us that the path relation
∼ employed above is in fact an equivalence relation on the set of vertices X [0].

By the above information we can now describe the homotopy category of Kan
complexes hKan as the plain category whose objects are Kan complexes, and
whose morphisms are homotopy classes of maps

HomhKan(X ,Y ) = π0

(
Fun(X ,Y )

)
.

We now have the obvious notion of homotopy equivalence.

def:h_equiv Definition 3.17. A map between Kan complexes f : X → Y is called a homotopy
equivalence, or simply an equivalence, if f induces an isomorphism X ∼= Y in the
homotopy category hKan.

Explicitly, f : X → Y is a homotopy equivalence if there is a map f ′ : Y →X ,
and appropriate homotopies, which establish 2-simplices

Y
f ′

!!

and X
f

!!
X

f
==

idX

// X Y

f ′
==

idY

// Y

in the ∞-category of Kan complexes.

3.7. Equivalences and functor spaces. Our main goal of the subsection is to
prove the following.

prop:equiv_Fun_kan Proposition 3.18. For a map f : X → Y between Kan complexes, the following
are equivalent:

(a) f is an equivalence.
(b) For any simplicial set K, the induced map

f∗ : Fun(K,X )→ Fun(K,Y )

is an equivalence of Kan complexes.
(c) For any Kan complex W , the induced map

f∗ : Fun(W ,X )→ Fun(W ,Y )

is an equivalence.
(d) For any Kan complex W , the induced map

f∗ : Fun(Y ,W )→ Fun(X ,W )

is an equivalence.

We first record some lemmas, which will prove useful in any case. The following
establishes the implication from (a) to (b).

lem:1195 Lemma 3.19. Suppose that f : X → Y is an equivalence between Kan complexes.
Then, for any simplicial set K, the induced map f∗ : Fun(K,X ) → Fun(K,Y ) is
an equivalence as well.
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Proof. Let g : Y →X be a homotopy inverse to f . By considering the composites
fg and gf , it suffices to show that for any endomorphism F : X → X which is
homotopic to the identity idX the induced map F∗ : Fun(K,X )→ Fun(K,X ) is
homotopic to the identity. By the natural isomorphism

HomsSet(∆
1×Fun(K,X ),Fun(KX ))

∼=−→ HomsSet(Fun(K,X ),Fun(∆1×K,X ))

provided by adjunction, it suffices to produce a map

Θ : Fun(K,X )→ Fun(∆1 ×K,X )

whose restrictions along the two

−|{0}×K , −|{1}×K : Fun(∆1 ×K,X )⇒ Fun(K,X )

recover the identity idFun and F∗ respectively.
If we let θ : ∆1 ×X → X be a homotopy between idX and F , then we may

define Θ on n-simplices by taking a function α : ∆n ×K → X to the composite
θ◦(∆1×α). Such a formula determines Θ as a map of simplicial sets and, by direct
inspection, the two composites

Fun(K,X )
Θ−→ Fun(∆1 ×K,X )⇒ Fun(K,X )

recover idFun and F∗. Rather, Θ exhibits a homotopy between the identity and F∗,
as required. □

lem:pi0_equiv Lemma 3.20. If f : X → Y is an equivalence, then the induced map on connected
components π0(f) : π0(X )→ π0(Y ) is an isomorphism.

Proof. We have a natural isomorphism

π0(X ) ∼= π0(Fun(∗,X )) = HomhKan(∗,X )

under which π0(f) is identified with procomposition

[f ]∗ : HomhKan(∗,X )→ HomhKan(∗,Y ).

Since f̄ : X → Y is an isomorphism in hKan, the corresponding map f̄∗ is an
isomorphism. □

We can now prove our proposition.

Proof of Proposition 3.18. The implication (a) ⇒ (b) is covered by Lemma 3.19,
and the implication (b)⇒ (c) is immediate, since (c) is just some restriction of (b).
Now, we claim that (c) implies (a). Suppose that (c) holds. By Lemma 3.20, the
map

π0(f∗) : π0(Fun(W ,X ))→ π0(Fun(W ,Y ))

is an isomorphism. But these sets, by definition, are just HomhKan(W ,X ) and
HomhKan(W ,X ), and π0(f∗) is composition [f ]∗ with the homotopy class of f .
So we conclude that

[f ]∗ : HomhKan(W ,X )→ HomhKan(W ,Y )

is an isomorphism at all W in hKan. Rather, we have a natural isomorphism

[f ]∗ : HomhKan(−,X )
∼=→ HomhKan(−,Y )

of Set valued functors. It follows by Yoneda that the map [f ] is an isomorphism
in hKan, and hence that the original map f : X → Y is an equivalence. So we
establish (a).
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One similarly argues that (d) implies (a), and so we need only establish the
implication (a) ⇒ (d). However, one can argue as in the proof of Lemma 3.19 to
see directly that f∗ : Fun(Y ,W ) → Fun(X ,W ) is an equivalence whenever f is
an equivalence. We are done. □

4. Kan complexes as spaces
sect:spaces

We define and analyze the homotopy groups πn(X , x) of a Kan complex and
recall a simplicial version of Whitehead’s theorem. This theorem says that a map
between Kan complexes f : X → Y is a homotopy equivalence (Definition 3.17)
if and only if the induced map on connected components π0(f) : π0(X )→ π0(Y )
is a bijection, and the induced maps on homotopy groups πn(f) : πn(X , x) →
πn(Y , fx) are isomorphisms at all x and all positive integers n.

At the conclusion we prove that equivalences can be checked over the fibers of a
Kan fibration, and recall an equivalence between the homotopy categories of Kan
complexes and sufficiently small topological spaces.

4.1. Homotopy groups for Kan complexes. For any n ≥ 0 we define the sim-
plicial n-sphere as

Sn := ∆n ⨿∂∆n ∗.
The object Sn is a simplicial set which is a quotient of the standard n-simplex. To
distinguish between the simplicial and topological spheres we denote the topological
n-sphere by Sn. We have that |Sn| = Sn, but we note that the simplicial sphere is
not itself a Kan complex, and so not a “space”. However, the failure of Sn to be a
Kan complex is, for some specific reasons [15, 00VT], not important.

Definition 4.1. A pointed simplicial set (K,x) is a simplicial set K with a fixed
map x : ∗ → K. A map between pointed simplicial sets f : (K,x) → (L, y) is a
map of simplicial sets which fits into a diagram

∗
x

~~

y

  
K

f
// L.

A pointed Kan complex is a Kan complex which is pointed as a simplicial set.

We consider the simplicial sphere Sn as a pointed simplicial set (Sn, ∗) with
distinguished point given by the unique 0-simplex ∗ → Sn. So, given a pointed
simplicial set (K,x), a map of pointed simplicial sets Sn → (K,x) is a map of
simplicial sets such that the unique composite ∗ → Sn → K recovers x. For
pointed simplicial sets (K,x) and (L, y) we let

Fun(K,L)∗ ⊆ Fun(K,L)

denote the simplicial subset which is given by the pullback of the diagram

Fun(K,L)∗ //

��

Fun(K,L)

x∗

��
∗

y
// Fun(∗, L) = L.

https://kerodon.net/tag/00VT
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So a map f : ∆n×K → L is an n-simplex in the pointed functor complex provided
the restriction ∆× ∗ → ∆×K → L along the map x : ∗ → K is of constant value
y.

Lemma 4.2. If (X , x) is a pointed Kan complex, and (K, z) is an arbitrary pointed
set, then the pointed mapping complex Fun(K,X )∗ is a Kan complex.

Proof. By Corollary 3.12 the map z∗ : Fun(K,X )→ Fun(∗,X ) is a Kan fibration,
and Kan fibrations are closed under pullback by Lemma 3.5. Hence the pointed
mapping complex is a Kan complex. □

Definition 4.3. Let (X , x) be a pointed Kan complex. The n-th homotopy group
πn(X , x) is the set of homotopy classes of pointed maps

πn(X , x) := π0 (Fun(S
n,X )∗)

For n > 0 there is a group structure on πn(X , x) which defined as follows: for
two pointed maps a, b : Sn → (X , x) which represent classes ᾱ, β̄ ∈ πn(X , x), we
consider the horn w : Λn+1

1 →X with restrictions

w|∆[n+1]−{0} = a, w|∆[n+1]−{2} = b, w|∆[n+1]−{i} = x when i > 2. (15) eq:1088

We fill this horn to get a map W : ∆n+1 →X , and take

α ∗ β := [W |∆[n+1]−{1} ] ∈ πn(X , x).

lem:1097 Theorem 4.4 ([8, Lemma 7.1, Theorem 7.2]). Fix n > 0. For any classes α, β ∈
πn(X , x) the element α ∗ β constructed above does not depend on the choice of
representatives a, b : Sn → X , nor does it depend on the choice of filling for the
horn (15). We thus obtain a well-defined binary operation

− ∗ − : πn(X , x)× πn(X , x)→ πn(X , x). (16) eq:1098

The binary operation (16) provides πn(X , x) with a group structure for which
the class of the constant map x : Sn →X serves as the identity. Furthermore, this
group is abelian when n > 2.

This construction may seem mysterious, however the group structure on πn(X , x)
is uniquely determined by a small number of intuitive constraints. Namely, this is
the unique group structure for which the constant map at x provides the unit and

for which an (n + 1)-fold product γ−1
0 γ1 . . . γ

(−1)n

n+1 is the identity in πn(X , x) if

and only if the corresponding boundary map γ∗ : ∂∆n+1 →X admits a filling [15,
00VU].

We note that the assignment (X , x) 7→ πn(X , x) is also functorial. Namely, if
we have a map of pointed Kan complexes f : (X , x) → (Y , y) then we have an
induced map of Kan complexes

f∗ : Fun(Sn,X )∗ → Fun(Sn,Y )∗

and thus an induced map on connected components πn(f) : πn(X , x)→ πn(Y , y).
Since horn fillings are sent to horn fillings under f , this map on homotopy groups
is in fact a map of groups. We record this observation.

Lemma 4.5. The homotopy group constructions provides a Z>0-indexed collection
of functors

πn(−) : { Pointed Kan complexes with pointed maps } → Groups .

https://kerodon.net/tag/00VU
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4.2. Homotopy groups and trivial Kan fibrations.

Proposition 4.6. If X is a contractible Kan complex (Definition 3.8), then π0(X )
has a single element and all of the homotopy groups πn(X , x) are trivial.

Proof. To see that π0(X ) is a singleton one simply notes that any map ∂∆1 →X
extends to a path ∆1 → X via the lifting property for trivial Kan fibrations.
Suppose now that n > 0. Consider the pushout Kn of the diagram

∂∆1 //

��

∂∆1 × Sn

��
∆1 // Kn.

The two maps ∂∆1 × Sn → ∆1 × Sn and ∆1 → ∆1 × Sn induce an embedding
Kn → ∆1 × Sn. Now, for any two pointed maps a, b : Sn → X there is a unique
morphism [a, b] : Kn →X for which [a, b]|∂∆1×Sn = a⨿b and [a, b]|∆1 = x. By the
lifting property there exists an extension of [a, b] to a map h : ∆1 × Sn →X . The
map h provides a homotopy between a and b in Fun(Sn,X )∗, and hence equates
the classes [a] = [b] ∈ πn(X , x). This shows that πn(X , x) is trivial for all n > 0
as well. □

A relative version of the above proposition holds as well.

prop:1386 Proposition 4.7. Suppose that f : X → S is a trivial Kan fibration, and that S
is a Kan complex. Then the map on connected components π0f : π0(X )→ π0(S )
is a bijection and, for each point x : ∗ →X and n > 0, the map πnf : πn(X , x)→
πn(S , fx) is an isomorphism of groups.

We first note that compositions of Kan fibrations are Kan fibrations, so that X
itself if a Kan complex in this case

Proof. The lifting property for trivial Kan complexes implies directly that X [0]→
S[0] is surjective and that paths in S lift to paths in X . So the induced map on
connected components is an isomorphism. Fix now n ≥ 1 and take, for arbitrary
x ∈ X [0], y = f(x). By applying the lifting property along the inclusion ∗ → Sn

we see that the map

f∗ : HomsSet(S
n,X )∗ → HomsSet(S

n,S )∗

is surjective, and hence that the induced map on connected components πn(f) =
[f∗] is surjective.

For injectivity, take Kn to be the pushout

∂∆1

��

// ∂∆1 × Sn

��
∆1 // Kn

and consider the inclusion Kn → ∆1 × Sn. Let η : ∆1 × Sn → S be a pointed
homotopy between two pointed maps α, α′ : Sn → (S , y), and consider two pointed
maps β, β′ : Sn → (X , x) which lift α and α′ respectively. Then β and β′ determine
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a map Kn →X which fits into a diagram

Kn //

��

X

f

��
∆1 × Sn

h
// S .

We choose a solution h̃ : ∆1×Sn →X to the corresponding lifting problem to see
that β and β′ define the same class in πn(X , x). This shows that the map

πnf : πn(X , x)→ πn(S , y)

is bijective. □

4.3. Trivial Kan fibrations and equivalences. One can use Proposition 4.7 in
place of Lemma 3.20 to see that any trivial Kan fibration is in fact an equivalence.

prop:trivkan_equiv Proposition 4.8. Suppose that f : X → S is a trivial Kan fibration between Kan
complexes. Then f is an equivalence.

Proof. In this case we have that, for any Kan complex W , the induced map

f∗ : Fun(W ,X )→ Fun(W ,X )

is a trivial Kan fibration, by Proposition 3.11. Then by Lemma 3.20 the induced
map on connected components is an isomorphism

π0(f∗) : π0(Fun(W ,X ))→ π0(Fun(W ,X )).

Equivalently, for each W the class of f induces isomorphisms

[f ]∗ : HomhKan(W ,X )→ HomhKan(W ,X )

at the level of the homotopy category. It follows by Yoneda that [f ] is an isomor-
phism in hKan, and hence that f is an equivalence by definition. □

Proposition 4.8 admits a conditional converse.

prop:trivkan_viuqe Proposition 4.9. A map of Kan complexes f : X → S is a trivial Kan fibration
if and only if it is a Kan fibration and an equivalence.

Proof. If f is a trivial Kan fibration then it is an equivalence, by Proposition 4.8.
Suppose conversely that f is both an equivalence and a Kan fibration, and consider
a lifting problem

A

��

σ̄ // X

��
B

σ
//

>>

S

where A→ B is an inclusion of simplicial sets.
Since the map f∗ : Fun(B,X ) → Fun(B,S ) is an equivalence as well, by

Proposition 3.18, we can lift σ to a map σ̃′ : B →X for which we have an isomor-
phism ζ : f∗σ̃

′ → σ in Fun(B,S ). This isomorphism restricts to an isomorpihsm
ζ|A : f∗σ̃

′|A → σ|A. Since the map f∗ : Fun(A,X )→ Fun(A,S ) is a Kan fibration
in this case, by Proposition 3.11, we can lift f∗σ̃

′|A to a map σ̄′ : A→ X and ζ|A
to an isomorphism ξ : σ̄′ → σ̄.
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Again by Proposition 3.11, the map

Fun(B,X )→ Fun(A,X )×Fun(A,S ) Fun(B,S )

is a Kan fibration and we can lift the 1-simplex

(ξ, ζ) : (σ̄′, f∗σ̃
′)→ (σ̄, σ)

to a map σ̃ : B →X and an isomorphism η : σ̃ → σ̃′. The map σ̃ : B →X solves
our original lifting problem. □

The following corollaries are immediate.

cor:1713 Corollary 4.10. For a given Kan complex X , the following are equivalent:

(a) X is contractible.
(b) The terminal map X → ∗ is a trivial Kan fibration.
(c) The terminal map X → ∗ is an equivalence.

Corollary 4.11. If f : X → Y is an homotopy equivalence between Kan complexes
then X is contractible if and only if Y is contractible.

Remark 4.12. Note that the assumption in Proposition 4.9 that f : X → S
is a Kan fibration is necessary. Consider for example any point x : ∗ → X in a
contractible complex X which has more than one 0-simplex. (For example, take
X the singular complex of an n-ball.) For any point y in X which is distinct from
x, the map y : ∗ → X does not lift along x, so that x is an equivalence which is
not a trivial Kan fibration.

4.4. Whitehead’s theorem.

Lemma 4.13 ([15, 00WW]). Consider two maps f, f ′ : K →X from a simplicial
set K to a Kan complex X , and suppose that for some choice of points z ∈ K[0]
and x ∈ X [0] we have f(z) = f ′(z) = x. Then f and f ′ are homotopic if and
only if they are pointed homotopic. This is to say, the classes of f and f ′ agree in
π0(Fun(K,X )) if and only if they agree in π0(Fun(K,X )∗).

The proof uses Kan replacements [15, 00UW] to reduce to the case where K is a
Kan complex, then employs some technology with fundamental group(oid)s which
we won’t covered here. We refer the reader to [15] for the details. The implications
of this result are clear however.

prop:1560 Proposition 4.14. If f : X → Y is an equivalence between Kan complexes,
x : ∗ → X is an arbitrary point and y = fx, then the induced map on connected
components π0(f) : X → Y is a bijection and the maps on all higher homotopy
groups

πn(f) : πn(X , x)→ πn(Y , y)

are isomorphisms.

An amazing fact is that the converse to Proposition 4.14 holds.

thm:whitehead Theorem 4.15 (Simplicial Whitehead theorem). A map f : X → Y between
Kan complexes is an equivalence if and only if the induced map on connected com-
ponents π0(f) : π0(X )→ π0(Y ) is a bijection and, at any given point x : ∗ →X ,
with image y = fx in Y , the induced maps on homotopy groups

πn(f) : πn(X , x)→ πn(Y , y)

are all isomorphisms.

https://kerodon.net/tag/00WW
https://kerodon.net/tag/00UW
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One find a complete accounting in [15, 00WU] or [8, Theorem 1.10]. From this
point on we simply take this beautiful result for granted.

Remark 4.16. If we compare with the category of cochains over a ring k, then
Whitehead’s theorem says something like any “quasi-isomorphism” between Kan
complexes is in fact a homotopy equivalence. Though this statement is obviously
false for cochains at generic k, we see from the example of Section 2.3, for example,
that the analogy might actually be apt, and that Whitehead’s theorem really might
be as fantastic as such a comparison suggests.

sect:les
4.5. Long exact sequences for homotopy groups. Consider a Kan fibration
f : X → S between Kan complexes. Furthermore, let’s choose a point x : ∗ →X ,
and s = f ◦ x : ∗ → S , in order to get our homotopy group machine started. We
then have a pullback square

Xs

��

// X

f

��
∗

s
// S ,

(17) eq:1587

and a sequence of maps of homotopy groups

πn(Xs, x)→ πn(X , x)
πnf−→ πn(S , s) (18) eq:1594

with imπn(Xs, x) ⊆ kerπn(f). In the case n = 0, we take specifically ker(π0f) :=
(πnf)

−1([s]).
Very coarsely, we might view a pullback diagram (17) as analogous to an exact

sequence of cochain complexes. In continued analogy with the abelian setting, a
diagram as in (17) in fact produces a long exact sequence of homotopy groups

· · · → πn+1(S , s)
∂n+1→ πn(Xs, x)→ πn(X , x)→ πn(S , s)

∂n→ πn−1(Xs, x)→

· · · ∂1→ π0(Xs, x)→ π0(X , x)→ π0(S , s). (19) eq:les

which extends the sequence (18).

Remark 4.17. At n = 0 we consider π0(Z , z) as a pointed set, with distinguished
point 0 : ∗ → π0(Z , z) given by the component of z. Exactness at such an index
says that the preimage of 0 in π0(Z , z) is the image of the preceding map.

thm:les_pin Theorem 4.18 ([15, 00WM]). Given a Kan fibration f : (X , x) → (S , s) and
corresponding pullback diagram as in (17), there is a connecting morphism

∂n : πn(S , s)→ πn−1(Xs, x)

which extends the sequence (18) to a long exact sequence of homotopy groups. This
connecting morphism is a morphism of groups whenever n > 1.

In the case where f : X → S is a trivial Kan fibration, so that the fiber
Xs is contractible, the proposed long exact sequence of Theorem 4.18 recovers
Proposition 4.7. Note that this theorem implicitly claims that the short sequence
(18) is in fact exact [15, 00WN]. In this subsection we won’t argue the exactness of
the above sequence–for those details the reader should see [15]–but instead focus
on the construction of the connecting morphism ∂n and its “naturality”.

For the remainder of the section we fix pointed spaces (X , x) and (S , s), a
Kan fibration f : X → S between these pointed spaces, and the corresponding

https://kerodon.net/tag/00WU
https://kerodon.net/tag/00WM
https://kerodon.net/tag/00WN
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pullback diagram (17). The connecting map is specified precisely by the following
information.

prop:1622 Proposition 4.19 ([15, 00WG]). There is a unique map of sets ∂n : πn(S , s) →
πn−1(Xs, x) for which πn([γ]) = [γ′] precisely when the representing morphisms
γ : ∆n → S and γ′ : ∆n−1 → Xs admit a third map ϑ : ∆n → X with the
following properties:

(a) fϑ = γ : ∆n → S ;

(b) ϑ|∆{1,...,n} = γ′;

(c) ϑ|Λn
0 = x.

Furthermore, ∂n is a group map whenever n > 1.

As a sanity check, so to speak, let’s think about conditions (a) and (b). Condi-
tion (a) requires ϑ(∂∆n) ∈ f−1(s) = Xs, so that the (n − 1)-simplex ϑ|∆{1,...,n}

necessarily has image in Xs. We require that this (n − 1)-simplex agrees with γ′.
Now, (c) says we simply crush the remainder of the boundary at x. So, topologi-
cally, Proposition 4.19 says ∂([γ]) = [γ′] if there is an map |ϑ| : Dn → |X | which
lifts |γ| : Sn → |S | and has prescribed boundary |ϑ||Sn−1 = |γ′| : Sn−1 → |Xs|.

The explicit description of the connecting morphism provided by Proposition
4.19 allows us to observe naturality for the long exact sequence of homotopy groups
(19).

prop:2796 Proposition 4.20. Suppose we have a diagram of pointed Kan complexes

X
µ //

f

��

X ′

f ′

��
S

ν // S ′

in which both f and f ′ are Kan fibrations. Then the induced maps on homotopy
groups

πn(µs) : πn(Xs, x)→ πn(X
′
s′ , x

′), πn(µ) : πn(X , x)→ πn(X
′, x′),

πn(ν) : πn(S , s)→ πn(S
′, s′)

fit into a map between the corresponding long exact sequences

· · · // πn+1(S , s)
∂ //

��

πn(Xs, x) //

��

πn(X , x) //

��

πn(S , s)
∂ //

��

· · ·

· · · // πn+1(S , s)
∂ // πn(Xs, x) // πn(X , x) // πn(S , s)

∂ // · · · .

4.6. Equivalences over a base. The following is deduced as an application of
Whiteheads theorem, in conjunction with the long exact sequence for homotopy
groups.

prop:weee Proposition 4.21. Suppose we have a diagram of Kan complexes

X
f //

��

Y

��
S

q // T

https://kerodon.net/tag/00WG
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in which the vertical maps are Kan fibrations, and q : S → T is an equivalence.
Then the following are equivalent:

(a) The map f : X → Y is an equivalence of Kan complexes.
(b) For any choice of point s : ∗ → S , and t = qs : ∗ → T , the induced map

on the fibers fs : Xs → Yt is an equivalence.

Proof. (a)⇒ (b) By Whitehead’s theorem it suffices to show that, for each choice of
point in the fiber x : ∗ →Xs and y = fx, all of the maps on connected components
and homotopy groups πnfs : πn(Xs, x)→ πn(Yt, y) are all isomorphisms.

To begin, we know that the induced maps πnf : πn(X , x) → πn(Y , y) and
πnq : πn(S , s)→ πn(T , t) are isomorphisms. So the five lemma and naturality of
the long exact sequence on homotopy groups can be employed to see that πnfs is
an isomorphism whenever n > 1. When n = 1 a version of the five lemma for not-
necessarily-abelian groups still holds, so that π1fs is also seen to be an isomorphism.
So we need only show that π0fs is a bijection.

Note that the map π0fs does not depend on the choice of base point x : ∗ →Xs,
but the long exact sequence on homotopy groups does. Suppose we have a point
[z] ∈ π0(Yt) and note that the image of [z] under the composite

π0(Yt)→ π0(Y )→ π0(T , t)

is trivial, i.e. is equal to [t] ∈ π0(T , t).
We consider the image of [z] in π0(Y ), which we also denote [z] by abuse of

notation, and take the unique lift of [z] to an element [x] ∈ π0(X ) along the

isomorphism π0(X )
∼=→ π0(Y ). We via the diagram

π0(Xs) //

��

π0(X ) //

∼=
��

π0(S , s)

∼=
��

π0(Yt) // π0(Y ) // π0(T , t)

(20)

we see that [x] maps to [s] ∈ π0(S , s) so that, by exactness of the rows in the
above diagram we see that [x] lifts to an element in π0(Xs). Rather, we see that
[x] ∈ π0(X ) is represented by a point in Xs, so that we may assume that x itself
is a point in Xs and write simply [x] ∈ π0(Xs) by an abuse of notation. Now, we
claim that π0fs([x]) = [z] ∈ π0(Y ). To see this we fix x : ∗ → Xs as our base
point, y = fsx : ∗ → Yt, and consider the map between long exact sequences

π1(X , x) //

∼=
��

π1(S , s)
∂ //

∼=
��

π0(Xs, x) //

��

π0(X , x) //

∼=
��

π0(S , s)

∼=
��

π1(Y , y) // π1(T , t)
∂ // π0(Yt, y) // π0(Y , y) // π0(T , t)

(21) eq:2856

Via the above diagram, and the fact that [x] 7→ [z] under the map π0(X )→ π0(Y ),
we see that [z] 7→ [y] under the map π0(Yt, y) → π0(Y , y). This is to say, [z] is in
the kernel of π0(Yt, y)→ π0(Y , y). Via exactness [z] ∈ π0(Yt, y) lifts to an element
[ζ] ∈ π1(T , t), which then lifts uniquely to some element [ζ ′] ∈ π1(S , s). The
above diagram then says ∂[ζ ′] ∈ π0(Xs, x) provides a lift of [z] ∈ π0(Yt, y) along
π0fs. So we see that π0fs : π0(Xs)→ π0(Yt) is in fact surjective.

As for injectivity, we suppose π0fs : π0(Xs)→ π0(Yt) sends two points [x], [x′] ∈
π0(Xs) to the same element [y] ∈ π0(Yt), then fix x : ∗ →Xs as our base point. Via
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the diagram (21) we see that [x′] is in the kernel of the map π0(Xs, x)→ π0(X , s)
and hence has a preimage in [γ] ∈ π1(S , s). The image [γ′] = π1q[γ] ∈ πq(T , t) is in
the kernel of the connecting morphism, and so lifts to an element [γ̃′] ∈ π1(Y , y).
This element has a unique preimage [γ̃] ∈ π1(X , x) which necessarily maps to
[γ] ∈ π1(S , s), via the above diagram. So

[γ] ∈ ker(π1(S , s)→ π0(Xs, x)),

and hence has image [x] ∈ π0(Xs, x). But we chose [γ] as a lift of [x′] ∈ π0(Xs, x)!
We therefore have [x] = [x′], and conclude that π0fs is injective. This establishes
bijectivity of π0fs,

π0fs : π0(Xs)
∼=→ π0(Yt),

completing our proof.
(b) ⇒ (a) This follows by a similar analysis of the long exact sequence(s) for

homotopy groups, as in (21), and an application of Whitehead’s theorem. □
sect:kan_v_space

4.7. Kan complexes as spaces. Let us conclude the section with a justification
for the claim that Kan complexes “are” spaces.

We consider the category Top = Topcgw of compactly generated weak Hausdorff
spaces. This is a certain full subcategory in the ambient category of all topological
spaces which includes all locally compact Hausdorff spaces and all CW-complexes
and is closed under taking limits [19, Proposition 2.30].2 In particular, the geometric
realization functor can be considered as a functor to the category of compactly
generated weak Hausdorff spaces

| − | : sSet→ Top .

Now, the category Top admits a model structure for which the weak equivalences
are those maps f : X → Y which induce isomorphisms on connected components
and on all higher homotopy groups, πnf : πn(X,x)

∼→ πn(Y, y). Under this model
structure CW complexes are both fibrant and cofibrant, and the unit of the geo-
metric realization/singular complex adjunction provides a weak equivalence

|Sing(X)| ∼w−→ X.

In particular, when X is (homotopy equivalent to) a CW complex the above map
is a homotopy equivalence. This is the original version of Whitehead’s theorem.

Similarly, there is a model structure on the category of simplicial sets for which
the Kan complexes are the fibrant and cofibrant objects. The weak equivalences
here are those maps which become weak equivalences in Top under geometric re-
alization. When we restrict to Kan complexes, weak equivalences are simply ho-
motopy equivalences, and the counit of the geometric realization/singular complex
adjunction provides homotopy equivalences

X
∼→ Sing(|X |)

whenever X is a Kan complex [9, Proposition 4.6.2]. So we observe the following.

Theorem 4.22. Geometric realization induces an equivalence on the level of ho-
motopy categories | − | : hKan

∼→ hTop.

2This category is cocomplete, i.e. has all small colimits, but the colimit in Top does not agree
with the one in the ambient category of arbitrary topological spaces in general [19].
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In a more sophisticated statement of things, one considers the obvious simplicial
structure Top on the category Top [15, 00JV], and geometric realization extends

to a simplicial functor | − |simp : Kan → Top. This functor has image in the full
simplicial subcategory Top

cw
of spaces which are homotopic to a CW complex. If

we take T opcw to be the homotopy coherent nerve of the simplicial category Top
cw

then we obtain an induced map of ∞-categories

| − |hc : Kan→ T opcw. (22) eq:1509

This map of ∞-categories is in fact an equivalence (once we decide what this even
means) which lifts the equivalence of homotopy categories presented above [15,
01Z4].

5. Basics for ∞-categories
sect:infty_cats

We cover basic constructions for∞-categories, including functor categories, over-
categories and undercategories, and the associated Kan complex functor. We con-
struct the ∞-category of ∞-categories and obtain the corresponding notion of an
equivalence of ∞-categories.

5.1. Inner fibrations and inner anodyne maps. One should recall the notion
of a saturated class of morphisms from Section 3.2.

Definition 5.1. A map of simplicial sets i : A → B is called inner anodyne if it
belongs to the saturated class (see Section 3.2) generated by the inclusions of inner
horns {Λn

i → ∆n : n > 0 and 0 < i < n}. A map of simplicial sets f : C → S is
called an inner fibration if any lifting problem

A

i

��

// C

f

��
B // S

in which i is inner anodyne admits a solution.

As in the proof of Lemma 3.3, one sees that a map C → S is an inner fibration
if and only if one can lift simplicies ∆n → S along any inclusion of an inner horn
Λn
i → ∆n. Note also that C is an ∞-category if and only if the map C → ∗ is

an inner fibration. Of course, the term “inner fibration” suggests an augmentation
of the notion of a Kan fibration, where one replaces the role of arbitrary horn
inclusions Λn

i → ∆n with inner horns.
The following lemma is straightforward.

lem:1975 Lemma 5.2. Suppose that we have a pullback diagram

C ′

f ′

��

// C

f

��
S′ // S

in which f : C → S is an inner fibration. Then f ′ is an inner fibration as well.

Since a simplicial set is an ∞-category if and only if the terminal map E → ∗ is
an inner fibration, we see from Lemma 5.2 that the fibers Cs of any inner fibration
C → S over the base are all ∞-categories.

https://kerodon.net/tag/00JV
https://kerodon.net/tag/01Z4
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Let us say that an ∞-category D admits unique horn fillings if, for any inner
horn s̄ : Λn

i → D , there is a unique n-simplex s : ∆n → D with s|Λn
i
= s̄. An

∞-category D admits unique horn fillings if and only if D is isomorphic to the
nerve of a plain category [13, Proposition 1.1.2.2].

lem:1556 Lemma 5.3. Suppose that C and D are ∞-categories, and that f : C → D is a
map of simplicial sets. If D admits unique horn fillings, then f is an inner fibration.

Proof. Consider a diagram

Λn
i

s̄ //

��

C

f

��

��

∆n t //

π

((

D

��
∗

and any lift s : ∆n → C of π. Then fs : ∆n → D is a map to D with fs|Λn
i =

fs̄ = t|Λn
i . Since D admits unique horn fillings, we have fs = s̄. □

As a corollary one sees that, for any ∞-category C , the truncation p : C →
N(hC ) is an inner fibration. One also sees that, for any∞-category D with unique
horn fillings, and any map f : C → D from an arbitrary simplicial set C , we have
that C is an ∞-category if and only if f is an inner fibration.

We have the following technical lemma, which is an inner variant of Lemma 3.7.

lem:1575 Lemma 5.4 ([15, 00JB]). Consider two monomorphisms of simplicial sets i : A→
B and j : K → L. If either of i or j is an inner anodyne morphism, then the induced
map

(A× L)⨿(A×K) (B ×K)→ (B × L)

is inner anodyne as well.

5.2. Full subcategories. Throughout the text we use the term ∞-subcategory
loosely. At a base level, by an ∞-subcategory we mean a simplicial subset C ′ ⊆ C
in an∞-category C which is itself an∞-category. By a full∞-subcategory however,
we do mean something precise.

Definition 5.5. A full ∞-subcategory in an ∞-category C , or simply a full sub-
category, is a simplicial subset C ′ ⊆ C which satisfies the following: An n-simplex
s : ∆n → C has image in C ′ if and only if, at each index 0 ≤ i ≤ n, the restriction
s|∆{i} : ∆0 → C is an object in C ′.

Given an ∞-category C , we note that any full subcategory in C is itself an ∞-
category, and that any full subcategory C ′ ⊆ C is determined by its collection of
objects. Indeed, for any choice of objects X ⊆ C [0] there is a uniquely associated
full subcategory CX in C with X = CX [0]. We refer to the subcategory CX as the
full subcategory spanned by the objects X in C .

Remark 5.6. In the text [15] a subcategory in an∞-category C is defined to be a
simplicial subset C ′ ⊆ C for which the inclusion C ′ → C is an inner fibration. Our
use of the term is likely consistent with this definition, though we make no attempt
to verify this condition in practice.

https://kerodon.net/tag/00J8
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5.3. Exponentials of ∞-categories.

prop:tech2 Proposition 5.7. Suppose that i : K → L is a monomorphism of simplicial sets,
and that f : C → S is an inner fibration. Then the induced map on functor
complexes

Fun(L,C )→ Fun(K,C )×Fun(K,S) Fun(L, S) (23) eq:1597

is an inner fibrations. Furthermore, if i : K → L is inner anodyne, then the map
(23) is a trivial Kan fibration.

Proof. One replaces Lemma 3.7 with Lemma 5.4 and proceeds exactly as in the
proof of Proposition 3.11. □

If one considers the inclusion ∅ → K and, when C is an ∞-category, the inner
fibration C → ∗, then one arrives at the following.

cor:Fun_infty Corollary 5.8. (1) For any simplicial set K, and∞-category C , the simplicial
set Fun(K,C ) is an ∞-category.

(2) For any simplicial set K, and inner fibration f : C → S, the morphism
f∗ : Fun(K,C )→ Fun(K,S) is an inner fibration.

(3) For any monomorphism i : K → L, and ∞-category C , the map of ∞-
categories i∗ : Fun(L,C )→ Fun(K,C ) is an inner fibration.

(4) For any inner anodyne morphism i : K → L, and ∞-category C , the map
of ∞-categories i∗ : Fun(L,C )→ Fun(K,C ) is a trivial Kan fibration.

5.4. Opposite categories. For any linearly ordered set J define J rev to be the
set J with the reversed ordering,

j < j′ ⇔ j >rev j′.

Note that for any linearly ordered sets I and J , and set map r : I → J , we have
that r is weakly increasing as a function from I to J if and only if r is weakly
increasing when considered as a function from Irev to J rev. Hence the reversing
operation defines an autoequivalence

−rev : ∆
∼=→ ∆.

Indeed, −rev is an involution on ∆.
We define the opposite Kop of a given simplicial set K to be the simplicial set

Kop := K ◦ (−rev).

One sees that the n-simplices Kop[n] in Kop are in canonical bijection with the n-
simplicesK[n] inK, via the unique identification ∆n ∼= (∆n)rev at each n. However,
under this bijection the structure maps for Kop are “reversed” relative to those of
K.

We note that the assignment K 7→ Kop extends to an involution (−)op : sSet→
sSet. If we recall the formal definition sSet = Fun(∆op,Set), this involution can be
identified clearly as the induced map

(−)op := ((−)rev)∗ : Fun(∆op,Set)→ Fun(∆op,Set).

Example 5.9. For a plain category A we have N(A)op = N(Aop).

Lemma 5.10. The opposite X op of a Kan complex X is another Kan complex.
The opposite C op of an ∞-category is another ∞-category.
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Proof. This follows from the fact that the opposite of a horn inclusion j : Λn
i → ∆n

is identified with the horn inclusion Λn
n−i → ∆n, so that a lifting problem

Λn
i

��

// C op

��
∆n //

<<

∗
admits a solution if and only if the corresponding lifting problem on opposite cat-
egories

Λn
n−i

��

// C

��
∆n //

==

∗
admits a solution. □

5.5. Isomorphisms in an ∞-category.

Definition 5.11. A morphism f : x→ y in an ∞-category C is called an isomor-
phism if there exists another morphism g : y → x for which one has (not necessarily
unique) 2-simplices

y
g

��
x

idx

//

f
??

x

and x
f

��
y

idx

//

g
??

y

in C .

Equivalently, f is an isomorphism in C if its class f̄ in the homotopy category
hC is an isomorphism.

Remark 5.12. In [13], such a map f is simply referred to as an equivalence, while
in [15] the term isomorphism is explicitly used. In familiar settings, one might
use the term isomorphism to refer to a map in some category A which is literally
invertible, while referring to some weaker relations as equivalences. However, one
should note that in the generic∞-categorical setting there is not stronger notion of
equivalence than the one given above. This is because all 2-simplices are formally
indistinguishable in A. This is to say, there is no preferred method for “inverting” a
given map f . Also, a map in the nerve N(A) of a plain category is an isomorphism
if and only if the corresponding map in A is an isomorphism.

Example 5.13. A morphism α : x→ y in the homotopy ∞-category K (A) of dg
modules, over some dg algebra A, is an isomorphism if and only if α is a homotopy
equivalence.

def:assoc_kan Definition 5.14. Let C be an ∞-category. The Kan complex associated to C is
the simplicial subset CKan whose n-simplices ∆n → CKan consist of all n-simplices
in C , s : ∆n → C , which restrict to an isomorphism s|∆1 : ∆1 → C along each
monomorphism ∆1 → ∆n.

Since there are no monomorphisms from ∆1 into ∆0, CKan has the same objects
as C , and the morphisms in CKan are precisely the isomorphisms in C . Clearly
CKan is the largest simplicial subset in C with this property.
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Lemma 5.15. For any ∞-category C , the associated Kan complex CKan is an
∞-category, and the inclusion CKan → C is an inner fibration.

Proof. It suffices to prove that the inclusion i : CKan → C is an inner fibration.
Consider a lifting problem

Λn
i

//

��

CKan

i

��
∆n

s
//

<<

C

with 0 < i < n. When n = 2, we simply note that isomorphisms in the homotopy
category hC have the 2-of-3 property. So if s : ∆2 → C is a 2-simplex whose
restriction to a horn Λ2

i → ∆2 → C factors Λn
i → CKan → C , then s itself

factors through CKan. For all higher simplices, n > 2, we note that all 1-simplices
∆1 → ∆n factor uniquely through the horn Λn

i → ∆n to see that the simplex s is
actually a simplex in CKan. We therefore have a unique solution to the given lifting
problem. □

One of the aims of this section is to prove that CKan is not only an ∞-category,
but a Kan complex. In order to prove this result we need to develop a number of
notions which are quite important in their own right. We discuss overcategories,
undercategories, and isofibrations then return to the topic of the associated Kan
complex in Section 5.10.

Remark 5.16. Lurie refers to the subcategory CKan as the core of C , and denotes
this subcategory C≃.

5.6. Joins of simplicial sets. For a linearly ordered set I let us take P±(I) to
be the collection of all partitions I = I− ⨿ I+ such that i < j for each i ∈ I− and
j ∈ I+. Note that P±(I) is identified with the collection of weakly increasing maps
I → [1], P±(I) = Hom∆(I, [1]).

Definition 5.17. Let A and B be simplicial sets. The join of A and B, denoted
A ⋆ B, is the simplicial set with I-simplices

(A ⋆ B)(I) :=
∐

(I−,I+)∈P±(I)

A(I−)×B(I+),

where one takes formally A(∅) = B(∅) = ∗. Given any weakly increasing map of
linearly ordered sets r : I → J , restriction

r∗ : (A ⋆ B)(J)→ (A ⋆ B)(I)

sends a pair (s, t) ∈ A(J−)×B(J+) to (r∗s, r∗t) ∈ A(r−1J−)×B(r−1J+).

One should note that we have canonical inclusions A→ A ⋆ B and B → A ⋆ B.
We also note that the join forms a bifunctor

⋆ : sSet× sSet→ sSet .

Specifically, given two maps f : A → A′ and g : B → B′ the join f ⋆ g : A ⋆ B →
A′ ⋆B′ sends each pair of simplices (s, t) in A⋆B to the corresponding pair (fs, gt)
in A′ ⋆ B′. In terms of bifunctoriality, the two inclusions of the original simplicial
sets into A ⋆ B are deduced as the composites

A ∼= A ⋆ ∅ → A ⋆ B and B ∼= ∅ ⋆ B → A ⋆ B,
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where the maps ∅ ⋆ B → A ⋆ B and A ⋆ ∅ → A ⋆ B are the joins of the unique
morphisms from the empty set.

ex:delta_join Example 5.18. There are isomorphisms ∆0 ⋆∆n ∼= ∆n+1 and ∆n ⋆∆0 ∼= ∆n+1.
In the first case we take a pair of maps s− : I− → {0} and s+ : I+ → [n] to the
unique map s : I → [n+ 1] with s|I− = s− and s(i) = s+(i− 1) for all i ∈ I+. The
second isomorphism is defined similarly. Indeed, we can argue as above to obtain
an isomorphism

∆m ⋆∆n ∼=→ ∆m+n+1

at all m and n. We note that, since ∆m+n+1 admits no nontrivial automorphism,
the above isomorphism is unique.

If we take ∆−1 = ∅ we can describe n-simplices in the join s : ∆n → A ⋆ B
as a choice of pair of integers m,m′ ≥ −1 such that m + m′ = n − 1, and a
choice of simplices s− : ∆m → A and s+ : ∆m′ → B. We reconstruct the original

simplex as the composite of the unique isomorphism ∆n ∼= ∆m ⋆∆m′
with the join

s− ⋆ s+ : ∆m ⋆∆m′ → A ⋆ B,

s =
(
∆n ∼= ∆m ⋆∆m′ s−⋆s+−→ A ⋆ B

)
.

One finds s− and s+ by restricting to the maximal subcomplexes in ∆n which have
images in the subcomplexes A ⊆ A ⋆ B and B ⊆ A ⋆ B respectively. Alternatively,
s− and s+ are obtained by taking the fiber product of s along the two inclusions
A→ A ⋆ B and B → A ⋆ B respectively.

prop:1713 Proposition 5.19. Suppose that f : C → S and g : D → T are inner fibrations.
Then the join

f ⋆ g : C ⋆ D → S ⋆ T

is an inner fibration.

Proof. The important point to keep in mind here is that an l-simplex t : ∆l → C ⋆D
has image in C if and only if its composite ∆l → S ⋆ T along f ⋆ g has image in S.
Similarly, t has image in D if and only if its composite along f ⋆ g has image in T .

Consider a lifting problem

Λn
i

��

s̄ // C ⋆ D

f⋆g

��
∆n

s
//

;;

S ⋆ T.

where Λn
i → ∆n is an inner horn. As was discussed above, we can decompose

s uniquely into the join of simplices s− : ∆m → S and s+ : ∆m′ → T , where
m,m′ ≥ −1 and m+m′ = n−1. If m or m′ is less that 0, then s factors through S
and s̄ factors through C , or s factors through T and s̄ factors through D . In either
case, one can resolve this lifting problem. So let us suppose m,m′ ≥ 0.

We have the faces ∆m → ∆m ⋆∆m′
and ∆m′ → ∆m ⋆∆m′

and, by the fact that
our horn is inner, both of these faces factor through the horn

∆m, ∆n → Λn
i → ∆m ⋆∆m′

.

We therefore have unique lifts s′− : ∆m → C ⋆D and s′+ : ∆m′ → C ⋆D . Since the
images of s′− and s′+ in S ⋆ T lie in the simplicial subsets S and T respectively, we



48 CRIS NEGRON

see that s′− and s′+ themselves factor uniquely through C and D respectively. So
we consider the n-simplex

s′ = s′− ⋆ s′+ : ∆n → C ⋆ D .

We have (f ⋆ g)s′ = (fs′−) ⋆ (gs′+) = s− ⋆ s+ = s. We claim that s′|Λn
i
= s̄, and

hence that s′ solves our lifting problem.
To establish the equality s′|Λn

i
= s̄ it suffices to establish equalities s′|∆n−1 =

s̄|∆n−1 for all of the (n−1)-faces ∆n−1 → Λn
i . But here we can factor each composite

s′|∆n−1 : ∆n−1 → C ⋆ D as

∆n−1 = ∆l ⋆∆l′ i⋆i′−→ ∆m ⋆∆m′ s′−⋆s′+→ C ⋆ D ,

where i : ∆l → ∆m and i′ : ∆l′ → ∆m′
are face inclusions. By construction

s′|∆l = s̄|∆l and s′|∆l′ = s̄|∆l′ . So s̄ maps ∆l into C , and maps ∆l′ into D , and we
therefore conclude

s̄|∆n−1 = (s̄|∆l) ⋆ (s̄|∆l′ ) = (s′−|∆l) ⋆ (s′+|∆l′ ) = s′|∆n−1 ,

as required. So we see s′|Λn
i
= s̄, and hence that the original lifting problem admits

a solution. □

Corollary 5.20. If C and D are ∞-categories, then the join C ⋆ D is an ∞-
category.

Proof. The map C ⋆ D → ∆0 ⋆ ∆0 = ∆1 is an inner fibration by Proposition
5.19. Since ∆1 = N({0 < 1}) is an ∞-category, this implies that C ⋆ D is an
∞-category. □

sect:overcategories
5.7. Overcategories and undercategories. Let p : K → C be a map from a
simplicial set K to another simplicial set C . We will generally refer to p as a
“diagram” in C . (The case where C is an ∞-category is most important for us,
but it well be helpful to just consider simplicial sets for now.)

We define the overcategory C/p to be the simplicial set with n-simplices

C/p[n] = HomsSet(∆
n ⋆ K,C )p,

where the subscript p indicates that we consider maps of simplicial sets p′ : ∆n ⋆
K → C for which p′|K = p. Restriction in C/p along a weakly increasing function
r : [m] → [n] is defined by restricting along the corresponding map of simplicial
sets r ⋆ idK : ∆m ⋆K → ∆n ⋆K. We similarly define the undercategory Cp/ as the
simplicial set with simplices

Cp/[n] = HomsSet(K ⋆∆n,C )p.

By construction there are identifications

HomsSet(∆
n,C/p)

∼=→ HomsSet(∆
n ⋆ K,C )p, f 7→ f(id[n]) (24) eq:1784

and
HomsSet(∆

n,Cp/)
∼=→ HomsSet(K ⋆∆n,C )p, g 7→ g(id[n]). (25) eq:1788

Since the join functor is seen to commute with colimits the above isomorphism
extend to adjunctions which are natural in all factors.

Lemma 5.21 ([15, 017Z]). For any diagram p : K → C , which we also considered
as a diagram to the opposite category p : Kop → C op, there is an identification of
simplicial sets (C/p)

op ∼= (C op)p/.

https://kerodon.net/tag/017Z
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Proof. Follows from the identification (∆n ⋆ K)op = Kop ⋆ (∆n)op. □

lem:1798 Lemma 5.22 ([15, 0189]). Consider an arbitrary diagram p : K → C in a simpli-
cial set C . For any simplicial set L, there are unique isomorphisms

HomsSet(L,C/p)
∼=→ HomsSet(L ⋆ K,C )p (26) eq:1795

and
HomsSet(L,Cp/)

∼=→ HomsSet(K ⋆ L,C )p

which are natural in L and recover the isomorphisms (24, 25) when L = ∆n.

Construction. We construct the isomorphism for C/p. The construction for Cp/ is
similar, or can be recovered by replacing C with its opposite category. First we
consider the map

ev : C/p ⋆ K → C , (s : ∆l → C/p, t : ∆m → K) 7→ s ◦ (id∆l ⋆ t).

(Here we’ve abused notation to identify the function s : ∆l → C/p with its value

at id[l], which is a map ∆l ⋆K → C .) Then the isomorphism (26) sends a function
f : L→ C/p to the composite ev ◦ (f ⋆idK). The inverse takes a map η : L⋆K → C
with appropriate restriction to the map

η′ : L→ C/p, (s : ∆n → L) 7→ η ◦ (s ⋆ idK).

□

We note that the overcategory/undercategory construction does enjoy some func-
toriality. For example, if we have a map of simplicial sets i : A→ K and an arbitrary
diagram p : K → C , then restricting along i defines maps

i∗over : C/p → C/pi and i∗under : Cp/ → Cpi/.

Similarly, if we have a map of simplicial sets f : C → D then composing with f
defines a maps

fover
∗ : C/p → D/fp and funder

∗ : Cp/ → Dfp/.

If we consider such induced morphisms, the isomorphism of Lemma 5.22 is natural
in the K and C variables as well.

5.8. Directional fibrations and under/overcategories of ∞-categories.

def:lr_anodyne Definition 5.23. The class of left (resp. right) anodyne maps i : A → B is the
saturated class of morphisms in sSet generated by the collection of horn inclusions
Λn
i → ∆n, where n is arbitrary and 0 ≤ i < n (resp. 0 < i ≤ n).
A map of simplicial sets f : C → S is called a left fibration (resp. right fibration)

if any lifting problem

A //

i

��

C

f

��
B // S

in which i is left anodyne (resp. right anodyne) admits a solution.

When compared with inner anodyne maps and inner fibrations, it is easier to
be a right/left anodyne map, and hence harder for a map of simplicial sets to be a
left/right fibration. We have the join analog of Lemma 3.7, which is slightly more
robust.

https://kerodon.net/tag/0189
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lem:1806 Lemma 5.24 ([15, 018J]). For monomorphisms i : A → B and j : K → L, the
corresponding map from the pushout

(A ⋆ L)
∐

(A⋆K)

(B ⋆ K)→ B ⋆ L

is inner anodyne whenever i is right anodyne or j is left anodyne.

One employs Lemma 5.24 and follows the arguments of Proposition 3.11 to obtain
the following. We repeat these arguments, since we haven’t seen them in a while,
and we miss them.

prop:tech3 Proposition 5.25. Let f : C → S be an inner fibration, and p : K → C be
any diagram in C . Then for any monomorphism j : K0 → K, and corresponding
diagram π = pj : K0 → C , the induced map on overcategories

C/p → C/π ×S/π
S/p

is a right fibration, and the induced map on undercategories

Cp/ → Cπ/ ×Sπ/
Sp/

is a left fibration.

Clearly we have abused notation here and written S/p instead of S/pf and S/π

instead of S/πf , for example.

Proof. The claim about undercategories follows from the claim about overcate-
gories, after applying the opposite involution on sSet. So, we deal with the case of
overcategories.

Any lifting problem

A

i

��

// C/p

��
B > [ur] //// C/π ×S/π

S/p

defines a corresponding lifting problem

(A ⋆ K)
∐

(A⋆K0)
(B ⋆ K0) //

��

C

f

��
B ⋆ K

66

// S

via adjunction, where the left vertical map is defined by the maps i⋆idK and idB ⋆j.
If we suppose that i : A→ B is right anodyne, then Lemma 5.24, and the fact that
f is an inner fibration, assures us that the second lifting problem admits a solution.
Hence the first lifting admits a solution. □

The same argument can be used to establish the following.

prop:tech3.5 Proposition 5.26. Suppose that we are in the setting of Proposition 5.25. If the
inclusion j : K0 → K is left anodyne, then the induced map on overcategories

C/p → C/π ×S/π
S/p

https://kerodon.net/tag/018J
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is a trivial Kan fibration. Similarly, if j : K0 → K is right anodyne, the induced
map

Cp/ → Cπ/ ×Sπ/
Sp/

is a trivial Kan fibration.

If we consider the case S = ∗ and K0 = ∅, then we have identifications C/π = C
and S/p = S/π = ∗, essentially by the adjunction of Lemma 5.22. Similarly Cπ/ = C
and Sp/ = Sπ/ = ∗ in this case. So we obtain the following.

cor:1947 Corollary 5.27. Let C be an ∞-category and p : K → C be an arbitrary diagram.
Then restricting along the inclusions ∆n → ∆n ⋆K and ∆n → K ⋆∆n define maps
of simplicial sets

C/p → C and Cp/ → C

which are right and left fibrations, respectively.

Let’s take a moment to explain clearly what this map C/p → C actually “looks
like”. An n-simplex in C can be thought of as a ∆n-shaped diagram in C . Directly,
an n-simplex in C is identified with a map of simplicial sets s : ∆n → C . To
compare, an n-simplex in C/p is a ∆n ⋆ K-shaped diagram in C , i.e. a map s′ :
∆n ⋆ K → C .

Now, the simplicial set ∆n ⋆ K can be visualized as a copy of ∆n floating in
space, a copy of K floating in space, and a bunch of connective simplices from ∆n

to K. So a ∆n ⋆ K-shaped diagram in C appears as follows:

x2

·

��

(an n-simplex in C/p) = x1
...

..

xn

!!

⊆ C

p(K).

The map C/p → C simply keeps the uncolored portion of the above diagram and
forgets about the colored portions,

C/p → C

x2

·

��

x2

·

x1
...

..

xn

!!

forget
⇝ x1

... xn.

p(K)

Similarly, the map C/p → C/π forgets some portion of the colored diagram, while
remembering others. One can provide a similar describe the map Cp/ → C .

We record a final corollary to Proposition 5.26.
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cor:1998 Corollary 5.28. Let C be an ∞-category and p : K → C be an arbitrary diagram.
Adopt the notation from Proposition 5.25. If the inclusion j : K0 → K is left
anodyne then the induced map

C/p → C/π

is a trivial Kan fibration. If the inclusion j : K0 → K is right anodyne, then the
induced map

Cp/ → Cπ/

is a trivial Kan fibration.

5.9. Isofibrations.

def:isofib Definition 5.29. A map of ∞-categories F : C → D is called an isofibrations if

(a) F is an inner fibration.
(b) For every object x in C , and isomorphism γ′ : y′ → F (x) in D , there exists

an object y in C and an isomorphism γ : y → x with F (γ) = γ′.
(b′) For every object y in C , and isomorphism θ′ : F (y)→ x′ in D , there exists

an object x in C and an isomorphism θ : y → x with F (θ) = θ′.

Colloquially, an isofibration is an inner fibration along which one can lift isomor-
phisms.

lem:2034 Lemma 5.30. Let F : C → D be an inner fibration between ∞-categories. Then
F has satisfies property (b) from Definition 5.29 if and only if F has property (b′).

Proof. Suppose F has property (b), and consider a pairing of an object y in C and
an isomorphism θ′ : F (y) → x′ in D . Take y′ = F (y) and consider a homotopy
inverse ζ ′ : x′ → y′ in D . We can lift this inverse to an isomorphism ζ : x → y
in C , by hypothesis. In particular, we can lift x′ to the object x in C . Consider
an inverse ϑ : y → x to ζ in C , write θ′′ = F (ϑ) : y′ → x′. Note that θ′′ provides
an inverse to ζ ′. By uniqueness of inverses (up to 2-simplices) we have a 2-simplex
s : ∆2 → D of the form

x′

id

��
y′

θ′′
??

θ′
// x′

in which the inner horn Λ2
1 → ∆2 → D lifts to an inner horn in C , s̄ : Λ2

1 → C .
This inner horn appears as

x
id

  
y

ϑ

??

x.

So we have a lifting problem

Λ2
1

��

s̄ // C

F

��
∆2

s
//

>>

D .
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Since F is an inner fibration there exists a solution to this lifting problem s′ : ∆2 →
C ,

s′ = x
id

  
y

ϑ

??

θ
// x,

and the map θ := s′|∆{1,3} : y → x is such that F (θ) = θ : y′ → x′. By the
two-of-three property for isomorphisms in C , we see that θ : y → x is in fact
an isomorphism, and hence provides the desired lift of θ′ to an isomorphism in
C . This shows that condition (b) of Definition 5.29 implies condition (b′). The
opposite implication follows by applying the finding (b)⇒ (b′) to the opposite map
F op : C op → Dop. □

lem:2071 Lemma 5.31. If C and D are ∞-categories, and F : C → D is a left or right
fibration, then F is an isofibration. Furthermore, if F is a left or right fibration
then a given morphism γ in C is an isomorphism if and only if its image in D is
an isomorphism.

Proof. Suppose that F is a right fibration, for example. Then we can lift any map
γ′ : F (y) → x′ in D to a map γ : y → x in C . This just follows by solving the
corresponding lifting problem

Λ1
1

//

��

C

F

��
∆1 //

>>

D .

We claim that, when γ′ is an isomorphism in D , any such lift γ is an isomorphism
in C .

To obtain a right inverse ζ : x→ y to γ, choose an inverse ζ ′ to γ′ in D then lift
the 2-simplex

y′

γ′

��
x′

id
//

ζ′
??

x′

in D to a 2-simplex ∆2 → C of the form

y
γ

  
x

id
//

∃ζ
??

x.
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To see that ζ is also left inverse to γ, and hence that γ is an isomorphism, one again
solves a lifting problem to obtain a 3-simplex ∆3 → C of the form

x

ζ

�� id

��

y

γ
%%

y
γ

//
id

::
γ

CC

x.

We’ve now shown that F is an isofibration.
Suppose finally that η is an arbitrary map in C whose image γ′ = F (η) is an

isomorphisms. As the above arguments show that any lift γ : ∆1 → C of γ′ is an
isomorphism in C , we find in particular that η is an isomorphism. □

sect:assoc_kan
5.10. The Kan complex associated to an ∞-category. Let us recall the Kan
complex functor, which associates to any∞-category C the∞-subcategory CKan ⊆
C . This subcomplex is the maximal ∞-subcategory whose morphisms are the
isomorphisms in C . So, an n-simplex s : ∆n → C lies in CKan if and only if
each restriction s|∆{i,j} ∈ C [1] is an isomorphism in C . Since the image of an
isomorphism under any map of ∞-categories remains an isomorphism, we simply
restrict to observe functoriality of this assignment

F : C → D ⇝ FKan : CKan → DKan.

thm:assoc_kan Theorem 5.32. For any ∞-category C , the associated Kan complex CKan is in
fact a Kan complex.

This theorem is essentially a consequence of the following result, which we record
before giving the proof of Theorem 5.32.

prop:2112 Proposition 5.33. Let F : C → D be an inner fibration between ∞-categories.
Suppose n ≥ 2 and consider a lifting problem of the form

Form A) Λn
n

s //

��

C

F

��

or Form B) Λn
0

s //

��

C

F

��
∆n

σ
// D ∆n

σ
// D .

(27) eq:2105

A lifting problem of Form A admits a solution provided s|∆{n−1,n} is an isomor-
phism in C . A lifting problem of Form B admits a solution provided s|∆{0,1} is an
isomorphism in C .

In the case of a diagram of Form A, the proof leverages of overcategories as a
means of decomposing the Λn

n-shaped and ∆n-shaped diagrams in C and ∆n → D .
For a diagrams of Form B one employs undercategories in an analogous manner.

Proof. We assume s|∆{n−1,n} is an isomorphism in C , and consider a lifting problem
of Form A. The Form B case follows by considering opposite categories.

We consider the inclusion

∆n−1 = ∆n−2 ⋆ {1} → ∆n−2 ⋆∆1 = ∆n
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This inclusion factors through the horn Λn
n and, in terms of the decomposition

∆n = ∆n−2 ⋆∆1, this horn is the union

Λn
n = (∆n−2 ⋆ {1}) ∪ (∂∆n−2 ⋆∆1).

The external horn s : Λn
n → C restricts along the inclusion ∆n−2 → Λn

n to define a
simplex f := s|∆n−2 : ∆n−2 → C , and we can restrict further to the boundary to
get g = f |∂∆n−2 → C ,

∂∆n−2

g

##

incl

zz
∆n−2

f
// C .

We have the various undercategories Cf/, Cg/, Df/ and Dg/, where we have abused
notation and written simply f and g for the maps to D given by composing with
F . The functor F induces a map to the fiber product

ΘF : Cf/ → Cg/ ×Dg/
Df/. (28) eq:2142

We will construct the desired solution s′ : ∆n → C to our lifting problem via an
analysis of the map (28).

Let us take E = Cg/ ×Dg/
Df/, and for convenience identify ∆1 in the formula

∆n−2 ⋆∆1 = ∆n with ∆{−1,1}. Note that E is an ∞-category, by Corollary 5.27.
The restrictions

s|subthing : ∂∆n−2 ⋆ {±1} → C and σ|subthing : ∆n−2 ⋆ {±1} → D

specify objects x̄− and x̄+ in E , and the corresponding restrictions

s|subthing : ∂∆n−2 ⋆∆1 → C and σ : ∆n−2 ⋆∆1 = ∆n → D

specify a morphism γ̄ : x̄− → x̄+ in E . The restriction

s|subthing : ∆n−2 ⋆ {1} → C

Specifies an object x+ in Cf/ with ΘF (x+) = x̄+.
Now, a lifting of γ̄ to an object x− with a specified morphism γ : x− → x+ in

Cf/ is the information of an n-simplex

s′ : ∆n−2 ⋆∆1 = ∆n → C

with

s′|∆n−2⋆{1} = s|∆n−2⋆{1}, and F (s′) = σ, and s′|∂∆n−2⋆∆1 = s|∂∆n−2⋆∆1 .

The first and third equalities say precisely that s′ restricts s along the inclusion
Λn
n → ∆n. So, there exists a solution to the lifting problem

∆0 = Λ1
1

x+ //

1

��

Cf/

ΘF

��
∆1

γ̄
//

::

E

if and only if there exists a solution to the lifting problem (28). But now, we
have already seen that ΘF is a left fibration, by Proposition 5.25, and hence an
isofibration by Lemma 5.31. So such a lifting γ : ∆1 → Cf/ exists, provided γ̄ is an
isomorphism in E .
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To see that γ̄ is an isomorphism, we consider the functor w : E → C which is
obtained by composing the structural projection p1 : E → Cg/ with the forgetful
functor Cg/ → C . Both of the maps in this composite are left fibrations, so that
w : E → C is a left fibration. We have

w(γ̄) = (s|∂∆n−2⋆∆1)|∆1 = s|∆{n−1,n} ,

which is an isomorphism in C by hypothesis. It follows that γ̄ is an isomorphism,
by Lemma 5.31. Hence we find a solution to the lifting problem (27), as desired. □

cor:2209 Corollary 5.34. If F : C → D is an isofibration between ∞-categories, then the
associated map FKan : CKan → DKan is a Kan fibration.

Proof. Consider a lifting problem

∆n
i

//

��

CKan

FKan

��
∆1 //

<<

DKan

(29) eq:2215

with 0 ≤ i ≤ n. When n = 1 there exists solutions since F is an isofibration. When
n > 1 we compose with the inclusions to C and D and find a solution s : ∆n → C
to the corresponding lifting problem along for the original F : C → D . Now, since
n > 1 all 2-simplices in ∆n lie in the horn Λn

i , and we conclude that all of the maps
s|∆{i,j} ∈ C [1] are isomorphisms. So s has image in CKan, and thus provides a
solution to the lifting problem (29). We are done. □

The proof of Theorem 5.32 is now transparent.

Proof of Theorem 5.32. Follows by Corollary 5.34, where we consider the case D =
∗. □

We now see that this “Kan complex functor” is actually valued in Kan complexes.

Definition 5.35. The (associated) Kan complex functor

−Kan : Cat∞ → Kan

is defined by taking any∞-category C to its maximal subcategory of isomorphisms
CKan, and by sending any functor F : C → D to its restriction FKan : CKan →
DKan.

Evidently, any map X → C from a Kan complex to an ∞-category factors
through CKan. Hence the Kan complex functor provides a right adjoint to the
inclusion inclKan : Kan → Cat∞. If we label everything explicitly, we have a
bifunctorial identification

HomCat∞(inclKan X ,C ) = HomKan(X ,CKan). (30) eq:2258

sect:infty_infty
5.11. The ∞-category of ∞-categories, and equivalences.

Definition 5.36. Let Fi : C → D be functors between ∞-categories. A natural
transformation ζ : F0 → F1 is a 1-simplex ζ : ∆1 → Fun(C ,D) with ζ|{0} = F0

and ζ|{1} = F1. A transformation ζ is called a natural isomorphism if it is an
isomorphism in the ∞-category Fun(C ,D).
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By Theorem 5.32 and Corollary 5.8, for any ∞-category C and simplicial set K
we have the mapping space

Fun(K,C )Kan ⊆ Fun(K,C ).

This is the Kan complex parametrizing maps of simplicial set p : K → C with
natural isomorphisms. Since Fun(K,C )Kan is a Kan complex, and products of Kan
complexes are Kan complexes, the adjunction (30) implies that composition for the
simplicial category Cat∞ restricts to provide composition maps

◦ : Fun(D ,E )Kan × Fun(C ,D)Kan → Fun(C ,E )Kan.

We therefore obtain a non-full simplicial subcategory

Cat+∞ :=


The simplicial category whose objects are (medium
sized) ∞-categories and whose mapping
complexes are the Kan complexes Fun(C ,D)Kan

parametrizing functors with natural isomorphisms.

Remark 5.37. The plus notation here indicates an implicit marking on the edges
of an ∞-category. Namely, there is a naturally occurring simplicial category sSet+

of marked simplicial sets in which Cat+∞ sits as a full simplicial subcategory. See
[13, Section 3.1.3].

By construction, the simplicial category Cat+∞ is enriched in Kan complexes.
According to Proposition 2.20, we now obtain an ∞-category via an application of
the homotopy coherent nerve.

Definition 5.38. The ∞-category of (medium sized) ∞-categories is defined as
the homotopy coherent nerve of the simplicial category Cat∞,

Cat∞ := Nhc(Cat+∞).

As in the case of Kan complexes, the ∞-category Cat∞ lives in our universe of
large sets, and in particular is not a member of itself. In low dimensions, objects in
Cat∞ are∞-categories, 1-simplices ∆1 → Cat∞ are functors between∞-categories,
and 2-simplices ∆2 → Cat∞ are generally non-commuting diagrams

C1

F12

  
C0

F01

>>

F02

// C2

which come equipped with a natural isomorphism ζ : F12F01
∼→ F02.

Definition 5.39. An equivalence between ∞-categories is a functor F : C →
D which is an isomorphism in Cat∞, i.e. which induces an isomorphism in the
homotopy category hCat∞.

Explicitly, a functor F : C → D is an equivalence if it admits a corresponding
functor F ′ : D → D , and natural isomorphisms, which produce 2-simplicies

D

F ′

  

and C

F

  
C

F

>>

idC

// C D

F ′
>>

idD

// D
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in Cat∞.

5.12. Natural isomorphisms and isomorphisms. We record some simple lem-
mas which will be of use shortly.

lem:2293 Lemma 5.40. Let C and D be ∞-categories, and ζ : F0 → F1 be a natural iso-
morphism between functors in Fun(C ,D). Then for any object x : ∗ → C the
restriction ζx : ∆1 × {x} → ∆1 ×C → D is an isomorphism ζx : F0(x)→ F1(x) in
D .

Proof. Restriction along x provides a functor between∞-categories x∗ : Fun(C ,D)→
Fun(∗,D) = D . Since any functor preserves isomorphisms, any natural isomor-
phism evaluates to an isomorphism at any object x in C . □

Remark 5.41. As is shown in Theorem 7.6 below, a converse to Lemma 5.40
actually holds. In particular, a natural transformation ζ : ∆1 → Fun(C ,D) is a
natural isomorphism if and only if ζ evaluates to an isomorphism ζx : F0(x)→ F1(x)
at each object x in C .

lem:2305 Lemma 5.42. For any ∞-categories C and D , any natural isomorphism ζ : F0 →
F1 in Fun(C ,D) restricts to an isomorphism ζKan : FKan

0 → FKan
1 between the

associated functors in Fun(CKan,DKan).

Proof. It suffices to show that the restriction of ∆1×CKan → D of an isomorphism
ζ : F0

∼→ F1 has image in DKan. The 1-simplices in ∆1 × CKan are of the form
∆1

x = ∆1 × {x}, α0 : ∆{0} × α, α1 : ∆{1} × α, and

∆1 δ→ ∆1 ×∆1 id×α−→ ∆1 × CKan, (31) eq:2311

where δ is the diagonal map. By Lemma 5.40 ∆1
x maps to an isomorphism ζx in D ,

and the fact that the functors F0 = ζ|0 and F1 = ζ|1 preserve isomorphisms says
that α0 and α1 map to isomorphisms in D . We are left to deal with the map (31).

Write diagα : (0, x)→ (1, y) for the map (31) in ∆1×C . We have the 2-simplex
∆2 → ∆1 × ∆1 defined by the function [2] → [1] × [1], 0 7→ (0, 0), 1 7→ (1, 0),
2 7→ (1, 1), and the composite

∆2 → ∆1 ×∆1 id×α→ ∆1 × C

defines a 2-simplex s in the product with faces s|∆{0,1} = ∆1
x, s|∆{1,2} = α1, and

s|∆{0,2} = diagα. The image of s in D is a 2-simplex exhibiting ζ(diagα) as a
composite of ζx with F1(α). Since both of these maps are isomorphisms in D ,
ζ(diagα) is seen to be an isomorphism in D as well. It follows that ζ has image in
DKan, as desired. □

We note that the∞-subcategory Fun(CKan,DKan) in Fun(CKan,D) is identified
with the subcategory Fun(CKan,D)Kan. So Lemma 5.42 implies that restricting
along the inclusion CKan → C defines a functor

Fun(C ,D)Kan → Fun(CKan,DKan).

5.13. Equivalences via functor categories. We have the following characteri-
zation of equivalences between ∞-categories via the functor categories.

thm:Fun_equiv_infty Theorem 5.43. Let F : C → D be a functor between ∞-categories. The following
are equivalent:
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(a) F is an equivalence.

(b) For any simplicial set K, the map F∗ : Fun(K,C ) → Fun(K,D) is an
equivalence.

(c) For any ∞-category A , the map F∗ : Fun(A ,C ) → Fun(A ,D) is an
equivalence of ∞-categories.

(d) For any ∞-category A , the map F ∗ : Fun(D ,A ) → Fun(C ,A ) is an
equivalence of ∞-categories.

(e) For any ∞-category A , the map F∗ : Fun(A ,C )Kan → Fun(A ,D)Kan is
an equivalence of Kan complexes.

(f) For any ∞-category A , the map F ∗ : Fun(D ,A )Kan → Fun(C ,A )Kan is
an equivalence of Kan complexes.

Proof. One employs homotopies directly, as in the proof of Lemma 3.19, to see
that (a) implies (b), and the implication (b) ⇒ (c) is clear since ∞-categories are
simplicial sets. Lemma 5.42 shows that (c) implies (e). Supposing (e), we applying
π0 and considering Yoneda’s Lemma to find that F induces an isomorphism between
C and D in the homotopy category of ∞-categories. Hence F : C → D is an
equivalence. So (e) ⇒ (a). We thus fund an equivalence between (a), (b), (c), and
(e).

We similarly see that (a) ⇒ (d) ⇒ (f) ⇒ (a), and hence that (a), (d), and (f)
are equivalent. □

6. Homotopical and categorical pullbacks
sect:htop_pullback

We consider homotopy and categorical pullbacks for Kan complexes and ∞-
categories, respectively. These constructions operate as “derived pullbacks” in their
respective settings, and are examples of limits in the ∞-catgories Kan and Cat∞.
While we avoid any uses of limits or colimits in this text (see Part II for relevant
discussions), homotopical pullbacks appear generically throughout.

6.1. Aside: Fibrant replacements.

Lemma 6.1. If f : X → X ′ is and anodyne morphism between Kan complexes
then f is a homotopy equivalence.

Proof. Follows by Corollary 3.12, Proposition 4.8, and Proposition 3.18. □

prop:kan_factorization Proposition 6.2. Any map of Kan complexes f : X → Y admits a factorization

X
t→X ′ f ′

→ Y

with t an anodyne equivalence and f ′ a Kan fibration.

We do not cover the proof, and refer directly to the text [15, 00UU] for the details.
We only note that, most immediately, [15] provides a factorization as above where
X ′ is only assumed to be a simplicial set. However, since X ′ → Y is a Kan
fibration and Y is itself a Kan complex, it follows that X ′ is a Kan complex as
well.

The fact that t is an anodyne map will be important at some moments. However,
we will often only use the fact that any map in Kan factors as a composite X →
X ′ → Y of an equivalence with a Kan fibration. In such a situation we refer to
X ′ as a “fibrant replacement” for X in the category of Kan complexes over Y .

https://c-negron.github.io/infty_partII.pdf
https://kerodon.net/tag/00UU
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6.2. Casual discussions for (homotopy) pullback. In general, for a pullback
diagram

Z //

q′

��

Y

q

��
X // S

in which q is a homotopy equivalence, does not not follow that q′ is a homotopy
equivalence. Consider for example the case where q : Y → S is a map between two
contractible spaces which is not surjective on points. In this case we can consider a
point x : ∗ → S which does not lie in the image of Y to obtain a pullback diagram

∅ //

q′

��

Y

p

��
∗ // S .

(32) eq:3224

Here the map q′ is clearly not a equivalence.
In comparing with the dg setting, for dg schemes (or affine dg schemes if one

likes), the preservation of equivalences under base change can be understood as a
kind of flatness condition on morphisms. The Kan condition provides an analog of
flatness in the topological setting.

prop:kan_basechange Proposition 6.3 ([15, 0109]). Suppose we have a diagram

X
f

!!
t
��

Y

u

��}}
X ′

f ′ !!

S

v

��

Y ′

}}
S ′

in which the maps f and f ′ are Kan fibrations, and all vertical maps are homotopy
equivalences. Then the induced map on fiber products X ×S Y → X ′ ×S ′ Y ′ is
an equivalence.

Proof. We consider the diagram

X ×S Y //

��

X ′ ×S ′ Y ′

��
Y

u // Y ′

in which the vertical maps are Kan fibrations, and the bottom map is a homotopy
equivalence. Hence, by Proposition 4.21, the map on fiber products is an equivalence
if and only if we have an equivalence

Xs = (X ×S Y )y → (X ′ ×S ′ Y ′)y = X ′
s

at each point y : ∗ → Y with corresponding point s : ∗ → S . However, the above
map is the fiber of the equivalence t over s, which we know to be an equivalence by

https://kerodon.net/tag/0109
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Proposition 4.21 applied to the diagram

X
t //

f

��

X ′

f ′

��
S

v // S ′.

□

As a particular application of Proposition 6.3 we see that the base change X ×S

Y → X ×S Y ′ of an equivalence Y → Y ′, for spaces over S , remains an
equivalence provided X is a Kan fibration over S .

In vague analogy to the dg setting, one might define the homotopy (aka “de-
rived”) pullback of spaces by first taking a fibrant replacement

X → S ⇝ X
∼
99KX ′ → S

then replacing the usual fiber product X ×S Y with the product X ′×S Y , at least
up to some first order. As one might understand from experience, this construction
has the drawback of being ambiguous and non-functorial.

In some sense, one of the points of working in the ∞, rather that dg, setting is
to provide explicit control over such ambiguities. However, let us leave this issue
for now and simply proceed with our presentation.

sect:htop_pullback_sub
6.3. A functorial construction.

Definition 6.4. Given maps of Kan complexes X → S and Y → S we define
the homotopy pullback as

X ×htop
S Y := X ×Fun({0},S ) Fun(∆

1,S )×Fun({1},S ) Y .

Note that we can write, alternatively,

X ×htop
S Y = Fun(∆1,S )×Fun(∂∆1,S ) (X × Y ).

Let us be clear that the homotopy pullback X ×htop
S Y does not fit into a diagram

over X and Y in general. Instead we have a diagram

X ×htop
S Y //

��

Y

��
X // S

in the ∞-category of spaces, where the necessary homotopy between the two maps
to S is given by evaluation

∆1 ×
(
Fun(∆1,S )×Fun(∂∆1,S ) (X × Y )

) project→ ∆1 × Fun(∆1,S )
eval→ S .

One sees that restriction along the map ∆1 → ∗ provides a binatural embedding

X ×Y →X ×htop
S Y . We refer to this embedding informally as the “comparison

map”.
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prop:3319 Proposition 6.5 ([15, 0329]). For any partial diagram

X

f !!

Y

g~~
S

in which either f or g is a Kan fibration the comparison map X ×S Y →X ×htop
S Y

is an equivalence.

Proof. Suppose that X → S is a Kan fibration. In this case the base changed map
X ×S Fun(∆1,S )→ Fun(∆1,S ) is also a Kan fibration. Furthermore, since the
inclusion 1 : ∆0 → ∆1 is anodyne the induced map Fun(∆1,S ) → S is a trivial
Kan fibration, by Corollary 3.12, and in particular an equivalence by Proposition
4.8. We consider also the map

h =
(
Y

g→ S
const→ Fun(∆1,S )

)
.

We now have a diagram

X ×S Fun(∆1,S )

=

��

// Fun(∆1,S )

1∗

��

Y

=

��

hoo

X ×S Fun(∆1,S ) // S Y
g

oo

in which the vertical maps are equivalences (in particular trivial Kan fibrations)
and the maps from X ×S Fun(∆1,S ) are Kan fibrations. So, by Proposition 6.3,
the induced map

X ×S Y ∼= (X ×S Fun(∆1,S ))×Fun(∆1,S ) Y

→X ×S Fun(∆1,S )×S Y = X ×htop
S Y

is a homotopy equivalence. The case where the g is a Kan fibration is dealt with
similarly. □

As one imagines at this point, we have a homotopy analog of Proposition 6.3 in
which the Kan condition is now obviated.

prop:htop_basechange Proposition 6.6 ([15, 032B]). Suppose we have a diagram

X

!!
t
��

Y

u

��}}
X ′

!!

S

v

��

Y ′

}}
S ′

in which all vertical maps are homotopy equivalences. Then the induced map on
homotopy fiber products

X ×htop
S Y →X ′ ×htop

S ′ Y ′

is a homotopy equivalence.

https://kerodon.net/tag/0329
https://kerodon.net/tag/032B
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Proof. In this case the map on functor spaces v∗ : Fun(K,S )→ Fun(K,S ′) is an
equivalence at all simplicial sets K, by Proposition 3.18. Furthermore restricting
along any inclusion L→ K produces a Kan fibration Fun(K,S )→ Fun(L,S ) by
Corollary 3.12. So the result follows by applying Proposition 6.3 to the diagram

Fun(∆1,S ) //

��

Fun(∂∆1,S )

��

X × Yoo

��
Fun(∆1,S ′) // Fun(∂∆1,S ′) X ′ × Y ′.oo

□

Example 6.7. Consider a contrctible space S and two distinct points x, y : ∗ →
S . In this case the usual fiber product vanishes. On the other hard, we claim

that the homotopy fiber product {x} ×htop
S {y} is contractible. To see this one can

consider the diagram
∗

x

  ��

∗

��

y

~~
∗

  

S

��

∗

~~
∗

and apply Proposition 6.6 to observe an equivalence {x}×htop
S {y} → ∗×htop

∗ ∗. But
already ∗ ×htop

∗ ∗ = ∗.

6.4. Homotopy pullback squares.

Definition 6.8. A commutative diagram of Kan complexes

Z //

��

Y

��
X // S

is called a homotopy pullback square if the induced map

Z →X ×S Y →X ×htop
S Y

is a homotopy equivalence.

We make no claim that all partial diagrams X → S ← Y can be completed to
a homotopy pullback square. Proposition 6.5 says that the usual pullback provides
a homotopy pullback square whenever either of the constituent maps X → S or
Y → S is a Kan fibration.

We have the following interpretation of homotopy pullback squares via fibrant
replacements.

Proposition 6.9. Consider a diagram of Kan complexes

Z //

��

Y

g

��
X

f
// S .
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The following are equivalent:

(a) The above diagram is a homotopy pullback diagram.

(b) For each factorization X
t→ X ′ f ′

→ S in which t is a homotopy equiva-
lence and f ′ is a Kan fibration, the induced map Z → X ′ ×S Y is an
equivalence.

(c) For each factorization Y
u→ Y ′ g′

→ S in which u is a homotopy equivalence
and g′ is a Kan fibration, the induced map Z →X ×S Y ′ is an equivalence.

(d) For any two factorizations as in (b) and (c) the induced map Z →X ′×S

Y ′ is an equivalence.

Proof. The result follows by a consideration of the diagram of equivalences

X ′ ×S Y //

��

X ′ ×S Y ′

��

X ×S Y ′oo

��
X ′ ×htop

S Y // X ′ ×htop
S Y ′ X ×htop

S Y ′oo

X ×htop
S Y

77gg OO

.

We leave the details it to the interested reader. □

As with the functorial construction from Section 6.3, homotopy pullback squares
enjoy invariance under homotopy equivalence.

prop:htopy_invariance Proposition 6.10 (Homotopy invariance, [15, 0111]). Consider a diagram of Kan
complexes

Z

t

!!

//

��

Y

��

t2

!!
Z ′ //

��

Y ′

��

X //

t1 !!

S
t0

!!
X ′ // S ′

(33) eq:34321

in which all of the ti is a equivalence. Then the following are equivalent:

(a) Both the back and front faces in (33) are homotopy pullback squares.
(b) Either the back face or the front face in (33) is a homotopy pullback square,

and the map t is an equivalence.

Proof. Follows by homotopy invariance of the homotopy fiber product, by Propo-
sition 6.6, and the diagram

X ×htop
S Y

∼ // X ′ ×htop
S ′ Y ′

Z
t //

OO

Z ′.

OO

https://kerodon.net/tag/0111
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□

6.5. Simplicial injections, Kan fibrations, and homotopy pullback. We
claim that homotopy pullback squares appear naturally when one applies the func-
tor Fun(−,C )Kan to certain pushout squares for simplicial sets. We begin our
analysis with a technical lifting result.

lem:3465 Lemma 6.11 ([15, 01NX]). Consider a lifting problem

(∆1 ×A)
∐

({1}×A)({1} ×B) //

µ

��

C

��
∆1 ×B

ν
//

66

D

associated to an inner fibration of ∞-categories C → D and an injective map of
simplicial sets i : A → B. Suppose that the map on vertices i[0] : A[0] → B[0]
is bijective, and that for every simplex s : ∆n → B which is not contained in the
image of i the associated map in C

ν(id∆1 × s(n)) : ∆1 × {∗} → C

is an isomorphism. (Here n : ∗ → ∆n is the terminal point in ∆n and s(n) : ∗ → B
is the composite map to B.) Then the above lifting problem admits a solution.

We only relay the main ideas of the proof.

Idea of proof. One reduces to the case where A = ∂∆n, B = ∆n, and i : A→ B is
the inclusion. One then factors this inclusion into a sequence

(∆1 × ∂∆n) ∪ ({0} ×∆n) ⊆ X1 ⊆ · · · ⊆ Xn = ∆1 ×∆n

in which each Xi+1 is obtained from Xi via a pushout diagram of the form

Λn+1
i

//

��

Xi

��
∆n+1

i si
// Xi+1.

One can furthermore assume that the final simplex we adjoin sn+1 : ∆n+1 →
Xn+1 = ∆1×∆n we adjoin has sn+1(∆

{n,n+1}) = ∆1×{n} [15, Proof of 00TH]. We
therefore reduce the lifting problem for to the inclusion (∆1×∂∆n)∪ ({0}×∆n)→
∆1 ×∆n to a sequence of lifting problems of the form

Λn+1
i

σi //

��

C

��
∆n+1

τi
// D ,

with 0 < i ≤ n+ 1 and σi sending the final edge in Λn+1
i to an isomorphism in C .

We can solve all such lifting problems via the weak Kan condition and Proposition
5.33. □

https://kerodon.net/tag/01NX
https://kerodon.net/tag/00TH
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Now, for any inclusion of simplicial sets i : A → B we can expand i to an
inclusion i′ : A′ → B for which all vertices in B lie in the image of i′ by simply
adjoining the 0 skeleton of B to A. By considering such extensions one obtains the
following adjacent lifting property from that of Lemma 6.11.

cor:3506 Corollary 6.12 ([15, 01NY]). Consider a lifting problem

(∆1 ×A)
∐

({1}×A)({1} ×B) //

��

C

��
∆1 ×B

ν
//

66

D

associated to an isofibration of ∞-categories C → D and an arbitrary injective map
of simplicial sets i : A → B. The above lifting problem admits a solution provided
the following conditions hold:

(a) For each vertex a : ∗ → A the corresponding edge ∆1 × {a} → C is an
isomorphism in C .

(b) For each vertex b : ∗ → B the corresponding edge ∆1 × {b} → D is an
isomorphism in D .

Furthermore, when the above hypotheses are satisfied, there exists a solution η :
∆×B → C for which each edge ∆1 × {b} → C is an isomorphism in C .

prop:inj_isofib Proposition 6.13. Let L→ K be an injective map of simplicial sets and C → D
be an isofibration of ∞-categories. Then the induced map

θ : Fun(K,C )→ Fun(L,C )×Fun(L,D) Fun(K,D)

is an isofibration of ∞-categories.

Proof. First note that the restriction map Fun(K,D) → Fun(L,D) is an inner
fibration by Corollary 5.8, so that the projection Fun(L,C )×Fun(L,D)Fun(K,D)→
Fun(L,C ) is an inner fibration as well. It follows that the fiber product is in fact
an∞-category. We also know that θ is an inner fibration by Proposition 5.7. So we
need only show that for any object ξ in Fun(K,C ) and isomorphism a : η → θ(ξ)
in the fiber product, we can lift a to an isomorphism a′ : η′ → ξ in Fun(K,C ).

The map a is precisely the information of a diagram

(∆1 × L)
∐

({1}×L)({1} ×K) //

��

C

��
∆1 ×K

ν
//

66

D ,

and the desired lift ã is precisely the information of a solution to the corresponding
lifting problem. Furthermore, since a is a natural isomorphism, the maps ∆1×L→
C and ∆1×K → D both restrict to isomorphisms on all edges of the form ∆1×{x}.
So we see that the desired solution ã exists by Corollary 6.12. □

We note that an analog of Proposition 6.13 holds in the case where the map
C → D is simply an inner fibration and L → K is an injection which contains all
vertices in K in its image. The following corollary is immediate.

https://kerodon.net/tag/01NY
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cor:inj_isofib Corollary 6.14. (1) For any injection i : L→ K, and any ∞-category C , the
map

i∗ : Fun(K,C )→ Fun(L,C )

is an isofibration.
(2) For any simplicial set K, and any isofibration F : C → D , the map

F∗ : Fun(K,C )→ Fun(K,D)

is an isofibration.

We recall that any isofibration produces a Kan fibration on associated Kan com-
plexes, by Corollary 5.34. So we have the following.

cor:inj_kan Corollary 6.15. (1) For any injection i : L→ K, and any ∞-category C , the
map

i∗ : Fun(K,C )Kan → Fun(L,C )Kan

is a Kan fibration.
(2) For any simplicial set K, and any isofibration F : C → D , the map

F∗ : Fun(K,C )Kan → Fun(K,D)Kan

is a Kan fibration.

cor:3681 Corollary 6.16. Suppose we have a pushout diagram of simplicial sets

T //

µ

��

A

��
B // K

in which the map µ is injective. Then the corresponding diagram

Fun(K,C )Kan //

��

Fun(A,C )Kan

��
Fun(B,C )Kan

µ∗
// Fun(T,C )Kan

is a homotopy pullback square.

Proof. Follows from the fact that µ∗ is a Kan fibration, by Corollary 6.15, and
Proposition 6.5. □

6.6. Categorical pushout for simplicial sets.

Definition 6.17 ([15, 01F7]). We call a diagram of simplicial sets

T //

��

A

��
B // K

https://kerodon.net/tag/01F7
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a categorical pushout square if, for any ∞-category C , the corresponding diagram
of Kan complexes

Fun(K,D)Kan //

��

Fun(A,D)Kan

��
Fun(B,D)Kan // Fun(T,D)Kan

is a homotopy pullback square.

Corollary 6.16 can now be rephrased as follows.

cor:3659 Corollary 6.18. A pushout diagram of simplicial sets

T //

µ

��

A

��
B // K

in which µ is injective is a categorical pushout diagram.

6.7. Categorical pullback square.

Definition 6.19. We call a diagram of ∞-categories

K //

��

C

��
D // T

is a categorical pullback square if, for any ∞-category A , the corresponding dia-
gram of Kan complexes

Fun(A ,K )Kan //

��

Fun(A ,C )Kan

��
Fun(A ,D)Kan // Fun(A ,D)Kan

is a homotopy pullback square.

Given a partial diagram of ∞-categories

C

��
D // T

we extend the definition of the homotopy pullback square to the ∞-categorical
setting by taking

C ×htop
T D := Isom(T )×Fun(∂∆1,T ) (C ×D),

where Isom(T ) is the full∞-subcategory of Fun(∆1,T ) spanned by isomorphisms
in T . We note that the restriction map Fun(∆1,T ) → Fun(∂∆1,T ) is an inner
fibration, by Corollary 5.8, and hence the composite

Isom(T )→ Fun(∆1,T )→ Fun(∂∆1,T )

is also an inner fibration. So the homotopy pullback of ∞-categories is in fact an
∞-category.
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Lemma 6.20. For any ∞-category T , the inclusion T Kan → T induces an iso-
morphism of simplicial sets

Fun(∆1,T Kan)
∼=→ Isom(T )Kan (34) eq:3701

Proof. The simplicial set Fun(∆1,T Kan) is a Kan complex, and hence the inclu-
sion Fun(∆1,T Kan) → Fun(∆1,T ) has image in the associated Kan complex
Fun(∆1,T )Kan. Furthermore each composite ∆1 → T Kan → T is an isomor-
phism in T , by the definition of T Kan, so that the given inclusion furthemore has
image in Isom(T )Kan. For the inverse map Isom(T )Kan → Fun(∆1,T Kan) one
applies Lemma 5.40 to observe that the inclusion

Ison(T )Kan → Fun(∆1,T )

has image in the subcomplex Fun(∆1,T Kan). □

One now sees via a basic manipulation that, for any ∞-category A , we have a
canonical isomorphism of simplicial sets

Fun(A ,C ×htop
T D) ∼= Fun(A ,C )×htop

Fun(A ,T ) Fun(A ,D)

and in particular an equivalence of ∞-categories. We apply the Kan complex func-
tor to obtain a natural isomorphism of Kan complexes

Fun(A ,C ×htop
T D)Kan ∼= Fun(A ,C )Kan ×htop

Fun(A ,T )Kan Fun(A ,D)Kan.

One uses this identification to obtain the following, simply from the definition of a
homotopy pullback square and Theorem 5.43.

prop:3708 Proposition 6.21. A diagram ∞-categories

K //

��

C

��
D // T

is a categorical pullback diagram if and only if the natural map K → C ×htop
T D is

an equivalence of ∞-categories.

We apply Proposition 6.21 and Corollary 6.15 to see the following.

cor:3721 Corollary 6.22. A standard pullback diagram

C ×T D //

��

C

F

��
D

G
// T

of ∞-categories is a categorical pullback diagram provided one of F or G is an
isofibration.

The following invariance result now follows from homotopy invariance of homo-
topy pullback, in the Kan setting, and Proposition 6.10.



70 CRIS NEGRON

prop:equiv_invariance Proposition 6.23. Consider a diagram of ∞-categories

K

F

!!

//

��

C

��

F2

!!
K ′ //

��

C ′

��

D //

F1 !!

T
F0

!!
D ′ // T ′

(35) eq:3432

in which all of the Fi is a equivalence. Then the following are equivalent:

(a) Both the back and front faces in (35) are categorical pullback squares.
(b) Either the back face or the front face in (35) is a categorical pullback square,

and the map F is an equivalence.

cor:3776 Corollary 6.24. Suppose we have a diagram

C

��

F

!!

D

��}}
C ′

F ′ !!

T

��

D ′

}}
T ′

in which F and F ′ are isofibrations, and all vertical maps are equivalences. Then
the induced map C ×T D → C ′ ×T ′ D ′ is an equivalence of ∞-categories.

Proof. Apply Corollary 6.22 and Proposition 6.23. □

7. Mapping spaces
sect:hom_c

We define mapping spaces HomC (x, y) between objects in an ∞-category. We
subsequently prove, in Section 8, that a functor F : C → D is an equivalence if
and only if the map on isoclasses of objects π0(F

Kan) : π0(CKan)→ π0(DKan) is a
bijection, and at each pair of object in C the induced map

F∗ : HomC (x, y)→ HomD(Fx, Fy)

is a homotopy equivalence. Rather, a functor is an equivalence if and only if it is
essentially surjective and fully faithful.

This characterization implies, for example, that a functor between dg categories
f : A→ B is a equivalence (in the expected dg sense of the term) if and only if the

corresponding functor F : A → B on dg nerves A = Ndg(A) and B = Ndg(B) is
an equivalence.

Definition 7.1. As a philosophical point, the mapping spaces we construct below
should only be thought as “canonical” when considered as objects in the homotopy
category hKan. At the level of the discrete or ∞-category Kan or Kan, the
spaces HomC (x, y) should be understood as one explicit model for the associated
homotopy type in hKan. As we’ll see shortly, there are other useful models for
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this homotopy type, such as the left and right pinched mapping spaces of Section
10.

7.1. Definitions.

Definition 7.2. Let x and y be objects in an ∞-category C . The mapping space
HomC (x, y) is the simplicial subset in Fun(∆1,C ) whose n-simplices are all maps
f : ∆n ×∆1 → C with degenerate boundaries

f |∆n×{0} = idx and f |∆n×{1} = idy.

We’ve abused notation to write, for any object z in C , idz : ∆n → C for the
composite of the terminal map ∆n → ∗ with the map z : ∗ → C . Alternatively,
HomC (x, y) is the pullback

HomC (x, y) //

��

Fun(∆1,C )

res

��
∗

x⨿y
// Fun(∂∆1,C ).

(36) eq:2459

Lemma 7.3. The mapping space HomC (x, y) is an ∞-category.

Proof. By Proposition 5.25 the restriction map from Fun(∆1,C ) is an inner fibra-
tion. So the projection HomC (x, y)→ ∗ is an inner fibration, and thus HomC (x, y)
is an ∞-category. □

We see momentarily that the mapping spaces HomC (x, y) are in fact Kan com-
plexes. Let us note for now that, for any functor F : C → D , the induced functor
F∗ : Fun(∆1,C )→ Fun(∆1,D) restricts to provide a map

F∗ : HomC (x, y)→ HomD(Fx, Fy).

Remark 7.4. These Hom spaces do not admit a natural composition operation,
at least before applying some homotopy truncation. So we are not providing an
object and morphism description of an ∞-category C .

Definition 7.5. A functor between∞-categories F : C → D is called fully faithful
if, for each pair of objects x and y in C , the induced map on Hom spaces F∗ :
HomC (x, y)→ HomD(Fx, Fy) is an equivalence.

7.2. Natural isomorphisms. Our claim that mapping spaces are spaces is essen-
tially the claim that all of the transformations in the subcategory HomC (x, y) ⊆
Fun(∆1,C ) are natural isomorphisms. The latter point is made clear by the fol-
lowing generic characterization of natural isomorphisms in functor categories.

thm:natty_isom Theorem 7.6. Let f, f ′ : K → C be two functors maps from a simplicial set to
an ∞-category C , and consider a natural transformation u : f → f ′, i.e. a map
from f to f ′ in Fun(K,C ). Then t is a natural isomorphism if and only if, at each
vertex z in K, the map uz : f(z)→ f(z) is an isomorphism in C .

The proof relies on certain technical results about simplicial sets, which we recall
here.

lem:2504 Lemma 7.7 ([15, 01DN]). For any integers m ≥ 0 and n ≥ 2, there is a sequence
of simplicial subsets

(∆m × Λn
0 ∪ ∂∆m ×∆n) = X(0) ⊆ X(1) ⊆ · · · ⊆ X(l) = ∆m ×∆n

https://kerodon.net/tag/01DN
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such that, at each positive integer k ≤ l, there are integers 2 ≤ q and p < q and a
pushout diagram

Λq
p

//

��

X(k − 1)

incl

��
∆q s // X(k).

Furthermore, if p = 0 then the map s can be chosen so that s(0) = (0, 0) and
s(1) = (0, 1).

In the expressions for s(0) and s(1), we identify the map s : ∆p → X(k) ⊆
∆m ×∆n with a choice of function [p]→ [m]× [n]. We refer the reader directly to
[15] for the proof.

lem:2521 Lemma 7.8. Let Y → S be an inner fibration and F̄ : B → S be any map of
simplicial sets. Consider any simplicial subset A ⊆ B and integer n ≥ 2, and let
B ×∆n → S be the composite of the projection B ×∆n → B with F̄ . Suppose that
we have a lifting problem

(A×∆n)⨿A×Λn
0
(B × Λn

0 )
F //

��

Y

��
B ×∆n //

44

S

(37) eq:2523

for which, at every choice of vertex b in B, the corresponding edge

∆1 ∼= {b} ×∆{0,1} → {b} × Λn
0 → {Fb} ×S Y = Yb

is an isomorphism in the ∞-category Yb. Then the problem (37) admits a solution.

Proof. We can replace B by any intermediate complex A ⊆ K ⊆ B, and consider
the corresponding lifting problem LK obtained by restricting F and F̄ to (A ×
∆n) ⨿A×Λn

0
(K × Λn

0 ) and K respectively. We consider the collection P of pairs
(K,FK) consisting of a choice of an intermediate complexes K and a map FK :
K × ∆n → Y which solves the lifting problem LK . This collection P admits a
natural partially ordered, where we take (K,FK) ≤ (L,FL) if and only if K ⊆ L
and FK = FL|K×∆n . By taking unions we see that any chain in P admits an
upper bound, so we apply Zorns lemma to see that P admits a maximal element
(Kmax, Fmax). We claim that Kmax = B, so that the original lifting problem (37)
admits a solution.

Suppose, by way of contradiction, that Kmax is not B, and choose a non-
degenerate simplex z : ∆m → B of minimal dimension which does not factor
through Kmax. The minimality condition tells us that the restriction z|∂∆m factors
through Kmax, and we take L = (Kmax ∪ z) ⊆ B. We therefore have the pushout
diagram

∂∆m //

��

Kmax

��
∆m // L
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and consider the lifting problem

(Kmax ×∆n)⨿Kmax×Λn
0
(L× Λn

0 ) //

��

Y

��
L×∆n //

44

S

(38) eq:2548

where top map is obtained from Fmax : Kmax × ∆n → Y and F |L×Λn
0
, and the

bottom map is F̄ |L ◦proj1. Via the above pushout diagram we can solve the lifting
problem (38) by solving a corresponding lifting diagram

(∂∆m ×∆n)⨿∂∆m×Λn
0
(∆m × Λn

0 )
f //

��

∆m ×S Y

��
∆m ×∆n

f̄

//

33

∆m

(39) eq:2555

We note that at this point the base category ∆m is an ∞-category, as is the fiber
product ∆m ×S Y . Our goal is to solve the problem (39).

We break the inclusion

(∂∆m ×∆n)⨿∂∆m×Λn
0
(∆m × Λn

0 ) = (∂∆m ×∆n) ∪ (∆m × Λn
0 )→ ∆m ×∆n

into a sequence of inclusion

(∂∆m ×∆n) ∪ (∆m × Λn
0 ) = X(0) ⊆ X(1) ⊆ · · · ⊆ X(l) = ∆m ×∆n

which satisfy the conclusions of Lemma 7.7. We have a map f0 = f : X(0) →
∆m×S Y and we claim that for each 0 ≤ k ≤ l there is a map fk : X(k)→ ∆m×S Y
which solves the lifting problem

X(0)
f //

��

∆m ×S Y

��
X(k)

f̄ |X(k)

//

fk

66

∆m.

We prove this claim by induction.
Suppose that we have the desired map fk−1 : X(k − 1) → ∆m ×S Y , for some

k > 0. By hypotheses, we have a pushout diagram

Λq
p

��

// X(k − 1)

��
∆q s // X(k),

where p < q. Supposing 0 < p, the fact that the map ∆m ×S Y → ∆m is an inner
fibration tells us that we can lift f̄ : X(k)→ ∆m to a map fk : X(k)→ ∆m ×S Y
with fk|X(k−1) = fk−1. Supposing p = 0, then we can find a lift fk : X(k) →
∆m ×S Y by our hypotheses that s(0) = (0, 0), s(1) = (0, 1), and the hypotheses
that fk−1 : ∆{0,1} → {f̄(0)}×S Y is an isomorphism, and a subsequent application
of Proposition 5.33.

In any case, we can always extend the map fk−1 to fk, as desired, and the final
map fl : X(l) = ∆m × ∆n → ∆m ×S Y solves the lifting problem (39). We can
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therefore solve our original lifting problem (38), which contradicts the maximality of
the pair (Kmax, Fmax). So we have necessarily Kmax = B, and Fmax : B×∆n → Y
solves our lifting problem (37). □

Theorem 7.6 is now obtained as a special case of the following.

prop:2597 Proposition 7.9. Consider an inner fibration C → S and an arbitrary map of
simplicial sets a : K → S, and let u : F → F ′ be a transformation in the ∞-
category Fun/S(K,C ). Then u is a natural isomorphism if and only if, at every
vertex z in K, the map uz : F (z)→ F ′(z) is an isomorphism in Cz = {a(z)}×S C .

To be clear, the space Fun/S(K,C ) is the fiber product

Fun/S(K,C ) = Fun(K,C )×Fun(K,S) {a}

Since C → S is an inner fibration, the map Fun(K,C ) → Fun(K,S) is an inner
fibration by Corollary 5.8. So the fiber Fun/S(K,C ) is in fact an ∞-category.

Proof. If u is an isomorphism, then one can evaluate any choice of inverse map
v : F ′ → F at the vertices in K to produce inverses to the uz. For the converse
claim, let’s suppose that uz is an isomorphism at all z ∈ B[0]. We consider the
diagrams

K × Λ2
0

//

��

C

��
K ×∆2 // S

(40) eq:2609

where the bottom map is the projection K×∆2 → K composed with a, and the top
map has restrictions F , F ′, and F to K × {0}, K × {1}, and K × {2} respectively.
The restrictions to K ×∆{0,1} and K ×∆{0,2} are u and idF respectively. By the
hypothesis that uz is an isomorphism at all z, we may apply Lemma 7.8 to find a
map η : K ×∆2 → C which solves the lifting problem corresponding to (40). For
v = η|K×∆{1,2} : F ′ → F we therefore have v ◦ u ∼ idF . So u admits a left inverse
in Fun/S(K,C ). We consider opposite categories to similarly find that the opposite
map uop : (F ′)op → F op admits a left inverse wop, and hence that u admits a right
inverse w. Hence u is an isomorphism. □

Proof of Theorem 7.6. Apply Proposition 7.9 in the case S = ∗. □

7.3. The mapping spaces are spaces.

Theorem 7.10. For any objects x, y in an ∞-category C , the ∞-category of maps
HomC (x, y) is a Kan complex.

Proof. It suffices to show that all morphisms in HomC (x, y) are isomorphisms.
Objects in HomC (x, y) are maps f : ∆1 → C with f(0) = x and f(1) = y, and
a morphism f → f ′ in HomC (x, y) is a natural transformation u : f → f ′ with
u0 = idx : f(0) → f(0) and u1 = idy : f(1) → f(1). We just apply Theorem 7.6
directly to see that any map in HomC (x, y) is an isomorphism. □
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sect:loop
7.4. Mapping spaces as loop spaces. We consider an example of such a fiber
diagram (17) which relates mapping spaces and for a Kan complex X to the un-
derlying space X itself, and in particular allows us to access the (higher) homotopy
group for X via the homotopy groups of its mapping spaces.

Consider any Kan complex X , and the inclusion i : ∆{0} → ∆1. Since i is
anodyne the corresponding restriction map i∗ : Fun(∆1,X )→ X is a trivial Kan
fibration, by Corollary 3.12. Taking the fiber along any point x : ∗ → X provides
another trivial Kan fibration

{x} ×Fun(∆{0},X ) Fun(∆
1,X )→ ∗,

so that the domain is seen to be contractible.
Now, restriction along the inclusion j : ∂∆1 → ∆1 provides a Kan fibration

j∗ : Fun(∆1,X )→ Fun(∂∆1,X ) and we have the pullback diagram

X //

��

∗

x
��

Fun(∂∆1,X ) // Fun(∆{0},X ) ∼= X ,

identifying X with the subcomplex of maps ∂∆1 →X which take constant value
x on ∆{0}. Pulling back j∗ along the inclusion X → Fun(∂∆1,X ) then yields the
map

{x} ×Fun(∆{0},X ) Fun(∆
1,X )→X , (s, t) 7→ t|∆{1} ,

which we now conclude is a Kan fibration as well. Let us call this map f .
We now, finally, have a pullback diagram

HomX (x, x) //

��

{x} ×Fun(∆{0},X ) Fun(∆
1,X )

f

��
∗

x
// X

(41) eq:maps_loop

with f a Kan fibration from a contractible domain. The long exact sequence on
homotopy groups now provides the following.

prop:based Proposition 7.11. For any Kan complex X , point x : ∗ →X , and integer n ≥ 0,
there is a natural isomorphisms of homotopy groups

∂n+1 : πn+1(X , x)
∼→ πn(HomX (x, x), idx).

We only note that naturality (with respect to maps of Kan complexes X → Y )
comes from naturality of the above constructions in conjunction with Proposition
4.20.

Remark 7.12 ([15, 01JE]). The diagram (41) identifies the mapping space HomX (x, x)
as the based loop space for X , in the homotopy category of spaces.

Via the naturality claim from Proposition 7.11 and Whitehead’s Theorem we
observe that any map of Kan complexes which is essentially surjective and fully
faithful is also an equivalence.

cor:ffes_kan Corollary 7.13. If f : X → Y is a map of Kan complexes which is fully faithful
and essentially surjective, then f is an equivalence.

https://kerodon.net/tag/01JE
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8. Fully faithful functors and equivalence
sect:mapping_spaces

We show that equivalences are precisely those functors which are fully faithful
and essentially surjective.

8.1. Fully faithful functors and equivalences.

Definition 8.1. We say a functor between∞-categories F : C → D is fully-faithful
if, at each pair of objects x, y : ∗ → C , the induced maps

F∗ : HomC (x, y)→ HomD(Fx, Fy)

is an equivalence. We say F is essentially surjective if F induces a surjection

π0(F
Kan) : π0(C

Kan)→ π0(D
Kan)

on isoclasses of objects.

The main result of the section is to prove the following.

thm:ffes_equiv Theorem 8.2. A functor F : C → D between ∞-categories is an equivalence if
and only if F is fully faithful and essentially surjective.

While any equivalence F is easily seen to be essentially surjective, the fact that
the operation HomC (x,−) : C [1]→ Kan is not a priori defined on morphisms C [2]
makes fully faithfulness slightly opaque. So, we are interested in both of the claims
in Theorem 8.2. We first deal with the “easier” implication

F is an equivalence ⇒ F is fully faithful and essentially surjective,

which still requires some analysis.

8.2. Equivalences are fully faithful. Let us recall that the restriction functor

Fun(∆1,C )→ Fun(∂∆1,C )

is an isofibration, by Proposition 6.13, and hence the map on associated Kan com-
plexes is a Kan fibration by Corollary 5.34. We now find ourselves in a particularly
advantageous situation. Since HomC (x, y) is itself a Kan complex we see that the
inclusion HomC (x, y) → Fun(∆1,C ) factors through the associated Kan complex,
and we therefore realize HomC (x, y) as the pullback of a point along a Kan fibration

HomC (x, y) //

��
pullback sq

Fun(∆1,C )Kan

Kan fib

��
∗ // Fun(∂∆1,C )Kan.

With this framing in mind, we now deduce full faithfulness for equivalences of
∞-categories.

cor:equiv_ff Corollary 8.3. Any equivalence of ∞-categories F : C → D is fully faithful.
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Proof. At any pair of objects x, y : ∗ → C we have the diagram

HomC (x, y) //

&&��

HomD(Fx, Fy)

''��
∗

&&

Fun(∆1,C )Kan ∼ //

��

∗

''

Fun(∆1,D)Kan

��
Fun(∂∆1,C )Kan ∼ // Fun(∂∆1,D)Kan.

(42) eq:2914

Here the horizontal (red) maps are induced by F . Those maps labeled ∼ are
equivalences of ∞-categories, by Theorem 5.43, and the (white) squares involving
the point ∗ are pullback diagrams. Hence the map

F∗ : HomC (x, y)→ HomD(Fx, Fy)

is an equivalence, by Proposition 4.21. □

8.3. Equivalences are essentially surjective. The following is an immediate
consequence of Theorem 5.43 (e), applied in the case A = ∗.

lem:2881 Lemma 8.4. Suppose F : C → D is an equivalence between ∞-categories. Then
the induced map FKan : CKan → DKan is also an equivalence.

As a corollary we obtain essential surjectivity of any equivalence.

prop:equiv_ffes Proposition 8.5. An equivalence between ∞-categories F : C → D is essentially
surjective.

Proof. The induced map on Kan complexes FKan : CKan → DKan is also an equiva-
lence, by Proposition ??. By Whitehead’s theorem, the induced map on connected
components π0F

Kan : π0(CKan) → π0(DKan) is an isomorphism, so that F is es-
sentially surjective. □

We’ve now established the “easier” direction for Theorem 8.2,

equivalence ⇒ fully faithful + essentially surjective.

8.4. Restricting fully faithful functors. We want to establish the implication

fully faithful + essentially surjective ⇒ equivalence.

In the most basic terms, this implication follows via a reduction argument from
the ∞-category setting to the Kan complex setting. We first prove that any fully
faithful functor between ∞-categories restricts to a fully faithful functor on the
associated Kan complexes.

lem:3002 Lemma 8.6. Let F : X → Y be a equivalence between Kan complexes and let
X ′ ⊆X and Y ′ ⊆ Y be full subcategories. Suppose that F restricts to a map F ′ :
X ′ → Y ′ and that the induced map on connected components π0(X ′) → π0(Y ′)
is a bijection. Then the restriction F ′ is an equivalence of Kan complexes.

Proof. For any x ∈X ′ and y ∈ Y ′ the respective inclusions induce equalities

πn(X
′, x) = πn(X , x) and πn(Y

′, y) = π(Y , y)

for all positive integers n. Via Whitehead’s theorem we understand that F induces
an isomorphism on all homotopy groups for X and Y , and therefore that F ′
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induces isomorphisms on all homotopy groups for X ′ and Y ′. Apply Whitehead
again to observe that F ′ is an equivalence. □

lem:3082 Lemma 8.7. Suppose that a functor between ∞-categories F : C → D is fully
faithful. Then the induced map FKan : CKan → DKan is fully faithful as well.

Proof. For objects x and x′ in C , with images y and y′ in D , we consider the map
of Kan complexes

HomCKan(x, x′)→ HomDKan(y, y′).

These Kan complexes sit as fully subcategories in the ambient categories HomC (x, x′)
and HomD(y, y′), and we have a diagram

HomCKan(x, x′)
FKan

//

��

HomDKan(y, y′)

��
HomC (x, x′)

F // HomD(y, y′).

So it suffices to show that FKan induces a bijection on connected components, by
Lemma 8.6. For this it suffices to prove that every equivalence β : y → y′ lifts to
an equivalence α : x → x′ in C . Let us choose an arbitrary map α : x → x′ with
Fα ≃ β. We claim that α is an equivalence.

Take any lift α′ : x′ → x of an inverse β−1 : y′ → y, and consider a composites
α′α and αα′. We have F (α′α) ≃ idy and since F induces an equivalence on mor-
phism spaces we have α′α ≃ idx, and similarly find αα′ ≃ idy. So α is in fact an
equivalence, i.e. a map in CKan, as desired. □

As we saw in the proof, for a given fully faithful functor F : C → D we find that
a given map α in C is an equivalence if and only if Fα is an equivalence.

Definition 8.8. A functor between∞-categories F : C → D is called conservative
if a map α : x → x′ in C is an equivalence whenever Fα : Fx → Fx′ is an
equivalence.

We have the following.

Lemma 8.9 ([15, 01JN]). Any fully faithful functor between ∞-categories is con-
servative.

8.5. Proof of Theorem 8.2. We begin with a refinement of Proposition ??.

lem:3123 Lemma 8.10. Suppose F : C → D is a trivial Kan fibration between∞-categories.
Then the map FKan : CKan → DKan is a trivial Kan fibration as well.

Proof. The lifting property applied to the inclusions Λ2
0 → ∆2 and Λ2

2 → ∆2 imply
that F is conservative. Hence the lifting property for F immediately restricts to a
lifting property for FKan. □

The following result allows us to descend from the Kan setting to the∞-setting.

thm:OK Theorem 8.11 ([15, 01HG]). A map between ∞-categories F : C → D is an
equivalence if and only if the associated map of Kan complexes

Fun(∆1, F )Kan : Fun(∆1,C )Kan → Fun(∆1,D)Kan

is an equivalence.

https://kerodon.net/tag/01JN
https://kerodon.net/tag/01HG
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Sketch proof. Take

FK = Fun(K,F )Kan : Fun(K,C )Kan → Fun(K,D)Kan

at a given simplicial set K. By Theorem 5.43, F is an equivalence if and only if

FK is an equivalence at all K. In particular, if F is an equivalence then F∆1

is an
equivalence.

For the converse claim, suppose that F∆1

is an equivalence and let Υ denote
the class of all simplicial sets K at which FK is an equivalence. One can show
the following: (O1) If we have a directed sequence K0 → K1 → · · · of maps of
simplicial sets, and all FKi are equivalences, then the map FK is an equivalence
for K = lim−→n

Kn. (O2) If we have a retract L→ K → L, and FK is an equivalence,

then FL is an equivalence. (O3) If {Kλ}λ∈Λ is a small collection of simplicial sets
for which all FKλ are equivalences, then the map F⨿λKλ is an equivalence. (04)
If L → K is inner anodyne, then FL is an equivalence if and only if FK is an
equivalence (Corollary 5.8 and Lemma 8.10). (O5) If

L0
µ1 //

µ2

��

L1

��
L2

// K

is a categorical pushout square and all of the FLi are equivalences, then FK is an
equivalence (Proposition 6.10). This applies, in particular, to the case of a standard
pushout square in which one of the µi is injective (Corollary 6.18).

We now see that Υ is a class of simplicial sets which contains ∆1 and which
is stable under the operations (O1)–(O5). Since the 0-simplex is a retract of ∆1,
we see that Υ contains ∆0. Now, supposing all ∆m are in Υ for m < n, and
that n ≥ 2, one sees that all horns Λn+1

i are in Υ by considering the appropriate
pushout diagram, and one subsequently sees that ∆n is in Υ by considering the
inner anodyne morphism Λn

1 → ∆n and applying (O4). It follows by induction that
all standard simplices are in Υ, and subsequently that Υ contains all simplicial sets
via applications of (O5) and (O1). □

We now provide a proof of Theorem 8.2.

Proof. Let F : C → D be a functor between ∞-categories. If F is an equivalence,
the F is fully faithful and essentially surjective by Corollary 8.3 and Proposition
8.5. Suppose conversely that F is fully faithful and essentially surjective.

Let us consider the diagram

Fun(∆1,C )Kan F∗ //

��

Fun(∆1,D)Kan

��
Fun(∂∆1,C )Kan F∗ // Fun(∂∆1,D)Kan.

We know that the bottom map is an fully faithful and essentially surjective, by
Lemma 8.7, and hence an equivalence by Corollary 7.13. Also by Corollary 6.15
the vertical maps are both Kan fibrations.

We note that the fibers of the vertical maps over points in Fun(∂∆1,C ) and
Fun(∂∆1,D) are the respective mapping spaces, and that F∗ restricts to the induced
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morphisms
F∗ : HomC (x, y)→ HomD(Fx, Fy)

on these fibers. So, via fully faithfulness of F , we apply Proposition 4.21 to see
that F∗ : Fun(∆1,C )Kan → Fun(∆1,D)Kan is an equivalence. By Theorem 8.11 it
follows that F is an equivalence. We are done. □

9. Composition functions for mapping spaces
sect:composition

We construct “homotopy composition” functions for the mapping spaces in an
∞-category. As a result we obtain, for any ∞-category C , a naturally associated
hKan-enriched category πC which lifts the discrete homotopy category hC .

sect:circ
9.1. A spacially enriched category. Take

Pn = ∆{0,1}
∐
{1}

∆{1,2} · · ·
∐

{n−1}

∆{n−1,n}.

Since the functor Fun(K,−) is right adjoint to the functor K ×−, we see that the
functor Fun(−,C ) sends colimits to limits. Hence we have an identification

Fun(Pn,C ) = Fun(∆{n−1,n},C )×Fun({n−1},C ) · · · ×Fun({1},C ) Fun(∆
{0,1},C )

at each ∞-category C .
We have the inclusion Pn → ∆n. One can show the following.

Lemma 9.1 ([15, 00JA]). For all n ≥ 2, the inclusion Pn → ∆n is inner anodyne.

We now find, via Corollary 5.8, that the functor

Fun(∆n,C )→ Fun(∆{n−1,n},C )×Fun({n−1},C ) · · · ×Fun({1}S,C ) Fun(∆
{0,1},C )

obtained via restriction along the inclusion Pn → ∆n, is a trivial Kan fibration. In
particular, it is an equivalence. We record an overdue lemma in this regard.

Lemma 9.2. A trivial Kan fibration between ∞-categories is an equivalence.

Proof. For such a trivial Kan fibration F : C → D , one solves the relevant lifting
problem to see that the induced map F∗ : Fun(K,C )→ Fun(K,D) is a trivial Kan
fibration at any simplicial set K (cf. proof of Proposition 5.7). It follows that the
induced map on Kan complexes FKan

∗ is an equivalence, and hence that F is an
equivalence by Theorem 5.43. □

We now consider the inclusion ∆{0,n} → ∆n and defined the “nth composition
functions” for C as the diagram

Fun(∆n,C )

,,
triv Kan

��
Fun(∆{n−1,n},C )×Fun({n−1},C) · · · ×Fun({1}S,C) Fun(∆

{0,1},C ) Fun(∆{0,n},C ).

Taking the fiber at an n-tuple of points x⃗ : ⨿n
i=1{i} → C provides an “n-th com-

position function” for the mapping spaces

Fun(∆n,C )x⃗

++
triv Kan

��
HomC (xn−1, xn)× · · · ×HomC (x0, x1) HomC (x0, xn).

(43) eq:comp

https://kerodon.net/tag/00JA
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Note that the fact that the product on the lower left is a Kan complex, and that
the map from Fun(∆n,C )x⃗ is a trivial Kan fibration, implies that this fiber is a
Kan complex as well.

By considering the appropriate diagrams one sees that the above composition
functions are sufficiently associative.

Proposition 9.3 ([15, 01PS, 01PT]). The diagram (43) defines an associative and
unital composition operation

◦ : HomC (y, z)×HomC (x, y)→ HomC (x, z)

in the homotopy category hKan.

We now find that the pairing of the objects C [0] with the mapping spaces
HomC (x, y) define a category enriched in the homotopy category of spaces.

prop:kan_enriched Proposition 9.4. For any∞-category C , the objects C [0], mapping spaces HomC (x, y),
and composition operations given above define a category πC enriched in the ho-
motopy category of spaces. Applying the functor

π0 : hKan→ Set

recovers the usual homotopy category π0(πC ) = hC .

We note that the assignment C ⇝ πC is functorial. In particular, functors
between ∞-categories define functors between their associated spacially enriched
categories.

9.2. Casual discussions: Imagining ∞-lifting. It is clear that we can collect
the objects C [0] and generalized mapping spaces Hom(∆n,C )x⃗ to produce some
intricate algebraic object which functions in a completely coherent manner at the
level of the ∞-category of Kan complexes, rather than in the homotopy category.

Let us consider a slightly more restrained proposition. Let’s fix a single object
x and the associated “endomorphism spaces”

EndC (x)n := Fun(∆n,C )(x,...,x).

For each map of simplices ∆m → ∆n we get a structural map

EndC (x)n → EndC (x)m,

and the structure maps pi : EndC (x)n → EndC (x)1 dual to the inclusions ∆1 ∼=
∆{i−1,i} → ∆n induce an isomorphism onto the product

EndC (x)n
∼→ EndC (x)1 × · · · × EndC (x)1

in the ∞-category of spaces Kan = Nhc(Kan).
The object End(x)∗ is now seen to define an algebra object in the category of

spaces, considered along with its cartesian monoidal structure [12, §1.2] [14, §2.4.1].
If we stretch our imaginations again, we can see the objects C [0] and morphism
spaces EndC (x)∗ as defining an algebra with many objects in the ∞-category of
spaces, i.e. as a “category enriched in the ∞-category of spaces”.

10. Pinched mapping spaces
sect:pinched

We define pinched mapping spaces as a strategic alternative to the standard
mapping spaces introduced in Section 7 above.

https://kerodon.net/tag/01PS
https://kerodon.net/tag/01PT
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10.1. Pinched mapping spaces. Recall that, for any diagram p : K → C , we
have the forgetful functors Cp/ → C and C/p → C which are dual to the functorial
embeddings L→ K ⋆ L and L→ L ⋆ K, at varied L.

Definition 10.1. Let x, y : ∗ → C be two objects in an ∞-category. We define
the left and right pinched mapping spaces as

HomL
C (x, y) := Cx/ ×C {y} and HomR

C (x, y) := {x} ×C C/y

respectively.

We note that there is an identification

HomR
C (x, y) = HomL

C op(y, x)op.

So we are free to focus on the lift pinched space in our analysis. Note also that any
functor between ∞-categories F : C → D fits into a diagram

Cx/

Fx/ //

��

DFx/

��
C

F // D .

Taking the fiber of this diagram over a given point y : ∗ → C provides an induced
map on the pinched spaces

F : HomL
C (x, y)→ HomL

D(Fx, Fy).

Our first observation is that the pinched mapping spaces are in fact spaces.

Lemma 10.2. At any pair of objects in an ∞-category C , the pinched mapping
spaces HomL

C (x, y) and HomR
C (x, y) are Kan complexes.

Proof. By Corollary 5.27 the forgetful functor Cx/ → C is a left fibration. It follows
that the fiber over y : ∗ → C is a left fibration

HomL
C (x, y)

and in particular is conservative by Lemma 5.31. Hence every map in C is an
isomorphism, and C is a therefore a Kan complex by Theorem 5.32. The proof for
HomR

C (x, y) is similar. □

Our main aim now is to proved that the pinched mapping space are equivalent
to the “standard mapping space” studied in Section 8 above.

thm:pre_left_right Theorem 10.3. At any pair of objects x, y : ∗ → C there are natural homotopy
equivalences

HomL
C (x, y)

∼
''

HomR
C (x, y)

∼
ww

HomC (x, y) .

A more refined statement of this result, as well as its proof, appears in Section
10.7 below.

We warn the reader that the proof of Theorem 10.3 is a rather intricate deviation.
So the reader might peruse the details on a first reading, then return to the topic
after considering its applications to consider the details as needed.
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10.2. Oriented products.

Definition 10.4. Given a partial diagram of ∞-categories

C

&&

D

xx
T

the oriented fiber product is the ∞-category

C ×or
T D := C ×Fun(∆{0},T ) Fun(∆

1,T )×Fun(∆{1},T ) D .

Equivalently, C ×or
T D = Fun(∆1,T )×Fun(∂∆1,T ) (C ×D).

Since the restriction functor Fun(∆1,T ) → Fun(∂∆1,T ) is an isofibration
(Corollary 6.14) the projection

C ×or
T D → C ×D (44) eq:3998

is an isofibration as well. This shows, in particular, that the oriented fiber product is
an∞-category, and that at each pair of points (x, y) in C ×D the fiber x(C ×or

T D)y
is a Kan complex.

Example 10.5. If T is a Kan complex then Fun(∆1,T ) = Isom(T ) and the

oriented fiber product C ×or
T D agrees with the categorical pullback C ×htop

T D .

ex:mapping_sp Example 10.6. For objects x, y : ∗ → C the mapping space is obtained as the
fiber

HomC (x, y) = Fun(∆1,C )×Fun(∂∆1,C ) {(x, y)} = x(C ×or
T C )y

sect:bluntjoin_v_oriented
10.3. Blunt joins and oriented products.

Definition 10.7 ([15, 01HR]). For simplicial sets K and L the blunt join K ⋄L is
the pushout

K × ∂∆1 × L //

��

K ×∆1 × L

��
(K × {0})⨿ ({1} × L) // K ⋄ L.

For the left-hand map, we have the identification

K × ∂∆1 × L = (K × {0} × L)⨿ (K × {1} × L),

and project onto the K × {0} and {1} × L factors, respectively. Hence maps from
K ⋄ L to arbitrary B is a map out of the product

K ×∆1 × L→ B

whose restriction to K × {0} × L is constant along L and whose restriction to
K × {1} × L is constant along K.

lem:4038 Lemma 10.8. For simplicial sets K and L, and an ∞-category C , we have a
natural identification

Fun(K ⋄ L,C ) = Fun(K,C )×or
Fun(K×L,C ) Fun(L,C ).

Proof. Commutativity of Fun(−,C ) with colimits identifies Fun(K ⋄L,C ) with the
fiber product

Fun(∆1,Fun(K × L,C ))×Fun(∂∆1,Fun(K×L,C )) (Fun(K,C )× Fun(L,C )).

□

https://kerodon.net/tag/01HR
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We claim that, in the case of the non-blunt join, there is a canonical map K ×
∆1 × L → K ⋆ L with the appropriate constancy conditions so that we obtain a
map from the blunt join K ⋄ L. Explicitly, any map σ : ∆n → ∆1 splits ∆n as

∆n = ∆σ0 ⋆∆σ1 where ∆σ0 := ∆σ−1(0) and ∆σ1 = ∆σ−1(1).

This is the unique splitting so that σ now appears as the join of the projections
∆σi → ∆0.

For any simplex Σ : ∆n → K × ∆1 × L, with associated triple of n-simplices
(σK , σ, σL), we associate the n-simplex

Σ′ : ∆n ∼= ∆σ0 ⋆∆σ1
σK⋆σL→ K ⋆ L.

(Here we have abused notation and written σK and σL for the restrictions of these n-
simplices to the appropriate sub-simplices ∆σi .) The association Σ→ Σ′ determines
a map of simplicial sets

c̃ : K ×∆1 × L→ K ⋆ L

whose restrictions to K × {0} × L and K × {1} × L are constant along L and K
respectively. Hence we get an induced map from the blunt join

cK,L : K ⋄ L→ K ⋆ L.

We call this map the comparison map, and note that cK,L is natural in both K and
L. Hence we obtain a natural transformation of bifunctors c : − ⋄ − → − ⋆−.

The following can be checked directly.

Lemma 10.9. The structural maps K = K×{0} → K⋄L and L ∼= {1}×L→ K⋄L
fit into diagrams

K

##{{
K ⋄ L c // K ⋆ L

and L

|| ##
K ⋄ L c // K ⋆ L.

We claim that the comparison map is an “equivalence” of simplicial sets, in the
precise sense of Definition 10.11 below.

10.4. The comparison map is a categorical equivalence. We first deal with
a small technical point. Recall that for any Kan complexes X and Y the functor
space Fun(X ,Y ) is a Kan complex. Hence for any Kan complex X and ∞-
category E the inclusion E Kan → E induces a natural map of Kan complexes

Fun(X ,E Kan)→ Fun(X ,E )Kan. (45) eq:2841

lem:2845 Lemma 10.10. For any Kan complex X , and ∞-category E , the inclusion (45)
is a isomorphism of Kan complexes.

Proof. Since all maps in X are isomorphisms, and composites of isomorphisms in
E are isomorphisms, the simplices in the image of the inclusion Fun(X ,E Kan) →
Fun(X ,E ) are precisely those maps ∆n×X → E which restrict to an isomorphism
along each 1-simplex

∆1 × {x} → ∆n ×X → E .

By the characterization of natural isomorphisms provided in Theorem 7.6, these
are precisely the simplices in the subcomplex Fun(X ,E )Kan ⊆ Fun(X ,E ). □

We have the following relative notion of equivalence for simplicial sets.
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def:cat_equiv Definition 10.11. A map of simplicial sets f : K → L is called a categorical
equivalence if, for every ∞-category C , the induced map on Kan complexes

Fun(L,C )Kan → Fun(K,C )Kan

is a homotopy equivalence.

Such maps between simplicial sets admit a number of equivalent expressions.

lem:cat_equiv Lemma 10.12 ([15, 01EF]). For a map of simplicial sets f : K → L, the following
are equivalent:

(a) For any ∞-category C the induced map

Fun(L,C )Kan → Fun(K,C )Kan

is an equivalence of Kan complexes (i.e. f is a categorical equivalence).
(b) For any ∞-category C the induced map

Fun(L,C )→ Fun(K,C )

is an equivalence of ∞-categories.
(c) For any ∞-category C the induced map

π0

(
Fun(L,C )Kan

)
→ π0

(
Fun(K,C )Kan

)
is a bijection of sets.

Proof. The equivalence (a) ⇔ (b) follows from a consideration of the ∞-category
Fun(∆1,C ), the adjunction

Fun(∆1,Fun(−,C ))Kan ∼= Fun(−,Fun(∆1,C ))Kan,

and Theorem 8.11. The implication (a) ⇒ (c) is clear. We deal finally with the
implication (c) ⇒ (a). Via adjunction (c) implies that f induces a bijection

π0

(
Fun(X ,Fun(L,C ))Kan

)
→ π0

(
Fun(X ,Fun(K,C ))Kan

)
at each pair of an ∞-categories C and Kan complex X . But now the natural map

Fun(X ,Fun(A,C )Kan)→ Fun(X ,Fun(A,C ))Kan

is an isomorphism at an arbitrary simplicial set A, by Lemma 10.10. Hence (c)
implies that the induced map

π0

(
Fun(X ,Fun(L,C )Kan)

)
→ π0

(
Fun(X ,Fun(K,C )Kan)

)
.

So f∗ : Fun(L,C )Kan → Fun(K,C )Kan is an equivalence in the homotopy category
of spaces, i.e. a homotopy equivalence, and we therefore observe the implication (c)
⇒ (a). □

Our primary claim is the following.

prop:comp_map Proposition 10.13 ([15, 01HV]). At an arbitrary pair of simplicial sets K and L,
the comparison map cK,L : K ⋄ L→ K ⋆ L is a categorical equivalence.

We are claiming, equivalently, that the diagram of simplicial sets

K × ∂∆1 × L //

��

K ×∆1 × L

c̃

��
(K × {0})⨿ ({1} × L) // K ⋆ L.

https://kerodon.net/tag/01EF
https://kerodon.net/tag/01HV
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is a categorical pushout square. The proof, which we do not cover, follows by a
reduction to the case where K = ∆1 [15, 01HX]. This reduction is similar to the one
outlined in the proof of Theorem 8.11. One then deals with the special case where
L is a point [15, 01HZ] and follows a relatively intricate argument with categorical
pushouts and anodyne maps. See [15, 01HV] and the surrounding commentary for
details.

sect:slice_diag

10.5. Slice and coslice diagonals. If we fix a diagram p : K → C , then at
arbitrary L we have

Fun(K ⋄ L,C )p = {p} ×or
Fun(K×L,C ) Fun(L,C ).

We expand the right hand side to the expression to get

Fun(∆1,Fun(K × L,C ))×Fun(∂∆1,Fun(K×L,C )) Fun(L,C )

= Fun(L,Fun(∆1,Fun(K,C )))×Fun(L,Fun(∂∆1,Fun(K,C ))) Fun(L,C )

= Fun
(
L, {p} ×or

Fun(K,C ) C
)
.

So in total we have a “restricted adjunction”

Fun(K ⋄ L,C )p ∼= Fun
(
L, {p} ×or

Fun(K,C ) C
)
, (46) eq:4109

and similarly obtain an adjunction

Fun(K ⋄ L,C )q ∼= Fun
(
L,C ×or

Fun(L,C ) {q}
)

(47) eq:4113

over any diagram q : L→ C [15, 01KN].
Now, at such diagrams q and l, we have the evaluation maps evp : K ⋆ Cp/ → C

and evq : Cq/ ⋆ L → C which restrict to p and q on K and L respectively. We
compose with the comparison maps K ⋄ Cp/ → K ⋆ Cp/ and C/q ⋄ L → C/q ⋆ L to
obtain corresponding functions

δ′p/ : K ⋄ Cp/ → C and δ′/q : C/q ⋄ L→ C .

Via the restricted adjunctions (46) and (47) we obtain finally maps

δp/ : Cp/ → {p} ×or
Fun(K,C ) C and δ/q : C/q → C ×or

Fun(L,C ) {q}.

We refer to these maps as the coslice and slice diagonals, respectively [15, 02GH].

lem:4197 Lemma 10.14. Consider diagrams p : K → C and q : L→ C . Composition with
the co/slice diagonal produces a diagram of natural transformations

HomsSet(−,Cp/)
δ∗ //

∼=
��

HomsSet(−, {p} ×or
Fun(K,C ) C )

∼=
��

HomsSet(K ⋆−,C )p
c∗K,− // HomsSet(K ⋄ −,C )p

and

HomsSet(−,Cq/)
δ∗ //

∼=
��

HomsSet(−,C ×or
Fun(K,C ) {q})

∼=
��

HomsSet(− ⋆ L,C )q
c∗−,L // HomsSet(− ⋄ L,C )q

Proof. Follows by Yoneda’s lemma. □

https://kerodon.net/tag/01HX
https://kerodon.net/tag/01HZ
https://kerodon.net/tag/01HV
https://kerodon.net/tag/01KN
https://kerodon.net/tag/02GH
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By considering the above diagrams one sees that the co/slice diagonals fit into
diagrams

Cp/
δ //

forget   

{p} ×or
Fun(K,C ) C

p2

xx
C

C/q
δ //

forget   

C ×or
Fun(L,C ) {q}

p1

xx
C .

10.6. Co/slice diagonals are equivalences.

thm:slice_equiv Theorem 10.15. At an arbitrary diagram p : K → C , the slice an coslice diago-
nals

δ/p : C/p → C ×or
Fun(K,C ) {p} and δp/ : Cp/ → {p} ×or

Fun(K,C ) C

are equivalences of ∞-categories.

We record a proof which is dependent on the following technical lemma.

lem:4260 Lemma 10.16 ([15, 01KV]). Fix a diagram p : K → C . The adjunction HomsSet(K⋆
−,C )p ∼= HomsSet(−,Cp/) induces a natural isomorphism on connected components

HomsSet(K ⋆−,C )p
∼= //

��

HomsSet(−,Cp/)

��
π0

(
Fun(K ⋆−,C )Kan

p

) ∼=
∃!
// π0

(
Fun(−,Cp/)

Kan
)
.

(48) eq:4262

The analogous result holds for the adjunction HomsSet(−⋆K,C )p ∼= HomsSet(−,C/p).

Sketch proof. Let us only deal with the adjunction for K ⋆ −. In [15, 01KV] it’s
shown that at any simplicial set L two maps f0, f1 : K⋆L→ C are homotopic if and
only if the corresponding maps under adjunction f ′

0, f
′
1 : L → Cp/ are homotopic.

Equivalently, the adjunction

HomsSet(K ⋆ L,C )p
∼=→ HomsSet(L,Cp/) (49) eq:4275

induces a bijection on isoclasses of objects in Fun(K ⋆L,C ) and Fun(L,Cp/). This
final statement is equivalent to the existence of an isomorphism on connected com-
ponents in the associated Kan complex which completes the diagram

HomsSet(K ⋆ L,C )p
∼= //

��

HomsSet(L,Cp/)

��
π0

(
Fun(K ⋆ L,C )Kan

p

) ∃! // π0

(
Fun(L,Cp/)

Kan
)
.

Since the adjunction (49) is natural in both L and C the induced isomorphism on
connected components is also natural in both L and C . □

We now return to the main point of consideration.

Proof of Theorem 10.15. We prove that δp/ is an equivalence. The case of δ/p is
completely similar.

By Proposition 10.13 the comparison map cK,L : K⋄L→ K⋆L is an equivalence.
Hence the map on functor spaces

c∗ : Fun(K ⋆ L,C )Kan → Fun(K ⋄ L,C )Kan

https://kerodon.net/tag/01KV
https://kerodon.net/tag/01KV
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is an equivalence at an arbitrary ∞-category C . Restricting along the inclusions
K → K ⋆ L and K → K ⋄ L provide a diagram

Fun(K ⋆ L,C )Kan //

((

Fun(K ⋄ L,C )

vv
Fun(K,C )Kan

in which the two maps to Fun(K,C )Kan are Kan fibrations by Corollary 6.15. Hence
the induced maps on fibers is an equivalence

Fun(K ⋆ L,C )Kan
p

∼→ Fun(K ⋄ L,C )Kan
p

over any given diagram p : K → C , by Proposition 4.21, and the maps on connected
components are subsequently an equivalence as well. We apply Lemma 10.16 to
find that the induced map on connected components is an equivalence

δ∗ : π0

(
Fun(L,Cp/)

Kan
) ∼→ π0(Fun(L, {p} ×or

Fun(K,C ) C )Kan)

at arbitrary L. Hence the map δp/ : Cp/ → {p} ×or
Fun(K,C ) C reduces to an isomor-

phism in the homotopy category hCat∞, and is therefore an equivalence. □

sect:left_right
10.7. Comparisons of mapping spaces. Fix objects x and y in an ∞-category
C . We interpret x as a diagram x : ∆0 → C , and consider the coslice diagonal

δ : Cx/ → {x} ×or
C C ,

which we now understand is an equivalence by Theorem 10.15. Via the explicit
construction from Section 10.5 we also have a diagram of functors

Cx/

forget %%

δ // {x} ×or
C C

projection (44)ww
C = {x} × C .

We take the fiber over y : ∗ → C to obtain a map of Kan complexes

δLx,y : HomL
C (x, y) = Cx/ ×C {y} → {x} ×or

C {y} = HomC (x, y).

One similarly takes the fiber of the slice diagonal C/y → C ×or
C {y} over x to obtain

a map

δRx,y : HomR
C (x, y)→ HomC (x, y).

We refer to these maps as the left and right comparison maps respectively, via a
slight abuse of language.

One sees directly that the co/slice diagonals are natural in functors between ∞-
categories F : C → D so that the left and right comparison maps are natural over
Cat∞ ast well. Explicitly, at any pair of objects in C , and any functor F , we have
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a diagram

HomD(Fx, Fy)

HomL
D(Fx, Fy)

δLFx,Fy

66

HomC (x, y)

F

OO

HomL
D(Fx, Fy)

δRFx,Fy

hh

HomL
C (x, y)

F

OO

δLx,y

66

HomL
C (x, y).

F

OO

δRx,y

hh

thm:left_right Theorem 10.17. The left and right comparison maps

δLx,y HomL
C (x, y)→ HomC (x, y) and δRx,y : HomR

C (x, y)→ HomC (x, y)

are homotopy equivalences.

Proof. The forgetful functor Cx/ → C is a left fibration by Corollary 5.27, and
hence an isofibration by Lemma 5.31. The projection {x} ×or

C C → C is also an
isofibration, by Corollary 6.14 if one likes. We now have a diagram

Cx/

%%

δ // {x} ×or
C C

ww
C = {x} × C

in which the maps to C are isofibrations and the map δ is an equivalence (Theorem
10.15). We apply Corollary 6.24 to conclude that the induced map on fibers

δLx,y : HomR
C (x, y)→ HomC (x, y)

is an equivalence. One follows a completely similar argument to see that the map
δLx,y is an equivalence as well. □

11. Dg preparations: the Dold-Kan correspondence
sect:dold_kan

We want to calculate the mapping spaces for dg categories. The claim is ulti-
mately that, given a dg category A, the pinched mapping spaces for the dg nerve
A = Ndg(A) are identified with the Eilenbergh-MacLane constructions for the
mapping complexes

HomL
A (x, y) = K(Hom∗

A(x, y)).

With a sufficiently strong understanding of this construction we then compare full
faithfulness in the dg setting to full faithfulness in the ∞-setting.

The Eilenbergh-MacLane construction is specifically a functor

K : {cochains over Z} → {simplicial abelian groups} ⊆ Kan

which provides one-half of the so-called Dold-Kan correspondence. In this section
we provide a relatively detailed discussion of the Dold-Kan correspondence, and a
proof of the fact that the functor K transforms cohomology groups for cochains
into homotopy groups for spaces, in non-positive degrees,

πn(K(X)) = H−n(X).
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11.1. Reminders on simplicial sets. In this section we approach simplicial sets
from a more combinatorial perspective. A simplicial set K can be described as a
Z≥0-collection of sets {K[n]}n≥0 equipped with maps

d∗i : K[n]→ K[n− 1] and s∗j : K[n− 1]→ K[n]

for all n, 0 ≤ i ≤ n, and 0 ≤ j ≤ n− 1, which satisfy the relations

• d∗i d∗j = d∗j−1d
∗
i if i < j. • s∗i s∗j = s∗j+1s

∗
i if i ≤ j.

• d∗i s∗j = s∗j−1d
∗
i if i < j. • d∗i s∗j = s∗jd

∗
i−1 if i > j + 1.

• d∗i s∗j = id if i = j or j + 1.

As one might surmise, the maps d∗i and s∗j are dual to the unique increasing inclusion
di : [n − 1] → [n] which does not contain i in its image, and the unique weakly
increasing surjection sj : [n]→ [n− 1] with sj(j) = sj(j + 1) = j.

11.2. Simplicial abelian groups. We recall that a simplicial abelian group is a
functor A : ∆op → Ab. Let KanZ denote the category of simplicial abelian groups.
We have the forgetful functor KanZ → sSet and note that the free simplicial abelian
group functor provides a left adjoint to this functor

Z− : sSet→ KanZ .

Explicitly, for any simplicial set K, (ZK)[n] = Z(K[n]) and the structure maps are
extended linearly from the structure maps for K.

prop:ab_kan Proposition 11.1 ([16, 08N]). Any simplicial abelian group is a Kan complex.

Proof. Suppose we have a horn Λn
i → A. Such a horn is specified by a tuple of

simplices σj : ∆
[n]\{j} → A, for j ̸= i, and we seek an n-simplex σ : ∆n → A which

satisfies d∗jσ = σk at all k.
We proceed via two induction processes. For the first inductive argument we

claim that there exist simplices xk in A[n], for each 0 ≤ k < i, for which d∗jxk = σj

whenever j ≤ k. This claim is trivially satisfied when i = 0, and otherwise we begin
by taking x0 = s∗0σ0. Now given xk−1 as desired we define xk as

xk = xk−1 − s∗kd
∗
k(xk−1) + s∗k(σk),

and find directly that xk has the claimed property. Via induction we obtain an
element x = xi−1 for which d∗j (x) = σj whenever j < i.

For our second argument, we claim the existence of n-simplices x′
m for 0 ≤ m ≤

n − i for which dj(x
′
m) = σj at all j with 0 ≤ j < i or n −m < j ≤ n. We begin

by taking x′
0 = x, and given x′

m−1 as desired we define

x′
m = x′

m−1 − s∗n−md∗n−m+1(x
′
m−1) + s∗n−m(σn−m).

One checks directly that x′
m has the desired property, and by induction we obtain

all x′
m as claimed. Take finally σ = x′

n−i. □

11.3. Cochains from simplicial abelian groups. We eventually consider the
normalized Moore complex functor

N∗ : KanZ → Ch(Z)
from the category of simplicial abelian groups to the category of cochains of abelian
groups. This construction begins with a consideration of the standard Moore com-
plex functor.

https://stacks.math.columbia.edu/tag/08NZ
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For any simplicial abelian group A take C∗(A) to be the complex with

C−n(A) = A[n] and differential d−n
C∗(A)(σ) =

n∑
i=0

(−1)id∗i (σ),

where d∗i : A[n] → A[n − 1] is the i-th face map. One directly verifies that the
differential dC∗(A) squares to 0, so that this construction is provides a functor

C∗ : KanZ → Ch(Z).
We have the subcomplex of degenerate simplicesD∗(A) defined by takingD−n(A) =∑
i s

∗
i (A[n− 1]). This subcomplex is also functorial in A.

Lemma 11.2 ([20, Theorem 8.3.8]). The subcomplex D∗(A) of degenerate simplices
in C∗(A) is acyclic.

Idea of proof. One applies some filtration on D∗(A) which is induced by the p-
th face operators, then sees that the E2-page of the associated spectral sequence
already vanishes, i.e. that the associated graded complex grD∗(A) is acyclic. □

One now annihilates the subcomplex of degenerate simplices to produce a quasi-
isomorphic complex of normalized cochains.

Definition 11.3. The normalized (Moore) cochain complex functor

N∗ : KanZ → Ch(Z)
is defined as the quotient N∗(A) := C∗(A)/D∗(A).

The following is apparent.

Lemma 11.4. For any simplicial abelian group A, the reduction map C∗(A) →
N∗(A) is a quasi-isomorphism.

Definition 11.5. Define the functor

N∗(−,Z) : sSet→ Ch(Z)
as the composite N∗(K,Z) := N∗(ZK).

sect:K
11.4. Eilenberg-MacLane functor. For any cochain complex X we define the
simplicial abelian group

K(X) : ∆→ KanZ, [n] 7→ HomCh(Z)(N
∗(∆n,Z), X).

Explicitly, an n-simplex σ : ∆n → K(X) consists of the following data: For each
subset J ⊆ [n], with its inherited ordering J = {j0, . . . , jt}, σ associates a cochain
xJ of degree −|J |+ 1 in X. These cochains are required to satisfy

d(xJ) =

|J|−1∑
i=0

(−1)ixJ\{ji} and d(xJ) = 0 when |J | = 1.

The abelian group structure on K(X)[n] is the obvious one,

{xJ : J ⊆ [n]}+ {yJ : J ⊆ [n]} = {xJ + yJ : J ⊆ [n]}
For a weakly increasing function r : [n] → [m] the map r∗ : K(X)[m] → K(X)[n]
sends each tuple {xK : K ⊆ [m]} to the tuple {xJ : J ⊆ [n]} with

xJ =

{
xr(J) if r|J is injective,

0 otherwise.
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lem:4566 Lemma 11.6. For each positive integer n, any cochain x ∈ X−n appears as the
leading term x = x[n] for an n-simplex σ : ∆n → K(X). A degree 0 cochain x ∈ X0

appears as the leading term in a 0-simplex if and only if x is a cocycle.

Proof. When n > 0 take σ specified by the unique tuple with x[n] = x, x{1,...,n} =
d(x), and all other xJ = 0. The result at n = 0 follows from the definition of
K(X)[0] as the collection of sets of a single element {x} with x ∈ X0 and d(x) =
0. □

lem:4583 Lemma 11.7. Consider an n-simplex σ : ∆n → K(X) and corresponding tuple of
cochains σ = {xJ : J ⊆ [n]}. The simplex σ is a sum of degenerate simplices, i.e.
lies in DnK(X) =

∑
i s

∗
iK(X)[n − 1], if and only if the leading term x[n] ∈ X−n

vanishes.

Proof. Let us say σ is of type m if xJ = 0 whenever |J | > m. Note that the
only simplex of type 0 is the zero simplex. Consider σ of type m with m ≤ n,
and suppose σ is not of type m − 1. Order the cochains xJ with |J | = m in the
dictionary order

{xJ0
, . . . , xJt

},
and let I be the minimal size m subset for which xI is nonzero. Let i be the
maximal element in [n] with i /∈ I and consider the endomorphism f : [n] → [n]
which is a bijection on [n]− {i} and sends i to i− 1. Then f(I) = I and for any J
we have f(J) ≤ J whenever f |J is injective. So the simplex f∗(σ) is of type m and
specified by a tuple {x′

J} with

x′
I = xI and x′

J = 0 whenever |J | = m and J < I.

We note that f factors through [n− 1] so that the simplex f(σ) is degenerate, that
f(σ) is of type m, and that

σ − f(σ) = {x′′
J : J ⊆ [n]} with x′′

J = 0 whenever |J | = m and J ≤ I.

In this way we can eliminate all nonzero cochains xJ with |J | = m, in order, by
successively adding degenerate simplices, and in totality we observe the existence
of a sum of degenerate simplices σ′ for which

σ − σ′ is of type m− 1.

It follows, by induction if one likes, that there exists a sum of degenerate simplices
σ′′ so that σ − σ′′ = 0 whenever σ is of type n. Equivalently, any σ : ∆n → K(X)
is a sum of degenerate simplices if and only if the leading term x[n] vanishes. □

In the statement below we let τ0X denotes the 0-th truncation of a given complex
X,

τ0X = · · · → X−2 → X−1 → Z0(X)→ 0.

cor:4617 Corollary 11.8. There is a natural map

ϵX : N∗K(X)→ X

which sends the class of each generator {xJ : J ⊆ [n]} in N−nK(X) to its leading
term x[n] ∈ X−n. This natural map is an isomorphism onto the subcomplex τ0X
in X.

The proof only requires a check of the differential, which we omit.
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11.5. The Dold-Kan correspondence.

Lemma 11.9. The functor N∗ : KanZ → Ch(Z) commutes with colimits.

Proof. One observes directly that N commutes with direct sums and exact se-
quences A′ → A → A′′ → 0. Hence N commutes with colimits as well. It follows
that the composite N∗(−,Z) commutes with colimits. □

We note that any simplicial abelian group can be placed in an exact sequence

⊕µN
∗(∆n(µ),Z)→ ⊕λN

∗(∆n(λ),Z)→ A→ 0

to now observe that the natural identification

HomsSet(∆
n,K(X)) = HomCh(Z)(N(∆n,Z), X)

extends to an adjunction between N∗ and K.

Proposition 11.10. There is a unique adjunction

HomCh(Z)(N
∗−,−) ∼= Hom(−,K−)

which extends the identification

HomKanZ(N(∆n,Z),K(X)) = HomCh(Z)(N
∗(∆n,Z), X).

The unit of this adjunction A → KN∗(A) sends a simplex σ : ∆n → A to the
simplex σ′ = N∗(σ) : ∆n → KN∗(A). One can additionally check that the counit
of this adjunction is the natural map ϵX : N∗K(X) → X from Corollary 11.8.
We recall that ϵX is counit map is an isomorphism whenever X is concentrated in
nonpositive degrees.

prop:4760 Proposition 11.11. For any simplicial abelian group A, the unit map uA : A →
KN∗(A) is an isomorphism.

We omit the proof, as it is somewhat intricate, and refer the reader instead to
the presentation of Weibel [20, Section 8.4] or Lurie [15, 00QQ]. We now obtain
the Dold-Kan correspondence as a consequence of Corollary 11.8 and Proposition
11.11.

thm:dk Theorem 11.12 (Dold-Kan). The functors N∗ : KanZ → Ch(Z) and K : Ch(Z)→
KanZ restrict to mutually inverse equivalences

KanZ
∼→ Ch≤0(Z) and Ch≤0(Z) ∼→ KanZ .

Proof. Corollary 11.8 and Proposition 11.11 tell us that, after restricting to Ch≤0(Z),
the two composites KN∗ and N∗K are naturally isomorphic to the identity. □

11.6. Refined Dold-Kan correspondence. An important aspect of the Dold-
Kan equivalence is that it transforms homotopy groups for simplicial abelian groups
into cohomology groups for cochain complexes.

thm:dk_htopy_cohom Theorem 11.13 (Dold-Kan II). Let A be a simplicial abelian group and X be an
integral cochain complex. The Dold-Kan equivalence admits natural isomorphisms

πn(A, 0) ∼= H−n(N∗A) and H−n(X) ∼= πn(K(X), 0) (50) eq:4661

at all non-negative integers n.

https://kerodon.net/tag/00QQ
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For a basic outline of the proof, we obtain the fundamental group πn(A) as the
collection of (pointed) homotopy classes of maps

πn(A, 0) = {pointed maps Sn → A}/ ∼pt htop .

One calculates N∗(Sn,Z) = Z[n]⊕ Z[0], where Z[i] is a free abelian group concen-
trated in degree −i. Hence H−n(X) is identified with homotopy classes of maps
from N∗(Sn,Z) which vanish on Z[0]. We might think of such maps as pointed
homotopy classes of pointed maps to obtain

H−n(X) = {pointed maps N∗(Sn,Z)→ X}/ ∼pt htop .

So we expect to obtain the identifications (50) from a homotopy sensitive variant
of the Dold-Kan correspondence. We take a moment to explain how Dold-Kan in-
teracts with homotopy, and subsequently how the identifications (50) are extracted
out of the Dold-Kan equivalence.

11.7. Dold-Kan and homotopy. Recall that any simplicial abelian group is a
Kan complex. We can therefore speak of homotopy equivalences between maps
between simplicial abelian groups in the usual way, i.e. as maps A×∆1 → B with
prescribed value on A× ∂∆1.

lem:4708 Lemma 11.14 ([20, Theorem 8.3.12]). A homotopy h : K ×∆1 → L between two
maps of simplicial abelian groups f, f ′ : K → L is equivalent to the following data:
At each n ≥ 0 we have a tuple of maps hi[n] : K[n]→ B[n+1], indexed by integers
0 ≤ i ≤ n, which satisfy

d∗0h0 = f and d∗n+1hn[n] = f ′[n],

as well as the intermediate formulae

d∗i hj =


hj−1d

∗
i if i < j

d∗i hi−1 if i = j ̸= 0

hjd
∗
i−1 if i < j + 1

and s∗i hj =

{
hj+1s

∗
i if i ≤ j

hjs
∗
i−1 if i > j.

(51) eq:4725

Given a homotopy h : K ×∆1 → L we refer to the corresponding maps {hi[n] :
n, 0 ≤ i ≤ n} as the simplicial data for h. We recall the construction of this
bijection directly from [20].

Construction. Fix an integer n. For each −1 ≤ i ≤ n let αi : [n] → [1] be the
unique increasing map with α−1

i (0) = {0, . . . , i}. To be clear, α−1 takes constant
value 1. We now have

(K ×∆1)[n] = ⨿n
i=−1K[n]× {αi} ∼= ⨿n

i=−1K[n]

Given a homotopy h : K ×∆1 → L between maps f and f ′ define

hi[n] := (h|A[n+1]×{αi})s
∗
i : K[n]→ K[n+ 1]

Conversely, given data hi[n] as above, let h : K ×∆1 → L be the unique simplicial
map with

h[n]|K[n]×{αi} =

 f ′[n] when i = −1
d∗i+1hi[n] when 0 ≤ i < n
f [n] when i = n.

(52) eq:4751

□
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Definition 11.15. Suppose A and B are simplicial abelian groups. A homotopy
h : A × ∆1 → B between maps of simplicial abelian groups is said to be an
additive homotopy, or Z-homotopy, if all of the maps hi[n] : A[n]→ B[n+1] in the
corresponding simplicial data are maps of abelian groups.

Clearly one can add and subtract additive simplicial data so that additive ho-
motopy classes are stable under linear combinations. In particular we have an
identification of quotients

HomKanZ(A,B)/Z-htopy = HomKanZ(A,B)/{f : f htopic to 0},

and we see that the quotient inherits an additive group structure from that of
HomKanZ(A,B).

By extending linearly we furthermore see that the adjunction

HomsSet(K,B)
∼→ HomKanZ(ZK,B),

at any simplicial set K and simplicial abelian group B, identifies homotopy classes
of maps from K to B with additive homotopy classes of maps from ZK to B. So
we have an induced adjunction at the homotopy level

HomsSet(K,B)/ htopy
∼→ HomKanZ(ZK,B)/Z-htopy. (53) eq:4769

prop:dk_htopy Proposition 11.16. The isomorphism

N∗ : HomKanZ(A,B)
∼→ HomCh(Z)(N

∗A,N∗B)

identifies additive homotopy equivalence classes of simplicial maps with homotopy
equivalence classes of chain maps, and hence induces a natural isomorphism on the
quotients

N∗ : HomKanZ(A,B)/Z-htopy ∼→ HomK(Z)(N
∗A,N∗B).

Note the appearance of the homotopy category K(Z) in the second expression
above. We only indicate the main idea of the proof.

Sketch proof. One shows that any additive homotopy {hi[n] : A[n] → B[n + 1]}i,n
between maps f, f ′ : A → B defines a homotopy ξh between the associated maps
on complexes N∗(f), N∗(f ′) : N∗(A) → N∗(B). Specifically we can take ξh with
each ξnh =

∑
i(−1)ihi[n] [20, Lemma 8.3.13].

Conversely, consider two maps between nonpositively graded cochain complexes
g, g′ : X → Y which are homotopic via some cochain homotopy ξ. Consider at each
n the natural inclusions

X−n → K(X)[n], x 7→ {xJ : J ⊆ [n]}

where x[n] = x, x[n−1] = (−1)nd(x), xJ = 0 otherwise.

We note that for any additive homotopy h betweenK(g) andK(g′), h is determined
uniquely by its values on the subspaces X−n ⊆ K(X)[n]. Indeed, X0 = K(X)[0],
at all positive n

K(X)[n] = X−n + degenerate simplices,

and we see from the constraints (51) that the values of h∗[n] on degenerate simplices
are determined completely by previous map h∗[n− 1].
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One shows finally that ξ determines a (unique) additive homotopy hξ between
K(g),K(g′) : KN∗(A)→ KN∗(B) for which the simplicial data satisfies

hξ
i [n]|X−n =


s∗i g if i < n− 1

s∗n−1g − s∗nξ
−n+1d if i = n− 1

s∗n(g − ξ−n+1d)− ξ−n if i = n

at each n and 0 ≤ i ≤ n. See [20, pg 273–274]. □

We recall that any simplicial abelian group B is a Kan complex (Proposition
11.1). Hence the simplicial set Fun(K,B) is a Kan complex, at any simplicial set
K, and we have

π0(Fun(K,B)) = HomsSet(K,B)/ htopy .

We now obtain the following corollary via the identification (53) and Proposition
11.16.

cor:dk_htopy Corollary 11.17. Let K be a simplicial set and B be a simplicial abelian group.
The isomorphism

N∗ : HomsSet(K,B)
∼→ HomCh(Z)(N

∗(K,Z), N∗B)

reduces to a natural isomorphism

N∗ : π0(Fun(K,B))
∼→ HomK(Z)(N

∗(K,Z), N∗B).

11.8. Dold-Kan and pointed homotopy. Let x : ∗ → K be a pointed simplicial
set, and consider any abelian group B. Note that B is naturally pointed via the
additive unit 0 : ∗ → B. We then have the additive subgroup of pointed maps

HomsSet(K,B)∗ = HomsSet(K,B)×Hom(x,B) {0}
in HomsSet(K,B).

Definition 11.18. The category of pointed cochains is the undercategory Ch(Z)Z/,
and a pointed homotopy between pointed maps f, f : X → Y is a homotopy
h : X → ΣY whose restriction along the structure map Z→ X is identically 0.

As with simplicial abelian groups, we always have the 0-pointing, which gives
an embedding Ch(Z) → Ch(Z)Z/. This embedding is left adjoint to the forgetful
functor.

Since N∗(∗,Z) = Z, we see that N∗ restricts to an equivalence between the
categories of pointed simplicial abelian groups, i.e. simplicial abelian groups with
a fixed map ∗ → A, and pointed nonnegatively graded cochains. In particular, we
have the binatural isomorphism

N∗ : HomsSet(K,B)∗
∼→ HomCh(Z)(N

∗(K,Z), N∗B)∗.

Though we don’t define pointed additive homotopy for pointed simplicial abelian
groups in general, for maps f, f ′ : (A, a) → (B, 0) between pointed simplicial sets
in which B has the 0 pointing, we say f and f ′ are pointed additively homotopic if
there is an additive homotopy {hi[n]}n,i for which all hi[n]|a[n] = 0.

lem:4853 Lemma 11.19. Let a : ∗ → A and b : ∗ → B be pointed simplicial abelian groups,
and suppose B has trivial pointing b = 0. Then the embedding

HomKanZ(A/Za,B)→ HomKanZ(A,B)
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is an isomorphism onto HomKanZ(A,B)∗, and reduces to an isomorphism

HomKanZ(A/Za,B)/{Z-htopy} ∼→ HomKanZ(A,B)∗/{pointed Z-htopy}.

A similar result holds for cochains. Namely, we have a natural isomorphism
between maps in the homotopy category HomK(Z)(X/Zx, Y ) and pointed homotopy
classes of maps in HomCh(Z)(X,Y )∗, whenever Y has the 0 pointing.

prop:4870 Proposition 11.20. Let x : ∗ → K be a pointed simplicial set and B be a simplicial
abelian group. Give B its 0 pointing. Then the isomorphism

N∗ : HomsSet(K,B)∗
∼→ HomCh(Z)(N

∗(K,Z), N∗B)∗

reduces to an isomorphism

π0(Fun(K,B)∗)
∼→ HomCh(Z)(N

∗(K,Z), N∗B)∗/{pointed htopy}.

Let us recall that Fun(K,B)∗ is the fiber space

Fun(K,B)∗ //

��

Fun(K,B)

��
∗

0
// Fun(x,B).

Proof. We have

π0(Fun(K,B)∗) = HomsSet(K,B)∗/{pointed htopy}

∼= HomKanZ(ZK,B)∗/{pointed Z-htopy}.

So the result follows from the diagram

HomKanZ(ZK/Zx,B)
∼ //

∼
��

HomCh(Z)(N
∗(K,Z)/Zx,N∗B)

∼
��

HomKanZ(ZK,B)∗
∼ // HomCh(Z)(N

∗(K,Z), N∗B)∗,

which reduced to a diagram

HomKanZ(ZK/Zx,B)/ ∼ ∼ //

∼
��

HomK(Z)(N
∗(K,Z)/Zx,N∗B)

∼
��

π0(Fun(K,B)∗)
∃!∼ // HomCh(Z)(N

∗(K,Z), N∗B)∗/ ∼,

(54) eq:49700

via Corollary 11.17 and Lemma 11.19. By considering a sufficiently large diagram
which connects the two squares above, we see that the completing isomorphism in
(54) is necessarily induced by the isomorphism

N∗ : HomsSet(K,B)∗
∼→ HomCh(Z)(N

∗(K,Z), N∗B)∗.

□
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11.9. Proof of Theorem 11.13. For the simplicial n-sphere Sn we have

N∗(Sn,Z) = · · · → 0→ · · · 0→ Zσn → 0 · · · → Zσ0 → 0

with the unique n-face sitting in cohomological degree −n and the unique 0-face
sitting in cohomological degree 0. When n > 1 the differential on this complex is 0,
for degree reasons, and at n = 1 the differential is still 0 since d(σ1) = σ0 − σ0 = 0
directly. Hence

HomCh(Z)(N
∗(Sn,Z), X) = Z−n(X)⊕ Z0(X)

for any cochain complex X. Now, if we give X its 0 pointing, and give N∗(Sn,Z)
its unique pointing induced by the pointing on Sn, then we have

HomCh(Z)(N
∗(Sn,Z), X)∗ ∼= Z−n(X)

and one observes further a natural identification

HomCh(Z)(N
∗(Sn,Z), X)∗/{pointed htopy} ∼= H−n(X).

Let us recall that, for any simplicial abelian group, we have

πn(B, 0) = π0(Fun(S
n, B)∗)

by definition. So we obtain Theorem 11.13 as an consequence of Proposition 11.20.

Proof of Theorem 11.13. The result for A is a consequence of Proposition 11.20, as
explained above. The result for X follows by the natural isomorphism N∗K(X) ∼=
τ0X, where τ0X ⊆ X is the 0-th truncation, and the identifications H−n(τ0X) =
H−n(X) at all nonnegative n. □

Remark 11.21. We’ve not claimed that the isomorphisms of Theorem 11.13 are
isomorphisms of groups, under the natural group structure on πn(A, 0). They
are however natural isomorphisms of groups under a group structure on πn(A, 0)
induced by the group structure on A.

In any case, it can be shown that the usual group structure on πn(A, 0) is iden-
tified with the one induced by the additive structure on A [8, Discussion preceding
Corollary 2.7]. From this we conclude that the isomorphisms of Theorem 11.13 do
in fact respect the group structures.

11.10. Generalization to arbitrary abelian categories. The Dold-Kan corre-
spondence generalizes to the setting where KanZ is replaced with the cateogry KanA
of simplicial objects valued in an arbitrary abelian category A, or even idempotent
split additive category. In particular, we have a pair of adjoint functors

N∗ : KanA → Ch(A) and K : Ch(A)→ KanA

where N∗ is constructed exactly as in the case of A = Z-mod, and K is obtained
via an alternate construction of the Eilenbergh-MacLane space [20, Section 8.4.4].
We have the following obvious analog of Theorems 11.12 and 11.13.

thm:rel_dk Theorem 11.22 ([20, Theorem 8.4.1]). For any abelian category A, the Eilenbergh-
MacLane construction K : Ch(A) → KanA restricts to an equivalence Ch≤0(A) ∼→
KanA from the subcategory of connective cochains. There is furthermore a natural
isomorphism

H−n(X) ∼= πn(K(X), 0)

at each A-cochain X and n ≥ 0.
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12. Mapping spaces for dg categories
sect:maps_dg

We adopt the following notion of fully faithfulness for dg functors.

Definition 12.1. Call a dg functor f : A → B fully faithful if the induced maps
on Hom complexes

f : Hom∗
A(x, y)→ Hom∗

B(fx, fy)

are all quasi-isomorphisms.

Here we compare fully faithfulness for a dg functor to fully faithfulness for the
associated map on dg nerves. We observe an identification between the mapping
spaces for the dg nerve Ndg(A) and the Eilenbergh-MacLane spaces for the Hom
complexes Hom∗

A(x, y).
sect:dg1

12.1. Main findings.

prop:4410 Proposition 12.2. Consider a dg category A, and let K denote the Eilenbergh-
MacLane construction from Section 11.4. Take A = Ndg(A). For each pair of
objects x and y in A there is a natural identification of Kan complexes

HomL
A (x, y) ∼= K(Hom∗

A(x, y)).

By natural here we mean natural in dg functors. As the reader likely under-
stands, dg categories which arise in algebraic contexts often come equipped with
an additional shifting operation. By a shift functor on a dg category A we mean
an automorphism Σ of A which represents the shift functor on Hom complexes

Hom∗
A(X,Σ−) ∼= ΣHom∗

A(X,−).
Given a dg functor f : A → B between dg categories which admit shift functors,
we have the sequence of maps

Hom∗
A(ΣX,ΣX) ∼= ΣHom∗

A(ΣX,X)

f→ ΣHom∗
B(f(ΣX), fX) ∼= Hom∗

B(f(ΣX),Σf(X))

which provide a natural morphism f(ΣX) → Σf(X) at all X in A, namely the
image of the identity under the above sequence. We say that f commutes with
shifts if this map is an isomorphism at all X.

Now, from Theorem 11.13, we have natural isomorphisms which identify the
homotopy groups of the Eilenbergh-MacLane construction with the cohomology of
the incoming complex,

πn(K(X)) ∼= H−n(X) for all n ≥ 0.

Hence as a corollary to Proposition 12.2 we have the following.

thm:fullyfaith_dg Theorem 12.3. Suppose f : A → B be a functor between dg categories and let
F = Ndg(f) : A → B be the corresponding functor between dg nerves. Suppose
furthermore that A and B admit shift functors and that f commutes with the shift
functors on A and B. Then f is fully faithful if and only if F is fully faithful.

Remark 12.4. One can compare Theorem 12.3 to the stable analog III-4.36.

One has a strongly related statement which forgoes any reference to shifting.

thm:ffes_dg Theorem 12.5. Suppose a dg functor f : A → B is fully faithful (resp. fully
faithful and essentially surjective). Then the corresponding functor on∞-categories
F : A → B is fully faithful (resp. an equivalence).

https://c-negron.github.io/infty_partIII.pdf
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Proof. We recall that the Eilenbergh-MacLane construction naturally identifies ho-
motopy groups with cohomology (Theorem 11.13). So, from the identification be-
tween the pinched and standard mapping spaces of Theorem 10.17, we see that F
is fully faithful whenever f is fully faithful. It now follows that F is essentially
surjective and fully faithful whenever f is, by Proposition 12.2, and hence F is
an equivalence whenever f is fully faithful and essentially surjective by Theorem
8.2. □

We now establish Proposition 12.2, then return to prove Theorem 12.3.
sect:simplices_exp

12.2. Simplices in the pinched mapping space, explicitly. Take A = Ndg(A),

for a dg category A. An n-simplex ∆n → HomL
A (x, y) is simply an (n+1)-simplex

∆n+1 → A whose value on ∆{0} is x, and whose value on the 0-th face ∆{1,...,n+1}

is of constant value y.
Recall that an m-simplex in the dg nerve A , for m ≥ 1, is a choice of m objects

xi in A along with a tuple of maps {fI}I indexed by subsets I ⊆ [m] with |I| ≥ 2,

fI ∈ Hom
−|I|+2
A (xmin I , xmax I),

for which satisfy

d(fI) =
∑

t∈I\{min I,max I}

(−1)|I>t|(fI≥t
◦ fI≤t

− fI−{t}). (55) eq:4970

Here I≥t = {i ∈ I : i ≥ t}, I≤t = {i ∈ I : i ≤ t}, etc. The constant n-simplex at y
is the simplex specified by the maps fI : y → y with

fI =

{
idy if |I| = 2
0 else.

Given a subset J ⊆ [m], restricting such a simplex as above to the corresponding
face s∗ : ∆J → ∆m produces the (|J | − 1)-simplex specified by the data

s∗{fI}I = {fI : I ⊆ [m], |I| ≥ 2, I ⊆ J}.
More generally, for any map ξ : [k]→ [m] we have

ξ∗{fI}I = {fξ,J : J ⊆ [k], |J | ≥ 2}
where

fξ,J =

 idξ(J) if |J | = 2 and |ξ(J)| = 1
fξ(J) if ξ|J is injective
0 else.

So, returning to the issue at hand, an n-simplex in HomL
A (x, y) is a tuple of

maps {fI}I indexed by subsets I ⊆ [n+ 1] of size ≥ 2 with

fI = 0 whenever 0 /∈ I and |I| > 2, x0 = x, xi = y whenever i > 0,

and f{i,j} = idy whenever i, j > 0.

The differential constraint (55) is vacuous when 0 /∈ I, and when 0 ∈ I it reduces
to give

d(fI) = −fI\{max I} −
∑

t∈I\{min I,max I}

(−1)|I>t|fI\{t} = −
∑

t∈I,t>0

(−1)|I>t|fI\{t}.

By deleting 0 from the I ⊆ [n + 1] with 0 ∈ I we obtain the following explicit
description of n-simplices in the pinched mapping space.
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lem:5012 Lemma 12.6 ([15, 01L9]). For a dg category A, and A = Ndg(A), an n-simplex

in HomL
A (x, y) is specified by a tuple of maps fJ ∈ Hom

−|J|+1
A (x, y) indexed by

nonempty subsets of J ⊆ [n] which satisfy the constraint

d(fJ) = −
∑
t∈J

(−1)|J>t|fJ\{t}.

Given ξ : [m] → [n] the restricted simplex ξ∗{fJ}J is specified by maps fξ,H , H ⊆
[m], with

fξ,H =

{
fξ(H) if ξ|H is injective
0 otherwise.

12.3. Identification with the Eilenbergh-MacLane construction.

prop:5029 Proposition 12.7 ([15, 01L9]). Take A = Ndg(A), for a dg category A. Suppose
a tuple of maps

{fJ ∈ Hom
|J|+1
A (x, y) : J ⊆ [n]}

specifies an n-simplex in HomL
A(x, y), in the manner outlined in Section 12.2. Then

the tuple {f ′
J : J ⊆ [n]},

f ′
J = (−1)|J|(|J|−1)/2fJ ,

specifies an n-simplex in K(Hom∗
A(x, y)). Furthermore, the assignment

ϑx,y : HomL
A (x, y)→ K(Hom∗

A(x, y)), {fJ}J 7→ {f ′
J}J ,

is an isomorphism of Kan complexes.

Proof. We simply check the constraint for {f ′
J}J . Fix a nonempty subset J ⊆ [n]

and take m = |J |. When |J | = 1 we have d(fJ) = d(f ′
J) = 0 and there is nothing

to check. So we assume m ≥ 2.
We note that at any t ∈ J we have

|J>t| = m− |J≤t| and thus |J>t|+
m(m− 1)

2
=

m(m+ 1)

2
− |J≤t|.

Additionally,

m(m+ 1)

2
− (m− 1)(m− 2)

2
= (m− 1) +m = 2m− 1 ≡ 1 mod 2.

Hence
d(f ′

J) = −
∑

t(−1)|J≤t|+m(m+1)/2fJ\{t}
= −

∑
t−(−1)|J≤t|f ′

J\{t}
=

∑
t(−1)|J≤t|f ′

J\{t}.

This is precisely the differential constraint for simplices in K(Hom∗
A(x, y)). We

therefore obtain a well-defined map

ϑx,y[n] : HomL
A (x, y)[n]→ K(Hom∗

A(x, y))[n], {fJ}J 7→ {f ′
J}J

on n-simplices, at arbitrary n.
Via the same scaling one produces the inverse to ϑx,y[n], so that each ϑx,y[n] is

seen to be a bijection. Compatibility with the structure maps follows by a direct
check, via Lemma 12.6 and the definition of the restriction maps on the Eilenbergh-
MacLane space. So we see the ϑx,y[n] assemble to provide the claimed isomorphism
of simplicial sets. □

For the proof of Proposition 12.2 we need only deal with naturality under dg
functors.

https://kerodon.net/tag/01L9
https://kerodon.net/tag/01L9
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Proof of Proposition 12.2. Let τ : A → B be a dg functor with corresponding
functor T : A → B between ∞-categories. For an (n+ 1)-simplex {fI}I in A we
have

T{fI}I = {τfI}I .
Hence for an n-simplex {fJ}J in the pinched mapping space we have T{fJ}J =
{τfJ}J . To compare, for an n-simplex {f ′

J}J in the Eilenbergh-MacLane space we
have

K(τ){f ′
J}J = {τf ′

J}J .
Since τ is Z-linear on morphisms we have τ(±fJ) = ±τ(fJ). Such Z-linearity
implies commutativity of the required diagram

HomL
A (x, y)

ϑx,y //

T

��

K(Hom∗
A(x, y))

K(τ)

��
HomL

B(τx, τy)
ϑτx,τy // K(Hom∗

B(τx, τy)),

where θ is the isomorphism from Proposition 12.7. □

12.4. Proof of Theorem 12.3.

Proof of Theorem 12.3. Let us adopt a slightly different notation than in the state-
ment and take τ : A → B a dg functor with corresponding functor between ∞-
categories T : A → B. In this case, commutation with shifts implies that τ is fully
faithful if and only if τ induces quasi-isomorphisms on the truncated complexes

· · · → Hom−2(u, v)→ Hom−1(u, v)→ Z0(Hom(u, v))→ 0.

This is to say, τ is fully faithful if and only if the induced maps on cohomology
groups

H−n(Hom∗
A(x, y))→ H−n(Hom∗

B(Tx,T y))

are isomorphisms at all n ≥ 0.
We have the diagram

πnK(Hom∗
A(x, y))

∼=
��

πnK(τ) // πnK(Hom∗
B(τx, τy))

∼=
��

H−n(Hom∗
A(x, y))

H−nτ // H−n(Hom∗
B(τx, τy))

by Dold-Kan, Theorem 11.13, and from Proposition 12.2 deduce a diagram

πn HomL
A (x, y)

∼=
��

πn T // πn HomL
B(Tx,T y)

∼=
��

πnK(Hom∗
A(x, y))

πnK(τ) // πnK(Hom∗
B(τx, τy))

These two diagrams together imply that H−n(τ) is an isomorphism at all nonneg-
ative n if and only if πn(T) is an isomorphism at all nonnegative n. The above
information, and the fact that the left pinched mapping spaces are naturally iden-
tified with the standard mapping spaces (Theorem 10.17), tells us that τ : A→ B
is fully faithful if and only if the associated map on ∞-categories T : A → B is
fully faithful. □
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12.5. A basic example: Koszul duality. Let’s consider the case of Koszul dual-
ity. Take S = k[x1, . . . , xn] with the xi in degree 1 and Λ = ∧k(y1, . . . , yn) with the
yi in degree 0. Let A be the dg category of K-projective dg Λ-modules with finite-
dimensional cohomology and B be the dg category of K-projective dg S-modules
with coherent cohomology. We have

D(Λ)fin and D(S)coh,

the derived ∞-categories of finite-dimensional dg Λ-modules and coherent dg S-
modules, which we construct explicitly via the dg nerves of the corresponding dg
categories of K-projective dg modules.

Consider the Koszul resolution

Kos = (Λ⊗ S∗, d =
∑
i

yi ⊗ xi),

with its natural dg (Λ, S)-bimodule structure, and consider the dg function

r = Hom∗
Λ(Kos,−) : dgMod(Λ)Proj → dgMod(S)Proj.

This functor commutes with shifts. We have the associated functor on derived
∞-categories, restricted to the finite ∞-subcategories, which we simply denote

R : D(Λ)fin → D(S)coh.

It is well-known that the functor Hom∗
Λ(Kos,−) induces an equivalence on the

corresponding homotopy categories D(Λ)fin → D(S)coh, and hence that the maps
on morphism complexes

rM,N : Hom∗
Λ(M,N)→ Hom∗

S(rM, rN)

are quasi-isomorphisms at all M and N . (Here one uses the shift to move from
0-th cohomology to all cohomology.) It follows by Theorem 12.3 that the associ-
ated functor on ∞-categories R : Dfin(Λ) → Dcoh(S) is fully faithful. Essential
surjectivity follows from, and is equivalent to, essential surjectivity of the map on
homotopy categories. So we see that the functor R is in fact and equivalence of
∞-categories by Theorem 8.2. In this way Koszul duality lifts to an equivalence of
∞-categories.

13. Injective versus projective models for D(A)
sect:inj_proj

Throughout this section we fix a Grothendieck abelian category A with enough
projectives. The most basic example would be the category of arbitrary modules
over a ring R.

In this setting one has the “algebraist’s model” for the derived category D(A),
which employs projectives and projective resolutions. This projective construction
is convenient for deriving tensor products, for example, and can also be used to
derived Hom. (The injective model is “bad” for tensor product functors.) Given A
as described, we provide a unique identification between the injective and projective
constructions of the derived ∞-category

D(A) = {the ∞-category of sufficiently injective complexes}

∼= {the ∞-category of sufficiently projective complexes}.
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13.1. Balancing injectives and projectives. Let A be an abelian category. Re-
call that a complex P (resp. I) in the dg category Ch(A) is called K-projective
(resp. K-injective) if the functor

Hom∗
A(P,−) : Ch(A)→ Ch(Z)(

resp . Hom∗
A(−, I) : Ch(A)op → Ch(Z)

)
preserves acyclicity. By considering mapping cones, one sees that a complex is K-
projective, or K-injective, if and only if the corresponding Hom-complex functor
preserves quasi-isomorphisms.

Lemma 13.1. Let A be a Grothendieck abelian category with enough projectives.
Then every complex M in Ch(A) admits a quasi-isomorphism M → I to a K-
injective complex, and a quasi-isomorphism P →M from a K-projective complex.

Proof. As we have pointed out previously, the existence of K-injective resolutions
follows by [18, Theorem 3.13]. One constructs K-projective resolutions via a cell
attaching process, as in [5, Theorem III.2.10]. □

Fix now A Grothendieck abelian with enough projectives. We take

DInj :=

{
The full dg subcategory of
K-injectives in Ch(A)

}
, DProj :=

{
The full dg subcategory of
K-projectives in Ch(A)

}
.

We claim that there is a canonical identification of the associated dg nerves

D□ := Ndg(D□), DProj ≃ DInj.

Let’s define a third dg category DBal whose objects are triples

Mα = (P, I, α : P → I),

where P is in DProj, I is in DInj, and α is a quasi-isomorphism of cochains over
A. As graded spaces, the mapping complexes Hom∗

DBal
(Mα,Mβ) are the upper

triangular matrices

Hom∗
DBal

(Mα,Mβ) =

[
Hom∗

A(I, I
′) Σ−1 Hom∗

A(P, I
′)

0 Hom∗
A(P, P

′)

]
with composition

[fij ] · [gij ] = f11g11 + f22g22 + (−1)|f11|f11g12 + f12g22.

The differential is taken as

d([fij ]) = d(f11) + d(f22)− d(f12) + βf22 − f11α.

Remark 13.2. To make sense of this construction one can consider the following
analogous situation: Consider a dg (S,R)-bimodule M over dg algebras S and R.
Then we have the shifted dg bimodule ΣM , which has negated differential and new
actions

s ·shifted m = (−1)|s|s ·m and m ·shifted r = m · r
We then have the upper triangular matrix algebra

UMat(ΣM) =

[
S ΣM
0 R

]
with natural dg structure induced by the dg algebra/bimodule structures on the
entries. Now, any degree 0 cocyle α in M produces a degree 1 solution to the
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Maurer-Cartan equation d(α)+α2 = 0, and we twist by this solution to obtain the
new dg algebra

UMat(ΣM)α = UMat(ΣM) with new differential d+ [α,−].
In the case R = End∗A(I), S = End∗A(P ), M = Hom∗

A(P, I) this matrix algebra,
with α-twisted differential, reproduces the endomorphisms End∗DBal

(Mα).

Lemma 13.3. The dg category DBal is in fact a dg category.

Proof. All of the calculations are similar to the calculations which show that UMat(ΣM)α
is a dg algebra. We omit the verification of associativity.

For the square of the differential, we have

d = d′ + (β · −)− (− · α)
with d′([gij ]) = [±d(gij)]. Since α and β in Mα and Mβ are cocycles we have

−d(β · g22) = −β · d(g22) and − d(g11 · α) = −d(g11) · α.
Hence

d2([gij ]) = (d′)2([gij ])− d(β · g22) + d(g11 · α) + β · d(g22)− d(g11) · α = 0.

For compatibility with composition, given f = [fij ] in Hom∗(Mβ ,Mγ) and g =
[gij ] in Hom∗(Mα,Mβ) one checks directly

d′(f · g) = d′(f) · g + (−1)|f |f · d′(g)
so that

d(f · g)− d(f) · g − (−1)|f |f · d(g)
= γf22g22 − f11g11α− γf22g22 + f11βg22 − (−1)|f |+|f |f11βg22 + (−1)|f |+|f |f11g11α

= 0.

□

We consider the dg projections on Hom-complexes

Hom∗
DBal

(Mα,Mβ)

π11

vv

π22

))
HomA(I, I

′) Hom∗
A(P, P

′).

which define dg functors πI : DBal → DInj and πP : DBal → DProj.

prop:unbounded Proposition 13.4. The two projections πI and πP are fully faithful and essentially
surjective.

Proof. Since any complex admits both a K-injective and K-projective resolution,
the projections π□ are essentially surjective.

As for the claim that these functors induce quasi-isomorphisms on Hom-complexes,
we have in the injective instance an exact sequence of cochains

0→ Σ−1 cone(β∗ : Hom(P, P ′)→ Hom(P, I ′))→ HomDBal
(Mα,Mβ)

πI→ Hom(I, I ′)→ 0.
(56) eq:5221

Since β is a quasi-isomorphism and Hom∗
A(P,−) preserves quasi-isomorphisms the

corresponding map β · − = β∗ is a quasi-isomorphism, and the mapping cone
appearing in (56) in acyclic. From exactness of the sequence (56) we now conclude
that the projection to Hom∗

A(I, I
′) is in fact a quasi-isomorphism, and hence that

πI is fully faithful. The argument for πP is similar. □



106 CRIS NEGRON

We now consider the dg nerves D□ = Ndg(D□), and corresponding functors
between ∞-categories Π□ : DBal → D□.

Apply Theorem 12.5 to observe an equivalence between the projective and in-
jective models for the ∞-derived category.

thm:D_bal Theorem 13.5. The two functors

DBal

ΠI

||

ΠP

##
DInj DProj

(57) eq:5280

are equivalences of∞-categories. In particular, completing the diagram yields equiv-
alences of ∞-categories

(D(A) :=)DInj
∼→ DProj and DProj

∼→ DInj

which are unique up to an isomorphism of ∞-functors.

Remark 13.6. The obvious analog of Theorem 13.5 holds when we replace Ch(A)
with the dg category of dg modules R-dgmod for a dg algebra R. (See [10].) The
proof is exactly the same.

13.2. Uniqueness of the injective-projective transition. We have claimed
that the equivalence DInj

∼→ DProj appearing in Theorem 13.5 is unique up to an
isomorphism of ∞-functors. This notion of uniqueness is weaker, however, than
a complete uniqueness claim. We would propose that the “space of choices” for
morphisms completing the diagram (57) is contractible. Let us first decide what
this space of fillings is, then address its triviality.

Consider the ∞-category Cat∞ of ∞-categories. A map completing the given
diagram is an object in the mapping space

Hom(Cat∞)DBal/
(ΠI ,ΠP )

for the undercategory (Cat∞)DBal/. We can replace this mapping space with the
left pinched space, by Theorem 10.17. This pinched space is explicitly the fiber of
the double undercategory (

(Cat∞)DBal/

)
ΠI/

over the point ΠP in (Cat∞)DBal/. This double undercategory is directly identified
with the undercategory

(Cat∞)ΠI/

via associativity of the join if one likes. Hence we obtain an identification, at least
up to homotopy,

{the space of fillings (57)} ≃ {ΠP } ×(Cat∞)DBal/
(Cat∞)ΠI/.

prop:unique Proposition 13.7. The ∞-category

{ΠP } ×(Cat∞)DBal/
(Cat∞)ΠI/

of functors DInj → DProj completing the diagram (57) is a contractible Kan complex.
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We won’t provide all of the details for this uniqueness result, however the ar-
gument is fairly straightforward. Since the functor ΠI is an equivalence it follows
that the forgetful functor on undercategories

(Cat∞)ΠI/ → (Cat∞)DBal/

is a trivial Kan fibration [15, 02J2]. Hence the fiber of this forgetful functor along
any point is a contractible space. In particular, the fiber along the point

ΠP : ∗ → (Cat∞)DBal/

is contractible, as claimed.

13.3. Comparison with localization. This final subsection is an informal dis-
cussion concerning the derived category.

At this point it is apparent that we don’t actually want to define the derived∞-
category D(A) in a way which makes explicit reference to a dg model of injective,
projective, flat, etc. complexes. Though the description still leaves something to be
desired, one can in fact obtain D(A) as an ∞-categorical localization of the plain
category of cochains over A

D(A) := Chplain(A)[Qiso−1] (58) eq:5343

relative to the class of quasi-isomorphism [14, Propositions 1.3.4.5, 1.3.5.15]. This
localization happens to be identified with the localization of the homotopy ∞-
category K (A) at quasi-isomorphisms as well [14, Propositions 1.3.4.5].

Remark 13.8. One should note the absurdity of the localization claim (58), when
considered from the classical algebraic perspective, as it circumvents the homotopy
category completely.

Now, the α appearing in the objects α : P → I in the balanced category DBal

define a dg transformation which fills the 2-diagram

DBal

π

{{

π

$$
DInj

incl

##

DProj

incl

zz
Ch(A)

Taking ∞-categories provides a corresponding diagram in Cat∞, i.e. a morphism
between functors in Fun(DBal,K (A)), and this extends to a diagram

DBal

π

tt

π

**
DInj

//

∼
))

K (A)

��

DProj
oo

∼
tt

Chplain(A)[Qiso−1] ∼= K (A)[Qiso−1]

in Cat∞ (Proposition 14.6). From this one can show that any morphism DInj →
DProj which completes a diagram under DBal simultaneously completes a diagram

https://kerodon.net/tag/02J2
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over the localization Chplain(A)[Qiso−1] (Proposition 5.33). This is to say, the
unique equivalence

IvP : DInj
∼→ DProj

appearing in Theorem 13.5 is simultaneously the unique equivalence completing the
diagram

DInj
∃! = IvP //

∼
((

DProj

∼
uu

D(A) :=
better

Chplain(A)[Qiso−1] .

Hence our equivalence from Theorem 13.5 is the correct one from the localization
perspective as well.

14. Adjoint functors
sect:adjoints

We conclude the text with an introduction to adjoints. We return to this topic
in Part III, where pairs of adjoint functors between ∞-categories are classified by
cocartesian fibrations over the 1-simplex.

14.1. Adjoint functors.

def:adjoints Definition 14.1 ([15, 02EL]). Given a pair of functors F : C → D and G : D →
C , we say F is left adjoint to G, or equivalently G is right adjoint to F , if there
are natural transformations η : idC → GF and ϵ : FG → idD for which have
2-simplices

FGF

ϵ

""
F

F (η)
<<

idF

// F

and GFG
G(ϵ)

""
G

η
<<

idG

// G

in Fun(C ,D) and Fun(D ,C ) respectively.

Given natural transformations η and ϵ which exhibit F as a left adjoint to G,
we refer to η : idC → GF as the unit of the adjunction and ϵ : FG → idD as the
counit of the adjunction.

lem:5659 Lemma 14.2. Suppose F, F ′ : C → D are functors between∞-categories, and that
ζ : ∆1 × C → D is a natural transformation from F to F ′. Then, for each pair of
objects x, y : ∗ → C , the diagram

HomC (x, y)
F //

F ′

��

HomD(F (x), F (y))

ζ∗

��
HomD(F ′(x), F ′(y))

ζ∗
// HomD(F (x), F ′(y))

(59) eq:5661

commutes in the homotopy category hKan.

Proof. Consider the map i : Fun(∆1,C ) → Fun(∆1 ×∆1,∆1 × C ) defined as the
composite

Fun(∆1,C ) ∼= {id∆1} × Fun(∆1,C )→ Fun(∆1,∆1)× Fun(∆1,C )

https://c-negron.github.io/infty_partIII.pdf
https://kerodon.net/tag/02EL
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→ Fun(∆1 ×∆1,∆1 × C ).

We now have the functor ω : Fun(∆1,C ) → Fun(∆1 × ∆1,D) defined as the
composite

Fun(∆1,C )
i→ Fun(∆1 ×∆1,∆1 × C )→ Fun(∆1 ×∆1,D). (60) eq:5678

This map sends an n-simplex σ : ∆n ×∆1 → C , which we might view as a trans-
formation α : σ0 → σ1 between diagrams σi : ∆

n → C , to a diagram of the form

(0, σ1)
(<,id) // (1, σ1)

(0, σ0)

(id,α)

OO

(<,id)
// (1, σ0)

(id,α)

OO

in Fun(∆n,∆1 × C ). Applying ζ we then obtain a diagram

F (σ1)
ζ(σ1) // F ′(σ1)

F (σ0)

Fα

OO

ζ(σ0)
//

66

F ′(σ0)

F ′α

OO

in Fun(∆n,∆1 × C ). At constant diagrams σ0 = x and σ1 = y, the above square
appears as

F (y)
ζ(y) // F ′(y)

F (x)

Fα

OO

ζ(x)
//

77

F ′(x).

F ′α

OO

Let t : ∆2 ∼= ∆{(0,0),(0,1),(1,1)} → ∆1 ×∆1 and d : ∆1 ∼= ∆{0,2} → ∆2 denote the
obvious inclusions, and δ : ∆1 → ∆1 ×∆1 denote the diagonal. In considering the
upper-left triangle in the above square, we observe a diagram

HomD(F (x), F ′(y))

Fun(∆1 ×∆1,D)fib
t∗

//

δ∗
11

Fun(∆2,D)fib

d∗

44

��
HomC (x, y)

ω

OO

F
// {ζ(y)} ×HomD(F (x), F (y)) ,

where the subscript fib indicates the appropriate fiber. This diagram equates the
composites

HomC (x, y)
ω→ Fun(∆1 ×∆1,D)fib

δ∗→ HomD(F (x), F ′(y))

and

HomC (x, y)
F→ HomD(F (x), F (y))

ζ∗→ HomD(F (x), F ′(y))
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in the homotopy category hKan. We similarly equate δ∗ω with the composite

HomC (x, y)
F ′

→ HomD(F ′(x), F ′(y))
ζ∗

→ HomD(F (x), F ′(y))

and so establish the claimed diagram (59). □

We recall the for any∞-category C we have the associated hKan-enriched cat-
egory πC from Proposition 9.4, whose morphisms are given by the Kan complexes
HomC (x, y). Lemma 14.2 tells us that natural transformations in the∞-categorical
context induce, in the most immediate way, natural transformations for the cor-
responding hKan-enriched functors. In particular, we find that ∞-categorical
adjunctions induce hKan-enriched adjunctions.

cor:enrich_adj1 Corollary 14.3. If F : C → D is left adjoint to a functor G : D → C , then the
induced enriched functor πF : πC → πD is left adjoint to the enriched functor
πG : πD → πC .

What we mean here is that we have enriched unit and counit transformations for
the pair (πF, πG) whose composites recover the identity on πF and πG, as usual.
Since we have well-defined composition on hKan-enriched categories we recover
the standard Hom-centric expression of adjunctions after descending to the level of
enriched categories.

cor:enrich_adj2 Corollary 14.4. If a functor F : C → D is left adjoint to G : D → C , then the
unit map η : idD → GF induces an isomorphism

HomC (Fx, y)→ HomD(GFx,Gy)
η∗

→ HomD(x,Gy)

in hKan. Similarly, the counit map ϵ : FG→ idC induces an isomorphism

HomD(x,Gy)→ HomC (Fx, FGy)
η∗→ HomC (Fx, y)

in hKan.

Applying π0 to Corollary 14.4 yields the following.

Proposition 14.5. Suppose a functor F : C → D is left adjoint to a functor
G : D → C . Then the induced map on homotopy categories hF : hC → hD is left
adjoint to hG : hD → hC .

14.2. Natural transformations from the dg setting. By a natural transfor-
mation between dg functors t, t′ : A→ B we mean a collection of degree 0 cocyles
θx : t(x)→ t′(x) in Hom∗

B(t(x), t
′(x)) which satisfy

θyt(ξ) = t′(ξ)θx at each ξ ∈ Hom∗
A(x, y).

prop:5112 Proposition 14.6. Let t, t′ : A→ B be two dg functors between dg categories, and
θ : t→ t′ be any natural transformation. Then there is an explicitly defined natural
transformation Θ : ∆1 × A → B between the associated functors T, T ′ : A → B
on the dg nerves which satisfies

Θ|∆1×{x} = θx : t(x)→ t′(x)

at each object x in A .
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Construction 14.6. We have already described the values of Θ on 0-simplices in the
product. Now suppose n ≥ 1.

An n-simplex in the product ∆1 ×A is a pair of n-simplices {α, σ} in ∆1[n]×
A [n]. Here α is a map α : [n] → [1], and this map is determined by a splitting
[n] = [n]− ⨿ [n]+, with [n]− = α−1(0) and [n]+ = α−1(1). Additionally σ is
determined by a tuple of maps {fJ : J ⊆ [n]} with |J | ≥ 2. Let us take xi = σ|∆{i} .

Define Θ(α, σ) = {gJ : J ⊆ [n]} where

gJ =


t(fJ) when J ⊆ [n]−
t′(fJ) when J ⊆ [n]+

t′(fJ)θxmin(J)
= θxmax(J)

t(fJ) otherwise,

The differential constraints on these gJ follow from naturality of θ. Hence the tuple
{gJ : J ⊆ [n]} defines an n-simplex in B.

We now have well defined maps

Θ[n] : ∆1[n]×A [n]→ B[n]

at all n, and a direct check verifies that the Θ[n] assemble into a map of simplicial
sets. By construction Θ|{0}×A = T , Θ|{1}×A = T ′, and Θ|∆1×{x} = θx. □

Given a dg transformation θ : t → t′ between dg functors t, t′ : A → B, and dg
functors f : Z → A, g : B → C, we let θf : tf → t′f and θg : gt → gt′ denote the
natural transformations with

(θf )z = θf(z) and (θg)x = g(θx)

at each z in Z and x in A. We adopt a similar notation for natural transformations
between functors on ∞-categories.

lem:5166 Lemma 14.7. Suppose we are in the situation of Proposition 14.6, and consider dg
functors f : Z→ A and g : B→ C. Let θ : t→ t′ be a transformation between dg
functors t, t′ : A→ B. Let F : Z → A and G : B → C and T, T ′ : A → B be the
associated functors on ∞-categories. Then ΘF : TF → T ′F and ΘG : GT → GT ′

are the natural transformations associated to the dg transformations θf and θg,
respectively.

Proof. The transformations ΘF and ΘG are explicitly the composites

∆1 ×Z
[id F ]→ ∆1 ×A

Θ→ B and ∆1 ×A
Θ→ B

G→ C ,

respectively. One simply checks, using Construction 14.6 directly, that these func-
tors are the natural transformations associated to θf and θg respectively. □

We finally consider composites of dg transformations and their ∞-counterparts.

lem:5180 Lemma 14.8. Suppose t, t′, t′′ : A → B are dg functors with dg transformations
θ : t → t′ and θ′ : t′ → t′′. Take θ′′ = θ′θ, and let Θ,Θ′,Θ′′ : ∆1 ×A → B be the
associated ∞-categorical transformations. There exists a 2-simplex in the mapping
category M : ∆2 ×A → B with

M |∆{0,1}×A = Θ, M |∆{1,2}×A = Θ′, and M |∆{0,2}×A = Θ′′.

This is to say, Θ′′ is a composition of Θ and Θ′ in the ∞-category Fun(A ,B).

The construction of M is similar to Construction 14.6, and is omitted.
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14.3. Adjoints from the dg setting. By an adjoint pair of dg functors we mean
a pair of dg functors

f : A→ B and g : B→ A

with corresponding dg transformations u : idA → gf and ϵ : gf → idB for which
the composites

f → fgf → f and g → gfg → g

are both the identity.

thm:dg_adjoints Theorem 14.9. Suppose f : A→ B is left adjoint to g : B→ A, and let u : idA →
gf and c : gf → idB be the dg transformations which exhibit this adjunction. Let
F : A → B and G : B → A be the induced functors on dg nerves.

The transformations η : idA → GF and ϵ : GF → idB which are associated to
u and c, as in Construction 14.6, exhibit F as left adjoint to G.

Proof. By Lemmas 14.7 and 14.8, the identity transformations F → F and G→ G
are composites of ηF : F → FGF with ϵF : FGF → F , and ηG : G → GFG with
ϵG : FGF → G, respectively. Hence F is left adjoint to G, in the precise sense of
Definition 14.1. □

14.4. Adjoints from the simplicial setting.

lem:simplicial_transf Lemma 14.10. Let f, f ′ : A → B be functors between simplicial categories, and
θ : f → f ′ be an (enriched) natural transformation. Take F = Nhc(f) and F ′ =

Nhc(f ′). Then θ induces a natural transformation Θ : F → F ′ with

Θ|∆1×{x} = θx : f(x)→ f ′(x)

at each x in a.

The proof is similar to, but somewhat easier than the dg setting.

Construction. Take A = Nhc(A) and B = Nhc(B). Consider an n-simplex {α, σ} :
∆n → ∆1 × A and the corresponding splitting α−1(0) ⨿ α−1(1) = [n]. Take
mα = max(α−1(0)), or −1 if this set is empty. Note that σ is, by definition, a
simplicial functor Path∆n → A.

Define the n-simplex σ′ : Path∆n → B in B on objects by taking

σ′(a) =

{
fσ(a) if a ≤ mα

f ′σ(a) if a > mα.

At a, b ≤ mα we take

σ′ := fσ : HomPath(a, b)→ HomB(fσ(a), fσ(b))

and for a, b > mα we take

σ′ := f ′σ : HomPath(a, b)→ HomB(f
′σ(a), f ′σ(b)).

When a ≤ mα < b we take

σ′ := θ∗fσ = f ′θ∗σ : HomPath(a, b)→ HomB(fσ(a), f
′σ(b)).

We’ve now defined maps of sets (∆1 × A )[n] → B[n] which assemble to provide
the desired transformation Θ : ∆1 ×A → B. □

One checks directly that the simplicial analog of Lemma 14.7 holds.
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Lemma 14.11. Let f : Z → A, t, t′ : A→ B, and g : B → C be simplicial functors.
Consider any transformation θ : t → t′. Let F : Z → A , T, T ′ : A → B, G :
B → C be the associated functors on homotopy coherent nerves, and Θ : T → T ′

be the associated transformation from Lemma 14.10. Then ΘF : TF → T ′F and
ΘG : GT → GT ′ are the transformations associated to θf and θg.

By a construction similar to the one employed in the proof of Lemma 14.10 one
can show that the assignment θ 7→ Θ respects composition as well.

Lemma 14.12. Let θ : f → f ′ and θ′ : f ′ → f ′′ be natural transformations
between simplicial functors f, f ′, f ′′ : A→ B. Take θ′′ = θ′θ. For A = Nhc(A) and

B = Nhc(B), there is a 2-simplex ∆2 ×A → B which exhibits the transformation
Θ′′ as a composite

Θ′′ = Θ′Θ : Nhc(f)→ Nhc(f ′′).

We now observe that adjunctions between simplicial functors induce adjunctions
between the corresponding functors on homotopy coherent nerves.

thm:simplicial_adjoints Theorem 14.13. Let f : A → B be a simplicial functor which is left adjoint to a
simplicial functor g : B → A. Then the associated functor F = Nhc(f) : A → B is

left adjoint to the functor G = Nhc(g) : B → A .

14.5. A differential example: Induction and restriction. For a basic exam-
ple, let’s consider algebras S and R over a field k. Let M be a bounded complex
of (S,R)-bimodule and consider the functors

M ⊗R − : Chb(R)→ Chb(S) and Hom∗
S(M,−) : Chb(S)→ Chb(R).

Let M ′ →M be a bounded above resolution of M by projective S⊗kR
op-modules.

Then we have the induced functor on dg categories

M ′ ⊗R − : Projb(R)→ Projb(S) and Hom∗
S(M

′,−) : Projb(S)→ Projb(R),

where the superscript b here indicates bounded above complexes with bounded
cohomology. Take dg nerves to get induced functors on the bounded derived ∞-
categories

M ⊗L
R − : Db(R)→ Db(S) and RHomS(M,−) : Db(S)→ Db(R).

The usual unit and counit transformations

u : idProjb(R) → Hom∗
S(M

′,M ′ ⊗R −) and c : M ′ ⊗R Hom∗
S(M

′,−)→ idProjb(S)

now induce natural transformations at the level of ∞-categories

η : idDb(R) → RHomS(M,M ⊗L
R −) and ϵ : M ⊗L

R RHomS(M,−)→ idDb(S)

which exhibit M ⊗L
R − as left adjoint to RHomS , by Theorem 14.9.

14.6. A simplicial example: Kan complexes and ∞-categories. Let i :
Kan → Cat+∞ denote the inclusion of simplicial categories, and ϵ : CKan → C
denote the inclusion at any ∞-category C . By Lemma 10.10 the inclusion ϵ in-
duces an isomorphism

ϵ∗ : Fun(X ,DKan)
∼→ Fun(X ,D)Kan

at each Kan complex X . This implies that restricting to the associated Kan com-
plex provides a well-defined map of simplicial sets

(−)Kan : Fun(C ,D)Kan → Fun(CKan,D)Kan = Fun(CKan,DKan)
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at each pair of ∞-categories. This map is compatible with composition and so
defines a simplicial enrichment of the associated Kan complex functor.

Proposition 14.14. The associated Kan complex functor (−)Kan naturally en-
riches to a simplicial functor (−)Kan : Cat+∞ → Kan.

Take now η : X → (iX )Kan the equality. The sequence

Fun(iX ,C )Kan → Fun((iX )Kan,CKan)
η∗

→ Fun(X ,CKan)

is an isomorphism, which happens to be inverse to ϵ∗. In particular we find that
the inclusion i is left adjoint to the associated Kan complex functor (−)Kan, as a
simplicial functor. We apply Theorem 14.13 to find the following.

prop:assoc_kan_adjunct Proposition 14.15. The inclusion i : Kan → Cat∞ is left adjoint to the asso-
ciated Kan complex functor (−)Kan : Cat∞ → Kan. The unit of the adjunction
η : idKan → (i−)Kan = idKan is the equality, and the counit ϵ : i(−)Kan → idCat∞

evaluates to the inclusion CKan → C on objects.
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