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Abstract. These are notes on ∞-categories which are (mostly) adapted from

Lurie’s digital text Kerodon [5]. Following Part I, which presents the basic

foundations for studies of ∞-categories, we discuss cartesian and cocartesian
fibrations, transport functors (i.e. Grothendeick straightening and unstraight-

ening), limits and colimits, and Yoneda embedding. Specific topics include

Hom functions for simplicial and dg categories, and calculations of limits and
colimits of Kan complexes and ∞-categories.

In comparing with Part I, we omit more details in our treatment. This

is especially the case when it comes to our discussions of transport and our
arguments for completeness/cocompleteness of Cat∞. In our subsequent in-

stallment, Part III, we discuss the derived category as a stable and presentable

∞-category.
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1. Introduction to cartesian and cocartesian fibrations

[This document is not edited, nor is it complete, though many sections exist in a
quasi-complete state. I’ve only made it publicly available at this point as the text
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is referenced (with frequency) in “Kerodon remix part III”, which concerns derived
∞-categories. According to the authors’ calculations, a functional version of the
text should be available in Fall 2025.]

1.1. Definitions.

Definition 1.1. Consider a map of simplicial sets q : X → S. We call a 1-simplex
α : x→ y in X a q-cartesian morphism if any lifting problem

Λnn
σ̄ //

��

X

q

��
∆n //

>>

S

(1) eq:121

with n ≥ 2 and σ̄|∆{n−1,n} = α admits a solution. We say α : x→ y is q-cocartesian
if any lifting problem

Λn0
τ̄ //

��

X

q

��
∆n //

>>

S

(2) eq:128

with n ≥ 2 and τ̄ |∆{0,1} = α admits a solution.

Though at some specific moments we will consider a case where X and S are
not ∞-categories, we are primarily invested in the ∞-categorical setting.

Definition 1.2. We call a map of ∞-categories q : C → D a cartesian fibration if
q is an inner fibration and, for any map ᾱ : x̄→ ȳ in D and y in C with q(y) = ȳ,
there is a q-cartesian map α : x→ y in C with q(α) = ᾱ.

Similarly, we call q a cocartesian fibration if it is an inner fibration and, for
any map β̄ : x̄ → ȳ in D and x with q(x) = x̄, there is a q-cocartesian fibration
β : x→ y with q(β) = β̄.

The following is obvious. Recall our definitions of right and left fibrations from
Definition I-5.23.

Proposition 1.3. If q : C → D is a right fibration (resp. left fibration) then q is
a cartesian (resp. cocartesian).

Proof. In this case any lifting problem of the form (1), or (2) respectively, admits
a solution simply by the defintion. □

Obviously when q : C → D is a Kan fibration it is both cartesian and cocartesian.

Example 1.4. Consider a diagram p : K → C , with K some simplicial set. The we
have the overcategory C/p and the undercategory Cp/. The two forgetful functors

C/p → C and Cp/ → C

are, respectively, a right and left fibration Proposition I-5.25. Hence these maps
are respectively a cartesian and cocartesian fibration.

In the case where K is a point x : ∗ → C we recall that the fibers of the fibration
C/x → C and Cx/ → C are the right and left pinched mapping spaces HomR

C (w, x)

and HomL
C (x, y).

https://c-negron.github.io/infty_partI.pdf
https://c-negron.github.io/infty_partI.pdf
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Example 1.5 ([5, 01T8]). Consider an ∞-category q : C → ∗. A morphism
α : x → y is q-cartesian if and only if α is an isomorphism. To see this consider
fillings of the horns

x
α

��
y

id
//

∃β
??

y

and y
β

  id

��

x id //

α

??

α
��

x.

α
~~

y

One similarly finds that a morphism is q-cocartesian if and only if it is an isomor-
phism.

Via the existence of identity morphisms the structure map q : C → ∗ is always
a cartesian and cocartesian fibration. Note that this map is not a left or right
fibration unless C is a Kan fibration.

1.2. Imaginings: Cartesian fibrations as lax moduli. Give a cartesian fibra-
tion q : C → D one might think of C as a lax moduli of “stuff” varying over the
objects in D . The cartesian lifts of morphisms in D provide transition functions
between these fibers, i.e. the stuff we are parametrizing, over D . In the case of the
cartesian fibration C/x → C the category C/x is, in an obvious sense, the “moduli
of maps to x”. Let us leave the latter point about lifting maps for now, and try to
make some comment on the moduli point.

Let us just consider how one classically constructs a moduli space. Here we
consider the base space D = Schk of schemes over k, which we can endow with
some Grothendieck topology if we like, though we don’t care at the moment. Then
a pre-stack is a choice of a functor of plain categories q : M → Schk which makes
M into a category fibered in groupoids over Schk [6, 003S]. One simply compares
definitions to see that{

M is fibered in
groupoids over Schk

}
⇔

 q is a cartesian fibration
in which all maps in M

are q-cartesian

 .

In this familiar setting one can now “invert” this functor q to produce an associated
2-functor

q∨ : (Schk)
op → Groupoids ⊆ Cat, Y 7→ MY .

One establishes this functor via an abuse of the axion of choice.
To elaborate a bit more, for any map of schemes α : X → Y we take a lift

α∗y → y in M. This lift is unique up to unique isomorphism, and via unique filling
defines a functor between the fibers

α∗ : MY → MX , y 7→ α∗y.

On morphisms ξ : y1 → y2 in the fiber MY , we note that the cartesian property for
maps in M asserts the existence of a unique map α∗ξ : α∗y1 → α∗y2 completing
the diagram

α∗y1

∃!
��

// y1

ξ

��
α∗y2 // y2,

https://kerodon.net/tag/01T8
https://stacks.math.columbia.edu/tag/003S


6 CRIS NEGRON

where we note that uniqueness comes from filling the appropriate 3-simplex in M.
Hence α∗ is well-defined on morphisms via the assignment ξ 7→ α∗ξ.

We note that this inversion of q : M → Schk into a functor q∨ : (Schk)
op → Cat

does not require all maps in M to be cartesian. This is simply a consequence of q
being a cartesian fibration between plain categories.

In the general ∞-context, we again have this inversion property for (co)cartesian
fibrations. Here a cartesian fibration q : C → D will specify, and be specified by, a
functor

q∨ : Dop → Cat∞

whose values over objects y in D are the fibers Cy. The functors between fibers
α∗ : Cy → Cx are what we’ve referred to as transport along α (following Kerodon
[5]).

While such fibrations play an essentially non-existent role in plain category the-
ory, from the perspective of the working mathematician, they play an extraordi-
narily important role in the development of ∞-category theory. The main point is
that they tame choices in the ∞-categorical setting. While in the plain category
setting we can simply make a choice, and if that choice is not unique we can simply
say it’s unique up to a unique isomorphism, and then if I make two of the same
types of choices then any ambiguities will vanish due to sufficient uniqueness, etc.
etc., such a laissez faire attitude will lead to immediate intractable problems in the
∞-context. So one generally bundles all choices of a certain “type” into a cartesian
or cocartesian fibrations, and manipulates these bundles in order to make global
movements between choices of different types.

1.3. Discussion: Classifying functors etc.

2. Cartesian and cocartesian fibrations

2.1. Cartesian morphisms via overcategories.

prop:232 Proposition 2.1 ([5, 01TF]). Let q : C → D be a map between ∞-categories. A
morphism α : x→ y in C is q-cartesian if and only if the natural map

C/α → C/y ×D/q(y)
D/q(α)

is a trivial Kan fibration. Similarly, α is q-cocartesian if and only if the map

C/α → Cx/ ×Dq(x)/
Dq(α)/

is a trivial Kan fibration.

For the proof we employ a specific deconstruction of the relevant horn inclusions.

lem:joyal3.3 Lemma 2.2 ([2, Lemma 3.3]). For non-negative integers p and q, and n = p+q+1,
the inclusions

(Λp0 ⋆∆
q)

∐
Λp

q⋆∂∆q

(∆p ⋆ ∂∆q) → ∆p ⋆∆q ∼= ∆n

and

(∂∆p ⋆∆q)
∐

∂∆p⋆Λq
q

(∂∆p ⋆ Λqq) → ∆p ⋆∆q ∼= ∆n

are identified with the inclusions of the extremal horns Λn0 → ∆n and Λnn → ∆n

respectively.

https://kerodon.net/tag/01TF
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One can see the text [2], or [5, 018N] for the details. We now proceed with the
proof of Proposition 2.1.

Proof of Proposition 2.1. We address the cartesian situation, the cocartesian one
being similar. Let F : C/α → C/y ×D/q(y)

D/q(α) denote the map under considera-
tion. A solution to a lifting problems of the form

∂∆m //

��

C/α

F

��
∆m //

77

C/y ×D/q(y)
D/q(α),

(3) eq:262

with m ≥ 0, admit a solution if and only if the equivalent lifting problem

(∂∆m ⋆∆1) ∪ (∆m ⋆ Λ1
1) //

��

C

q

��
∆m ⋆∆1 //

66

D

obtained by way of adjunction Lemma I-5.22 admits a solution. Via direct inspec-
tion the final edge ∆1 ∼= ∅⋆∆1 → C in the latter diagram is α, so that this diagram
is identified, via Lemma 2.2, with a diagram of the form

Λnn

��

// C

q

��
∆n //

>>

D

(4) eq:276

in which n ≥ 2 the edge ∆{n−1,n} → C is α. It follows that all lifting problems
of the form (3) admit a solution if and only if all lifting problems of the form (4)
admit a solution, i.e. that the map F is a trivial Kan fibration if and only if the
map α is q-cartesian. □

2.2. Cartesian morphisms via mapping spaces.

prop:cocart_maps Proposition 2.3 ([5, 01TL]). Consider an inner fibration q : C → D , and a mor-
phism α : x1 → x2 in C with image ᾱ : x̄1 → x̄2 in D . The morphism α is
q-cartesian if and only if for each third object x0 in C , with corresponding triples
x : {0, 1, 2} → C and x̄ : {0, 1, 2} → D , the diagram

Fun(∆2,C )x ×HomC (x1,x2) {α}

q

��

// HomC (x1, x2)

q

��
Fun(∆2,D)x̄ ×HomD(x̄1,x̄2) {ᾱ} // HomD(x̄1, x̄2)

is a homotopy pullback diagram of Kan complexes.

We cover the proof of Proposition ?? in Section 2.3 below. Let us record now a
number of examples.

sect:cocart_maps_proof
2.3. Proof of Proposition 2.3.

https://kerodon.net/tag/018N
https://c-negron.github.io/infty_partI.pdf
https://kerodon.net/tag/01TL
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2.4. Uniqueness for q-cocartesian lifts.

prop:cocart_uniqueness Proposition 2.4 ([5, 01VK]). Let q : X → S be an inner fibration of simplicial
sets, and let Y be the full simplicial subset in Fun(∆1, X) whose vertices are q-
cocartesian edges in X. Let Z be the full simplicial set in Fun({0}, X) ×Fun({0},S)
Fun(∆1, S) whose edges lie in the image of the composition

Y → Fun(∆1, X) → Fun({0}, X)×Fun({0},S) Fun(∆
1, S).

Then the induced map Y → Z is a trivial Kan fibration. The analogous state-
ment holds when we replace Y with the full simplicial subset of q-cartesian edges in
Fun(∆1, X) as well.

Said informally, Proposition 2.4 tells us that, if a cocartesian solution to the
diagram

{0} //

��

X

q

��
∆1

α
// S

exists, then that solution is unique. We note that in the case where q itself is
cocartesian, the simplicial subset Z is all of Fun({0}, X)×Fun({0},S) Fun(∆

1, S).
The proof of Proposition 2.4 employs a decomposition of a certain inclusion of

simplicial sets which we record here.

lem:simpl_328 Lemma 2.5 ([5, 00TH]). At any positive integer n, the inclusion

(∆1 × ∂∆n)
∐

{0}×∂∆n

({0} ×∆n) → ∆1 ×∆n

decomposes into a sequence of inclusions

(∆1 × ∂∆n) ∪ ({0} ×∆n) = X(0) → · · · → X(n) → X(n+ 1) = ∆1 ×∆n

in which each X(i+ 1) fits into a pushout diagram

Λn+1
n−i

��

// X(i)

��
∆n+1 // X(i+ 1)

and the sequence

∆{0,1} → ∆n+1 →→ X(n+ 1) = ∆1 ×∆n+1

is an isomorphism onto the edge ∆1 × {0} in ∆1 ×∆n+1.

To be clear, our filtration is obtained by applying the opposite to the specific
sequence from [5, 00TH].

Idea of proof. Consider the simplices σi : ∆n+1 → ∆1 × ∆n defined by taking
σi(j) = (0, j) if j ≤ n − i and (1, j − 1) if j > n − i. We define sequentially
X(i+ 1) = X(i) ∪ im(σi). We refer the reader to [5] for the specific details. □

We now can prove our uniqueness result for cocartesian lefts.

https://kerodon.net/tag/01VK
https://kerodon.net/tag/00TH
https://kerodon.net/tag/00TH
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Proof of Proposition 2.4. We deal with the case of cocartesian situation, the carte-
sian case following by taking opposites. We consider a lifting problem

∂∆n //

��

Y

��
∆n //

<<

Z.

(5) eq:361

In the case n = 0, this problem admits a solution by the defintion of Z. In the case
n ≥ 0, solving this problem is equivalent to solving a lifting problem of the form

(∆1 × ∂∆n) ∪ ({0} ×∆n)
σ0 //

incl

��

X

��
∆1 ×∆n //

66

S

(6) eq:368

in which all of the constituent maps ∆1×{i} → X are q-cocartesian. In particular,
the map ∆1×{0} → X is q-cocartesian. We decompose the map incl into a sequence
of inclusion X(i) → X(i+1) as in Lemma 2.5, and produce sequential solutions to
the problems

X(i)
σi //

��

X

q

��
X(i+ 1) //

σi+1

;;

S

for each i < n since the inclusion X(i) → X(i + 1) is inner anodyne in this case.
For the final inclusion at i = n, we have the extended diagram

Λn+1
0

//

��

X(n)
σn //

��

X

q

��
∆n+1 //

33

X(n+ 1) = ∆1 ×∆n //

77

S

and can solve the external problem since the initial edge Λn0 → X has q-cocartesian
image in X, and can therefore solve the internal lifting problem since the left-
most square is a pushout diagram. We therefore obtain a solution to our original
problems (5) and (6). □

2.5. Exponentiating cocartesian fibrations.

prop:397 Proposition 2.6 ([5, 01VG]). If q : X → S is a cocartesian fibration, then for any
simplicial set K the map q∗ : Fun(K,X) → Fun(K,S) is a cocartesian fibration.
An edge ξ : ∆1 → Fun(K,X) is q∗-cocartesian if and only if, at each v in K, the
composite v∗ξ : ∆1 → X is q-cocartesian in X.

The proof follows by a hands on analysis of certain lifting problems which we
won’t reproduce here. The reader can see the [5, 01VG & 01VM] for the details.

https://kerodon.net/tag/01VG
https://kerodon.net/tag/01VG
https://kerodon.net/tag/01VM
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Let us recall that, for any inner fibration q : X → S and fixed map ξ : A → S
the simplicial set FunS(A,X) is obtained as the fiber

FunS(A,X) //

��

Fun(A,X)

q∗

��
∗

ξ
// Fun(A,S)

Since the map q∗ is an inner fibration (Corollary I-5.8) we understand that FunS(A,X)
is an ∞-category. Of course, in the more restrictive case in which q is a cocartesian
fibration, we have just seen that q∗ is furthermore cocartesian.

thm:simp_lift Theorem 2.7. Let K be any simplicial set and q : X → S be a cocartesian fibra-
tion. Any lifting problem

{0} ×K

��

// X

��
∆1 ×K //

;;

S

admits a solution ∆1 ×K → X for which, at each vertex v in K, the composite

∆1 ∼= ∆1 × {v} → ∆1 ×K → X

is a q-cocartesian edge in X. Furthermore, the full ∞-subcategory in FunS(∆
1 ×

K,X) spanned by such solutions is a contractible Kan complex.

Proof. By Proposition 2.6, the map q∗ : Fun(K,X) → Fun(K,S) is a cocartesian
fibration and solutions to the above lifting problem are identified with q∗-cocartesian

solutions ξ̃ : ∆1 → Fun(K,X) to the associated lifting problem

{0} //

��

Fun(K,X)

q∗

��
∆1 //

::

Fun(K,S).

Existence and uniqueness of such solutions now follow by Proposition 2.4. □

In the event that q : X → S is a left fibration, all morphisms inX are cocartesian.
So we see that there is a unique solution to the above lifiting problem.

cor:left_lift Corollary 2.8. Let K be any simplicial set and q : X → S be a left fibration. Any
lifting problem

{0} ×K

��

// X

��
∆1 ×K //

;;

S

admits a solution ∆1×K → X, and the collection of all such solutions FunS(∆
1 ×

K,X) is a contractible Kan complex.

https://c-negron.github.io/infty_partI.pdf
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3. Morphisms of fibrations

3.1. Categories of isofibrations. For a fixed simiplicial set S, we consider the
simplicial category Isofib(S) whose objects are isofibrations q : X → S over S and
morphisms complexes are the Kan complexes fiber

FunS(X,Y ) := Fun(X,Y )×Fun(X,S) {q}.

We recall that these mapping complexes are ∞-categories as the map

p∗ : FunS(X,Y ) → FunS(X,S)

along the implicit isofibration p∗ : Y → S is an isofibration, and in particular an
inner fibration. The n-simplices in this complex are strictly commuting diagrams

∆n ×X //

q
##

Y

p
��

S

where q denotes the composition of the projection ∆n × X → X with q, by an
abuse of notation.

We recall that a transformation ζ : ∆1 × X → Y is an isomorphism in the
∞-category FunS(X,Y ) if and only it, at each vertex s : ∗ → S, the fiber

ζs : ∆
1 ×Xs → Ys

is an equivalence of ∞-categories (Proposition I-7.9).

Definition 3.1. We let Isofib(S)+ denote the Kan enriched simplicial category
with morphisms FunS(X,Y )Kan, and take

Isofib(S) = Nhc(Isofib(S)+).

We let Cocart(S)+ and Cart(S)+ denote the non-full ∞-subcategories in Isofib(S)
whose objects are cocartesian and cartesian fibrations over S, respectively, and
whose morphisms are the full subcomplexes in FunS(X,Y )Kan consisting of those
functors which send cocartesian or cartesian edges in X to cocartesian or cartesian
edges in Y , respectively. We take finally

Cocart(S) = Nhc(Cocart(S)+) and Cart(S) = Nhc(Cart(S)+).

An equivalence between isofibrations, or cocartesian fibrations, or cartesian fi-
brations, is an isomorphism in the corresponding ∞-category. In each case, an
equivalence is explicitly given by a pair of maps of fibrations

F : X → Y and G : X → Y

which admit natural isomorphisms of fibrations

ζ : ∆1 ×X → Y and η : ∆1 × Y → X

with the apparent restrictions

ζ|{0} = GF, ζ1|{1} = idX , η|{0} = FG, η|{1} = idY .

We note that for any map of simplicial sets K → S the pullback functor (−)K :=
−×S K provides a well-defined map of simplicial categories

(−)K : Isofib(S) → Isofib(K)

https://c-negron.github.io/infty_partI.pdf
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which necessarily restricts to a simplicial functor on the associated Kan enriched
categories (−)K : Isofib(S)+ → Isofib(K)+. We apply the homotopy coherent nerve
to obtain a map of ∞-categories

(−)K : Isofib(S) → Isofib(K).

Since any functor between ∞-categories preserves equivalences we see that pullback
preserved equivalences between isofibrations.

prop:isoequiv_pull Proposition 3.2. If F : X → Y is an equivalence between isofibrations over a
given base S then, for any map of simplicial sets K → S, the base change FK :
XK → YK is also an equivalence of isofibrations.

We recall that a map of simplicial sets i : K → L is called a categorical equiva-
lence if, at each ∞-category C , the induced map i∗ : Fun(L,C ) → Fun(K,C ) is an
equivalence of ∞-categories (see Definition I-10.11 and I-10.12).

prop:equiv_catequiv Proposition 3.3 ([5, 0285]). A morphism between isofibrations

X
F //

��

Y

��
S

is an equivalence if and only if F , considered simply as a map of simplicial sets, is
a categorical equivalence.

We refer the reader to the text [5] for the details. (The proof that any equivalence
of fibrations is a categorical equivalence is straightforward, and might be completed
as an exercise. The converse claim is more subtle.) We only note that the proof
uses a certain pushout construction and the following fact about isofibrations which
we’ve not covered in this series [5, 01FR]: If i : A → B is an injective map of
simplicial sets which is also a categorical equivalence, and q : X → S is a cocartesian
fibration, then any lifting problem

A

i

��

// X

q

��
B //

>>

S

admits a solution.
One combines Propositions 3.2 and 3.3 to obtain the following.

Corollary 3.4. Let F : X → Y be a map between isofibrations over a given base
S, and suppose that F is a categorical equivalence. Then for each map of simplicial
sets K → S the pullback FK : XK → YK is also a categorical equivalence.

3.2. Equivalences in the cocartesian setting.

prop:318 Proposition 3.5 ([5, 023R]). Suppose that

C
F //

q
��

D

p
��

S

(7) eq:320

https://c-negron.github.io/infty_partI.pdf
https://c-negron.github.io/infty_partI.pdf
https://kerodon.net/tag/0285
https://kerodon.net/tag/01FR
https://kerodon.net/tag/023R
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is a map of inner fibrations, and that F is an equivalence. Then a morphism α is
C is q-cocartesian if and only if Fα is p-cocartesian.

cor:transf_fibrat Corollary 3.6. Suppose we have a diagram (7) in which F is an equivalence and
one of p or q is a cocartesian fibration (resp. left fibration). Then p and q are both
cocartesian fibrations (resp. left fibrations).

Corollary 3.7. Suppose we have a diagram (7), that p and q are cocartesian fi-
brations, and that F is an equivalence of inner fibrations. Then both p and q are
cocartesian fibrations and F is an equivalence of cocartesian fibrations.

thm:equiv_fibers Theorem 3.8 ([5, 023M]). Suppose

X
F //

��

Y

��
S

is a map of cartesian or cocartesian fibrations over a simplicial set S. Then F is
an equivalence if and only if, at each vertex s : ∗ → S, the fiber Fs : Xs → Ys is an
equivalence of ∞-categories.

cor:equiv_char Corollary 3.9. Suppose

X
F //

��

Y

��
S

is a map of cartesian or cocartesian fibrations over a simplicial set S. The following
are equivalent:

(a) F is an equivalence of cocartesian fibrations.
(b) F is an equivalence of isofibrations.
(c) F is a categorical equivalence.
(c) At each vertex s : ∗ → S the fiber Fs : Xs → Ys is an equivalence of

∞-categories.
(d) For each map of simplicial sets K → S the pullback FK : XK → YK is a

categorical equivalence.
(e) For each map from an ∞-category K → S the pullback FK : XK → YK

is an equivalence of ∞-categories.
(f) For each map from a Kan complex S → S the pullback FS : XS → YS is

an equivalence of ∞-categories.
(g) For each n-simplex ∆n → S the pullback F∆n : X∆n → Y∆n is an equiva-

lence of ∞-categories.

Proof. The equivalences between (a) and (c)−−(g) are implied by Theorem 3.8.
The equivalence between (b) and (c) is Proposition 3.3. The equivalence between
(b) and (d) follows by Proposition 3.2. □

4. Directional fibrations and Kan complexes

4.1. Exponentials for directional fibrations.

https://kerodon.net/tag/023M
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Definition 4.1. A map of simplicial sets A→ B is called left anodyne (resp. right
anodyne) if any lifting problem

A //

��

X

f

��
B //

>>

S

in which f is a left (resp. right) fibration admits a solution.

One can show that the class of left anodyne maps is the saturated class generated
by the horn inclusions Λni → ∆n, where 0 ≤ i < n [5, 0151]. One similarly
characterizes right anodyne maps.

lem:328 Lemma 4.2 ([5, kerodon]). Let i : A → B and j : K → L be monomorphisms of
simplicial sets. If one of i or j is left (resp. right) anodyne, then the induced map

(B ×K)
∐
A×K

(A× L) → B × L

is left (resp. right) anodyne.

We refer the reader to Kerodon [5] for the proof.

prop:direct_tech Proposition 4.3. Let f : X → S be a map of simplicial sets, and j : K → L
be a monomorphism of simplicial sets. Consider the induced map on the functor
complexes

ρ : Fun(L,X) → Fun(K,X)×Fun(K,S) Fun(L, S).

(1) If f is a left fibration, then ρ is a left fibration.
(2) If f is a right fibration, then ρ is a right fibration.
(3) If f is a left fibration and j is left anodyne, then ρ is a trivial Kan fibration.
(4) If f is a right fibration and j is right anodyne, then ρ is a trivial Kan

fibration.

Proof. Solving a lifting problem of the form

A //

��

Fun(L,X)

f

��
B //

55

Fun(K,X)×Fun(K,S) Fun(L, S)

is equivalent to solving the corresponding lifting problem

(B ×K)⨿(A×K) (A× L) //

��

X

��
B × L //

66

S.

So all of the claims follow from a consideration of Lemma 4.2. □

4.2. Directional fibrations and Kan complexes.

Proposition 4.4. A cocartesian (resp. cartesian) fibration f : X → S is a left
(resp. right) fibration if and only if all of the fibers Xs, at arbitrary s : ∗ → S, are
Kan complexes.

https://kerodon.net/tag/0151
https://kerodon.net/tag/0153
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5. A deviation on (∞, 2)-categories

5.1. (∞, 2)-categories.

Definition 5.1. Let X be a simplicial set. A 2-simplex τ : ∆2 → X is called thin
if any horn for any n > 2, index 0 < i < n, and inner horn

σ̄ : Λni → X with σ̄|∆{i−1,i,i+1} = τ,

the lifting problem

Λni

��

σ̄ // X

��
∆n

>>

// ∗
admits a solution.

One sees immediately that every 2-simplex in an∞-category is thin, for example.
Recall our notation si : [n] → [n − 1] for the weakly increasing surjection with

si(i) = si(i + 1) = i, for 0 ≤ i ≤ n − 1, and the corresponding degeneracies s∗i :
∆n → ∆n−1. We call an n-simplex σ : ∆n → X in a simplicial set left degenerate if
σ factors through the degeneracy s∗0 : ∆n → ∆n−1, and right degenerate if σ factors
through the degeneracy s∗n−1 : ∆n → ∆n−1.

def:infty2 Definition 5.2 ([5, 01W9, 01Y5]). A simplicial set X is called an (∞, 2)-category
if the following hold:

(a) Any horn Λ2
1 → X admits an extension to a thin 2-simplex.

(b) Every degenerate 2-simplex in X is thin.
(c.l) For n > 2, any horn σ̄ : Λn0 → X in which the 2-simplex σ̄|∆{0,1,n} is left

degenerate admits an extension to an n-simplex in X.
(c.r) For n > 2, any horn σ̄′ : Λnn → X in which the 2-simplex σ̄′|∆{0,n−1,n} is

right degenerate admits an extension to an n-simplex in X.

A functor, or map, between (∞, 2)-categories is a map of simplicial sets F : X → Y
which preserves thin 2-simplices.

Remark 5.3. Having introduced this notion, let us recall that the term∞-category
is used interchangeably with the term (∞, 1)-category.

If we consider an ∞-category C , then in any horn Λn0 → C as in (c.l) the initial
edge ∆{0,1} → C is degenerate, and hence an isomorphism in C . Hence we have
the proposed completion to an n-simplex ∆n → C , by Proposition I-5.33. Similarly
any horn Λnn → C as in (c.r) completes to an n-simplex as well. So we observe the
following.

Lemma 5.4. Any ∞-category is an (∞, 2)-category. Furthermore, an (∞, 2)-
category X is an ∞-category if and only if every 2-simplex in X is thin.

Recall that each simplex ∆n is an ∞-category, and hence an (∞, 2)-category.

Example 5.5. Since any degenerate 2-simplex in an (∞, 2)-category is thin, any
map of simplicial sets ∗ = ∆0 → X is a map of (∞, 2)-categories. Similarly, any
map of simplicial sets ∆1 → X is a map of (∞, 2)-categories.

One has the following practical check for maps between (∞, 2)-categories.

https://kerodon.net/tag/01W9
https://kerodon.net/tag/01Y5
https://c-negron.github.io/infty_partI.pdf
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prop:infty2_check Proposition 5.6 ([5, 01YC]). Let X and Y be (∞, 2)-categories, and F : X → Y
be a map of simplicial sets. Then F is a functor, i.e. preserves thin 2-simplexes, if
and only if any horn Λ2

1 → X can be competed to a thin simplex with thin image in
Y .

Idea of proof. The result is a consequence of stability of thin simplices under various
conditions. Namely one establishes an inner-exchange property for thin simplices,
which we recall below, and a 4-of-5 property which one can find at [5, 01XX]. □

5.2. The pith of an (∞, 2)-category.

Definition 5.7. Given an (∞, 2)-category X, the pith in X is the simplicial subset
XPith ⊆ X whose simplices ∆n → XPith consist of all simplices σ : ∆n → X in
which each restriction along a 2-simplex

∆2 → ∆n σ→ X

is thin.

Since functors between (∞, 2)-categories preserve thin simplices, by defintion,
we see that any map F : C → X from an ∞-category to an (∞, 2)-category factors
through the pith.

lem:360 Lemma 5.8 ([5, 01XL], Inner-exchange property). Consider a 3-simplex σ : ∆3 →
X in an (∞, 2)-category, and suppose that the associated 2-simplices σ|∆{1,2,3} and
σ|∆{0,1,2} are thin. Then the 2-simplex σ|∆{0,2,3} is thin if and only if the 2-simplex
σ|∆{0,1,3} is thin.

The proof employs certain facts about interior fibrations (see below), and is
omitted. From Lemma 5.8 the proof of the following is immediate.

Proposition 5.9. For any (∞, 2)-category X, the subcomplex XPith is an ∞-
category.

Proof. For any completion ∆3 → X of an inner horn Λ3
i → X in which all of the

associated face ∆2 → Λ3
i → X are thin, the final face ∆[3]\{i} → X is also thin,

by Lemma 5.8. This shows that the pith is stable under the completion of inner
horns Λ3

i → XPith. Stability under completion of all inner horns Λni → XPith with
n > 3 is immediate, since the horn Λni already contains all 2-faces in ∆n in this
case. Taken together with condition (a) of Definition 5.2, we see that any lifting
problem

Λni
//

��

XPith

��
∆n // ∗

with 0 < i < n admits a solution, as required. □

5.3. (∞, 2)-category via simplicial categories. Recall that one can associate to

any simplicial category S its associated homotopy coherent nerve Nhc(S) Section

I-2.7. The n-simplices in Nhc(S) are simplicial functors from the path category

https://kerodon.net/tag/01YC
https://kerodon.net/tag/01XX
https://kerodon.net/tag/01XL
https://c-negron.github.io/infty_partI.pdf
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Path[n]. For S = Nhc(S) we have in low dimension

S[0] = { objects in S }

S[1] = { pairs of object (x0, x1) along with a map f ∈ HomS(x0, x1)[0] }

S[2] =

{
triples of objects (x0, x1, x2), maps fij : xi → xj for each i < j, and
a 1-simplex h : ∆1 → HomS(x0, x2) with h|0 = f02, h|1 = f12f01

}
Lemma I-2.19. We take the following theorem for granted.

thm:hc_infty2 Theorem 5.10 ([5, 01YM]). Let S be a simplicial category in which, at each pair
of objects x and y in S, the mapping complex HomS(x, y) is an ∞-category. Then

the homotopy coherent nerve Nhc(A) is an (∞, 2)-category.

What we are most interested in here is the (∞, 2)-category of ∞-categories.
Recall that for any ∞-categories C and D the simplicial set of functors Fun(C ,D),
whose simplicial are as expected

Fun(C ,D)[n] = HomsSet(∆
n × C ,D),

form another ∞-category Corollar I-5.8. With these morphisms we obtain the
simplicial category Cat∞ of ∞-categories and their functor categories. We note
that Cat∞ is a full simplicial subcategory in the ambient category sSet of simplicial
sets.

5.4. The (∞, 2)-category of ∞-categories.

Theorem 5.11. The homotopy coherent nerve

Cat∞ := Nhc(Cat∞)

is an (∞, 2)-category.

According to the above analysis the 0-simplices in Cat∞ are ∞-categories, the 1-
simplices are functors between ∞-categories, and 2-simplices are triples of functors
and a natural transformation

C2 C2

C1

F12
66

ζ //

C0
F01

hh

C0.

F02

OO

Definition 5.12. The (∞, 2)-category Cat∞ is called the (∞, 2)-category of ∞-
categories.

Remark 5.13. The (∞, 2)-category Cat∞ is in our universe of “large” sets, which
is strictly larger than our universe of “normal sized” set in which all other ∞-
categories are assumed to live.

We recall our ∞-category Cat∞ of ∞-categories, which we obtain by restricting
the morphisms Fun(C ,D) to the associated Kan can complex Fun(C ,D)Kan then
applying the simplicial nerve. The inclusions of ∞-categories

Fun(C ,D)Kan → Fun(C ,D)

imply an inclusion of (∞, 2)-categories Cat∞ → Cat∞, and hence an inclusion into
the pith

Cat∞ → (Cat∞)Pith. (8) eq:444

https://c-negron.github.io/infty_partI.pdf
https://kerodon.net/tag/01YM
https://c-negron.github.io/infty_partI.pdf
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By a general result one finds that this inclusion is an equality.

Proposition 5.14 ([5, 01YT]). The inclusion (8) is an equality, Cat∞ = (Cat∞)Pith.

5.5. Interior fibrations.

def:interior Definition 5.15. A map of simplicial sets q : X → S is called an interior fibration
if the following hold:

(a) At each 0-simplex x in X, the identity idx : x→ x is both q-cartesian and
cocartesian.

(b) For any lifting problem

Λni

��

// X

��
∆n

>>

σ
// S

(9) eq:400

in which 0 < i < n and σ|∆{i−1,i,i} is thin in S, (9) admits a solution.

It is clear that if f : S′ → S is a map of simplicial sets which preserves thin
2-simplices, and the diagram

X ′ //

q′

��

X

q

��
S′ f // S

is a pullback diagram of simplicial sets in which q is an interior fibration, then the
map q′ : X ′ → S′ is an interior fibration as well.

One also observes the following.

lem:495 Lemma 5.16. If S is an (∞, 2)-category, and q : X → S is an interior fibration,
then X is also an (∞, 2)-category and q is a functor between (∞, 2)-categories.

Proof. One sees via the lifting property for q that any 2-simplex ∆2 → X which
has thin image in S is thin in X. From this we see that any horn Λ2

1 → X can be
completed to a thin 2-simplex in X. One obtains this thin completion by lifting
a thin completion ∆2 → S. We are left to prove that any appropriate degenerate
horn Λn0 → X or Λnn → X, at n > 2, completes to an n-simplex. However this
follows from the fact the fact that identity maps in X are both q-cartesian and
cocartesian, and the fact that the corresponding horns in S admit completions. We
now see that X is an (∞, 2)-category. One sees that q is a functor, i.e. preserves
thin 2-simplices, by applying Proposition 5.6. □

As we see in the above proof, given an interior fibration q : X → S over an
(∞, 2)-category, one can detect thin simplices in X by considering their images in
S along q.

lem:505 Lemma 5.17. If q : X → S is an interior fibration then a 2-simplex in X is thin
if and only if its image in S is thin.

https://kerodon.net/tag/01YT
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cor:interior_pullback Corollary 5.18. Consider a pullback diagram

Z
p2 //

p1

��

X

q

��
Y

F
// S

in which q is an interior fibration and F is a map between (∞, 2)-categories. Then
Z is an (∞, 2)-category, p1 is an interior fibration, and p2 is a map of (∞, 2)-
categories.

Proof. The fact that Z is an (∞, 2)-category and p1 is a map of (∞, 2)-categories
follows by Lemma 5.16. As for p1, we consider a thin 2-simplex ∆2 → Z, and
note that its image in Y is thin. Hence its image in S is thin, and so its image
in X is thin by Lemma 5.17. It follows that p2 is a map of (∞, 2)-categories, by
definition. □

We are especially interested in the fiberings of interior fibrations over∞-categories.

lem:502 Lemma 5.19. Let C be an ∞-category. A map of simplicial sets q : X → C is an
interior fibration if and only if it is an inner fibration.

Proof. If q is an interior fibration then it is an inner fibration since all 2-simplices in
C are thin. Conversely, if q is an inner fibration then X is an ∞-category and q is
therefore an inner fibration between ∞-categories. Condition (a) of Definition 5.15
now follows from the fact that the identity in an ∞-category is an isomorphism,
and an application of Proposition I-5.33. □

One combines Lemma 5.19 with the above discussion of fiber products to obtain
the following corollary.

Corollary 5.20. Consider an interior fibration q : X → S over an (∞, 2)-category
S.

(a) For any ∞-category C , and any functor of (∞, 2)-categories C → S, the
fiber product X ×S C is an ∞-category. Furthermore, the projection X ×S
C → C is an inner fibration.

(b) At each point s : ∗ → S the fiber Xs is an ∞-category.

cor:interior_pith Corollary 5.21. If q : X → S is an interior fibration over an (∞, 2)-category S
then the diagram

XPith //

��

X

��
SPith // S

is a pullback diagram, and the map XPith → SPith is an interior fibration.

Proof. In this case the pullback X ×S SPith is an ∞-category and the projection to
X is a map of (∞, 2)-categories. So the identification

XPith = X ×S SPith

follows via an application of the universal property for the pullback and the uni-
versal property for the pith. □

https://c-negron.github.io/infty_partI.pdf
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5.6. Undercategories and overcategories and pointed ∞-categories. In the
(∞, 2)-setting we can define overcategories and undercategories exactly as in the
∞-setting. Namely, for a map of simplicial sets p : K → X the overcategory Xp/

is the simplicial set with n-simplices provided by the join

Xp/[n] := HomsSet(K ⋆∆n, X)p,

and similarly for the undercategory

X/p[n] := HomsSet(∆
n ⋆ K,X)p

Section I-5.7. In the case in which X is an ∞-category, we saw that the forgetful
functors

Xp/

&&

X/p

xx
X

obtained by restricting along the inclusions ∆n → ∆n ⋆ K and ∆n → K ⋆∆n are
directional fibrations, and in particular isofibrations. We have a similar result in
the 2-categorical context.

prop:504 Proposition 5.22 ([5, 01WU]). Let X be an (∞, 2)-category and p : K → X be a
map of simplicial sets. The the forgetful maps

Xp/ → X and X/p → X

are both interior fibrations.

At this point we’ll begin to leave many of the details unaccounted for. In par-
ticular, we direct the reader to the original text [5] for the details on Proposition
5.22. In any case, we record some corollaries.

Corollary 5.23. For an (∞, 2)-category X and a diagram p : K → X, the simplical
sets Xp/ and X/p are (∞, 2)-category and the forgetful maps are both functors
between (∞, 2)-categories.

cor:601 Corollary 5.24. Let p : K → X be a map from a simplicial set into an (∞, 2)-
category. At any point x : ∗ → X the fibers (Xp/)x and (X/p)x are both ∞-
categories.

We apply this corollary in the case where the diagram p is a point x : ∗ → X to
obtain mapping categories for any (∞, 2)-category X.

Definition 5.25. For any (∞, 2)-category X, and objects x, y : ∗ → X, the left
pinched mapping ∞-category is the fiber

HomL
X(x, y) := (Xx/)×X {y}.

Similarly,the right pinched mapping ∞-category is the fiber

HomR
X(x, y) = {x} ×X (X/y).

As with any interior fibration, we can restrict the forgetful functor to the piths
to obtain inner fibrations of ∞-categories

(Xp/)
Pith → XPith and (X/p)

Pith → XPith.

In this particular instance one can observe a stronger characterization of these
functors.

https://c-negron.github.io/infty_partI.pdf
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prop:over_cartesian Proposition 5.26 ([5, 01YE]). For X and p : K → X as above, the restrictions
of the forgetful functors

(Xp/)
Pith → XPith and (X/p)

Pith → XPith.

are, respectively, a cocartesian fibration and a cartesian fibration.

One might view this result in analogy with the ∞-setting, where the forgetful
functors were observed to be right and left fibrations Corollary I-5.27.

5.7. Mapping categories in the homotopy coherent nerve. Let S be a sim-
plicial category whose morphism complexes are weak Kan complexes, and let S be
the homotopy coherent nerve, S = Nhc(S). We recall that S is an (∞, 2)-category
in this case. By an abuse of notation take

HomS(x, y) = HomS(x, y)

for any given pair of objects in S. We construct a map of simplicial sets

θ : HomS(x, y) → HomL
S(x, y)

[5, 01LD] which is subsequently found to be an equivalence of ∞-categories.
To begin, for any simplicial set K we consider the simplicial category E(K) with

objects x− and x+ and morphisms

HomE(K)(x−, x−) = HomE(K)(x+, x+) = ∗ and HomE(K)(x−, x+) = K.

We consider the (n+1)-simplex {−1}⋆∆n ∼= ∆n+1 and the simplicial path category
Path({−1} ⋆∆n) whose morphisms are given by the nerves

HomPath({−1}⋆∆n)(l,m) = N(Subsetsopl,m)

where Subsetsl,m is the partially ordered set of subsets S ⊆ [n] with minS = l and
maxS = m, ordered by inclusion.

At each integer n we have a simiplicial functor

θ∗n : Path({−1} ⋆∆n) → E∆n

which is define on objects by taking θ∗n(−1) = x−, and θ∗n(i) = x+ for all i ≥ 0,
and defined on morphisms by the simplicial map

θ∗n : HomPath({−1}⋆∆n)(l,m) = N(Subsetsopl,m) → HomE(x−, x+) = ∆n = N([n])

associated to the functor Subsetsopl,m → [n] which sends each subset S = {l < s1 <

. . . sr < m} to s1 and each inclusion S′ ⊇ S to the inequality s′1 ≤ s1.
For objects x and y in S, n-simplices in HomS(x, y) are identified with simplicial

functors FunsCat(E∆n, S) in the fiber over (x, y) in Fun(E∅, S). Each such functor
now defined an (n+ 1)-simplex in S via a consideration of the identification

S[n+ 1] = FunsCat(Path({−1} ⋆∆n), S)

and restricting along θ∗n. One sees, by the definiton of θ∗n that this associated
(n + 1)-simplex has initial vertex x and all other vertices y, and restricts trivially
to ∆n ⊆ {−1} ⋆∆n. So we obtain a map of sets

θn : HomS(x, y)[n] → (Sx/)×S {y} = HomL
S(x, y)[n],

(f : E∆n → S) 7→ (fθ∗n : Path{−1} ⋆∆n → S).

https://kerodon.net/tag/01YE
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One observes directly that any increasing function t : [n] → [n′] produces a com-
mutative diagram

Path({−1} ⋆∆n)
θn //

t∗
��

E∆n

��
t∗
��

Path({−1} ⋆∆n′
)
θn′

// E∆n′
,

from which we see that the θn assemble into a map of simplicial sets, or a map of
∞-categories,

θ : HomS(x, y) → HomL
S(x, y).

thm:pinched_simplicial Theorem 5.27 ([5, 01LG]). Let S be a simplicial category whose morphism com-

plexes are ∞-categories. Take S = Nhc(S). For any objects x, y : ∗ → S there is a
natural equivalence of ∞-categories

θ : HomS(x, y) → HomL
S(x, y).

We do not cover the details, and refer the reader to the text [5].

cor:simplicial_pullback Corollary 5.28. Take S and S as above. For any pair of points x, y : ∗ → S there
is a categorical pullback diagram

HomS(x, y)
θ //

��

(Sx/)
Pith

��
∗

y
// SPith.

(10) eq:704

Proof. By Corollary 5.18 and Proposition 5.22 the projection map HomL
S(x, y) →

Sx/ has image in the Pith (Sx/)
Pith. Applying this fact in conjunction with Corol-

lary 5.21, we observe a pullback diagram of ∞-categories

HomL
S(x, y)

θ //

��

(Sx/)
Pith

��
∗

y // SPith.

in which the right-hand map is an inner fibration. This diagram is additionally
a categorical pullback square by Corollary I-6.22 and Proposition 5.26. Since θ :
HomS(x, y) → HomL

S(x, y) is an equivalence of ∞-categories it follows that the
corresponding diagram (10) is a categorical pullback square as well (see Proposition
I-6.23). □

6. Transport I: Classifying functors
sect:transport

6.1. Preliminary discussion. In analogy with the plain categorical setting, we
claim that cocartesian fibrations q : E → C over a given ∞-category are “the same
thing” as functors into the ∞-category of ∞-categories F : C → Cat∞. In our
imaginations, the functor F should evaluate as the fibers F (x) ∼= Ex and the image
of a given map α : x→ y should be some kind of pushforward functor α∗ : Ex → Ey
which “moves along” cartesian lifts α̃ : x̃→ ỹ, so that α∗(x̃) ∼= ỹ.

https://kerodon.net/tag/01LG
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Of course one can not simply construct the desired functor F : C → Cat∞
by hand. We (or rather, Lurie) instead proceed(s) by establishing a universal
cocartesian fibration over ∞-categories

U : Z → Cat∞.

It is then shown that each cocartesian fibration is realized as a (categorical) pullback
along U ,

E //

q

��

Z

��
C

F
// Cat∞,

and furthermore that the space of such pullback diagrams assembles into a con-
tractible space. We refer to this uniquely determined functor F as the covariant
transport functor along q, or as the functor which classifies q. One obtains a com-
pletely similar analysis of cartesian fibrations and classification via an applications
of the opposite involution.

In this section we outline the above construction. Unlike at other points in this
text we are not especially concerned with (all of) the technical details, and seek
only to provide a coherent narrative which explains clearly what’s going on and
how this stuff works.

We begin with a detour into (∞, 2)-categories. We then construct the univer-
sal cocartesian fibration Z via a certain “category of objects”, and explain how
each fiber ZE over a given ∞-category E : ∗ → Cat∞ reproduces E itself, up to
equivalence. We define the space T W it(q) of classifying diagrams and recall the
contractibility of this space from [5]. The section concludes with a description of
the pushforward functors α∗ appearing the transport F .

sect:univ_fib
6.2. Categories with objects and the universal cocartesian fibration. From
the (∞, 2)-category Cat∞ we can produce the (∞, 2)-category of pointed∞-categories

(Cat∞)∗/ = (Cat∞)∆0/.

By Proposition 5.22 the simplicial set (Cat∞)∗/ is in fact an (∞, 2)-category and
the forgetful functor (Cat∞)∗/ → Cat∞ is a interior fibration.

Definition 6.1. The ∞-category of ∞-categories with a distinguished object is
the pith of the (∞, 2)-category of pointed ∞-categories,

P.Cat∞ :=
(
(Cat∞)∗/

)Pith
.

Remark 6.2. The P suffix stands for “pointed”, though we heed the warning
from [5, 020W] and do not label this ∞-category as such.

Remark 6.3. There is a comparison functor P.C at∞ → (Cat∞)∗/ which is, ap-
parently, bijective on objects. However this map is not bijective on 1-morphisms
so that it is not an isomorphism [5, 020Z].

https://kerodon.net/tag/020W
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Via an application of Corollary 5.21 we see that the forgetful functor restricts to
provide a pullback diagram

P.Cat∞ //

��

(Cat∞)∗/

��
Cat∞ // Cat∞.

The forgetful functor P.Cat∞ → Cat∞ is furthermore seen to be a cocartesian
fibration in this case, via an application of Proposition 5.26. We record this result.

Proposition 6.4 ([5, 0213]). The forgetful functor P.Cat∞ → Cat∞ is a cocarte-
sian fibration.

We call the above forgetful functor the universal cocartesian fibration, for reasons
which will be apparent shortly.

Definition 6.5. We let univ : P.Cat∞ → Cat∞ denote the cocartesian fibration
induced by the forgetful functor (Cat∞)∗/ → Cat∞, as considered above.

At a baseline, objects in the∞-category P.Cat∞ are simply pointed∞-categories
x : ∗ → C . A map in P.Cat∞ between two objects (C , x) and (D , y) consists of a
functor F : C → D along with a map

α : ∆1 → D

with α(0) = F (x) and α(1) = y, i.e. a choice of a morphism α : F (x) → y in D . A
2-simplex in P.Cat∞ consists of a choice of the following data:

• Three functors with moprhisms Fij : Ci → Cj for 1 ≤ i < j ≤ 3 and a
natural isomorphism β : F23F12 → F13,

• Morphisms αij : Fij(xi) → xj in Cj .

• Morphisms α1
123 : F32F12(x1) → F13(x1), α

2
123 : F32F12(x2) → F23(x2), and

α3
123 : F23F12(x1) → x3 in C3 with α1 = β(x1).

• Two 2-simplices σk : ∆2 → C3 with σk|∆{0,1} = αk123, σk|∆{1,2} = αk3, and
σk|∆{0,3} = α3

123.

We have the following characterization of univ-cocartesian edges.

prop:univ_cocart Proposition 6.6 ([5, 026X,01YE]). A morphism (F, α) : (C , x) → (D , y) in P.Cat∞
is cocartesian for the universal fibration univ : P.Cat∞ if and only if the underlying
map α : F (x) → y is an isomoprhism in D .

6.3. A remark on notation. Our (∞, 2)-category Cat∞ is the (∞, 2)-category
denoted by a bold QC in [5, 020K]. Our (Cat∞)∗/ is the (∞, 2)-category denoted
by a bold QCObj in [5, 0210]. The associated piths, which we’ve denoted Cat∞ and
P.C at∞ respectively, are the non-bolded ∞-categories QC and QCObj in [5].

6.4. Fibers of the map univ : P.Cat∞ → Cat∞. In considering the universal
cocartesian fibration P.Cat∞ → Cat, any point e : ∆0 → Cat corresponds to an
∞-category E = e(0) and we have the pullback

P.Cat∞ ×Cat∞ {e}

https://kerodon.net/tag/0213
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which is some other ∞-category. Now, objects in this fiber are simply maps of ∞-
categories ∗ → E , and hence are identified with objects in E . Similarly, 1-simplices
in the fiber are identified 2-simplices in the ∞-category of ∞-categories

∗
x

��

y

  
E =

// E .

These are, by definition, natural transformations α ∈ HomsSet(∆
1,E ) with α|0 = x

and α|1 = y, i.e. 1-simplices α : x→ y. So we observe an identification of 1-skeleta

E [≤ 1] = P.Cat∞ ×Cat∞ {e}[≤ 1].

As an application of Theorem 5.27 and Corollary 5.28, we see that this direct iden-
tification of simplices in low-dimension expands to an equivalence of ∞-categories
which calculates the fiber.

prop:univ_fibs Proposition 6.7. For any ∞-category E , which we can understand as a point
E : ∗ → Cat∞, we have a categorical pullback square

E //

��

P.Cat∞

��
∗

E
// Cat∞,

and a corresponding equivalence between ∞-categories θ : E
∼→ P.Cat∞×Cat∞ {E }.

6.5. Covariant transport: classifying cocartesian fibrations.

def:transp_witness Definition 6.8. Let q : X → S be a cocartesian fibration. We say a diagram of
simplicial sets

X
F̃ //

q

��

P.C at∞

univ

��
S

F
// Cat∞

(11) eq:672

witnesses the functor F : S → Cat∞ as a classifying functor, or covariant transport
functor, for q if the corresponding map to the fiber product

X → P.Cat∞ ×Cat∞ S

is an equivalence of cocartesian fibrations over X. We say a functor F : S → Cat∞
classifies the cocartesian fibration q : X → S, or is a transport functor for q, if
there exists a diagram (11) which witnesses F as a classifying functor for q.

The fiber product considered above is often denoted∫
S

F := S ×Cat∞ P.Cat∞.

Implicit in Definition 6.8 is the requirement that the functor F̃ preserves cocartesian
edges. Indeed, this is equivalent to the fact that the associated morphism to the
pullback preserves cocartesian edges.
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Remark 6.9. The term “classifies” is used with some frequency in the works [3, 4].
However, [5] seems to prefer the term “transport representation” for a functor F
as above. We will usually just refer to F as a, or the, transport functor for q.

We have an alternate characterization of transport functors in the case where
the base S is an ∞-category.

Proposition 6.10. Let q : E → C be a cocartesian fibration over an ∞-category
C . A diagram (11) witnesses the functor F : C → Cat∞ as a transport functor for
q if and only if the diagram (11) is a categorical pullback diagram

Proof. This is an immediate consequence of Corollary I-6.22 and Proposition I-
6.23. □

cor:c_univ_cocart Corollary 6.11. Consider a functor of ∞-categories F : S → Cat∞ and q :∫
S
F → S be the corresponding cocartesian fibration. An edge

(ζ, α) : (x, a : ∗ → F (x)) → (y, b : ∗ → F (y))

in
∫
S
F is q-cocartesian if and only if the underlying morphism α : F (ζ)(a) → b is

an isomorphism in the ∞-category F (b).

One observes that transport functors are stable under restriction.

lem:687 Lemma 6.12. Suppose we have a pullback square

X ′ g //

q′

��

X

q

��
S′

f
// S

(12) eq:689

in which q and q′ are are cocartesian fibrations between ∞-categories and g preserves
cocartesian edges. Consider a diagram of the form (11) which witnesses a functor

F : S → Cat∞ as transport along q. Then for F̃ ′ = F̃ g and F ′ = Ff , the diagram

X ′ F̃ ′
//

q′

��

P.C at∞

��
S′

F ′
// Cat∞.

witnesses F ′ as a transport functor along q′.

Proof. Our hypothesis is that the induced map X →
∫
S
F is an equivalence of

cocartesian fibrations over S. By the formula
∫
S′ F

′ = S′ ×S (
∫
S
F ), Proposition

3.2, and Corollary 3.9, it follows that the induced map S′ →
∫
S′ F

′ is an equivalence
as well. □

Given a cocartesian fibration we can now consider the simplicial subset in the
functor category

Fun(S,Cat∞)×Fun(X,Cat∞) Fun(X,P.Cat∞) (13) eq:710

which consists of diagrams witnessing transport for a given cocartesian fibration
q : X → S.

https://c-negron.github.io/infty_partI.pdf
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def:transp_space Definition 6.13. For a given cocartesian fibration q : X → S, we let T W it(q)
denote the simplicial subset in the fiber product (13) whose simplices correspond
to diagrams

∆n ×X
F̃ //

∆n×q
��

P.C at∞

��
∆n × S

F
// Cat∞.

which witness F as a covariant transport functor along ∆n × q.

Stability of such diagrams under restriction (Lemma 6.12) assures us that T W it(q)
is in fact a simplicial subset in the given fiber product.

thm:transport Theorem 6.14 (Universality theorem [5, 02SC]). For any cocartesian fibration q :
E → C , the simplicial set T W it(q) → ∗ is a contractible Kan complex.

Note that a contractible Kan complex is, by definition, a Kan complex for which
the terminal morphism X → ∗ is a trivial Kan fibration. In particular, a con-
tractible Kan complex is nonempty. So, Theorem 6.14 says that any cocartesian
fibration q admits a covariant transport functor F : C → Cat∞, and that this
functor is uniquely determined up to a contractible space of choices.

6.6. Transport for cartesian fibrations. Given any cartesian fibration p : Y →
S, we have the associated cocartesian fibration pop : Y op → Sop. So our analysis
of classifying functors for cocartesian fibrations dualizes in the obvious ways to
provide an analysis of classifying functors for cartesian fibrations.

Definition 6.15. Let p : Y → S be a cartesian fibration of ∞-categories. We say
a functor F : C op → Cat∞ classifies the cartesian fibration p, or is a contravariant
transport functor for p, if it a classifying functor for the corresponding cocartesian
fibration pop.

Gives a cartesian fibration p : Y → S, we define the space of transport functors
with witness in the obvious way T W it(p) := T W it(pop). Theorem 6.14 implies
contractibility of this space.

thm:uniq_transp Theorem 6.16 (Contravariant universality). For any cartesian fibration p : Y →
S, the simplicial set T W it(p) is a contractible Kan complex.

Again this establishes both the existence and uniqueness of contravariant trans-
port.

6.7. Classification of left and right fibrations. We have the simplicial subcat-
egory Kan → Cat∞ and subsequent simplicial subset Kan ⊆ Cat∞. This simplicial
subset is the full (∞, 2)-subcategory whose objects are precisely those ∞-categories
which are Kan complexes, and so the inclusion preserves thin 2-simplices. We now
have the full (∞, 2)-subcategory Kan∗/ → (Cat∞)∗/ of pointed Kan complexes and
the pullback diagram

Kan∗/ //

��

(Cat∞)∗/

��
Kan // Cat∞

https://kerodon.net/tag/02SC
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which restricts to a pullback diagram into the piths

Kan∗/ //

��

(Cat∞)∗/

��
Kan // Cat∞.

We recall that the map Kan∗/ → Kan is a left fibration, by Corollary I-??.

prop:kan_transp Proposition 6.17. A cocartesian fibration q : X → S is a left fibration if and only
if the corresponding transport functor F : C → Cat∞ has image in Kan. Similarly,
a cartesian fibration p : X → S is a right fibration if and only if the corresponding
transport functor G : C op → Cat∞ has image in Kan.

Proof. By Proposition ??, a cocartesian (resp. cartesian) fibration X → S is a left
(resp. right) fibration if and only if its fibers over object sin C are Kan complexes. So
the result follows by the calculation of the fibers of the pullback fibration

∫
S
F → C

provided in Proposition 6.7. □

This proposition tells us that any left fibration q : X → S fits into a square

X //

q

��

Kan∗/

��
S

F
// K an

for which the induced map to the pullback X → Kan∗/ ×Kan S is an equivalence
of left fibrations over S. In this way left fibrations are classified by maps into the
∞-category of Kan complexes. One obtains similar statements for right fibrations
by applying the opposite functor.

sect:weight_nerv
6.8. Weighted nerves. In the following two subsections we provide a complete
and explicit description of the fibration

∫
A F → A in the case where A is a discrete

category and F comes from a simplicial functor. We subsequently obtain an explicit
classification of cocartesian fibrations over discrete categories, up to equivalence.

Definition 6.18. LetK be a simplicial set. A strictly commuting diagram in Cat∞
is a functor p : K → Cat∞ which admits a factorization K → Cat∞ → Cat∞.

We note that Cat∞ is a simplicial subset in Cat∞, so that, if such a factorization
exists then it is unique. We are also interested in functors F : A → Cat∞ which
admit such a (unique) factorization. These functors are also, formally speaking in
terms of our definition, strictly commuting diagrams.

def:weight_nerv Definition 6.19. Let A be a discrete category and F : A → Cat∞ be a functor
which factors through the discrete category Cat∞. We define the weighted nerve
NF (A) to be the simplicial set with n-simplices

NF (A)[n] = (σ : ∆n → A, τi : ∆i → F (ai) : 0 ≤ i ≤ n)

https://c-negron.github.io/infty_partI.pdf


KERODON REMIX II [IN PREPARATION] 29

where in the above expression the ai are the object σ(i) in A, the τi are required
to fit into strictly commuting diagram

∆i //

τi

��

∆i+1

τi+1

��
F (ai)

F (i<i+1)
// F (ai+1)

at all i < n, and where each inclusion ∆i → ∆i+1 is induced by the inclusion
[i] → [i+ 1].

Below we may write τ for the tuple τ = {τi : ∆i → F (ai) : 0 ≤ i ≤ n}, so that
an n-simplex in the weighted nerve appears as a pair (σ, τ).

As for the restriction maps, given a non-decreasing function t : [m] → [n] the
restriction function t∗ sends a pair (σ, τ) to the pair of the m-simplex σt∗ in A with
the tuple of simplices

τ ′j : ∆
j → ∆t(j) → F (at(j))

where the first map is simply given by restricting t to a function t : [j] → [t(j)].
We have the obvious forgetful map

NF (A) → A, (σ, τ) 7→ σ.

At the lowest levels, one sees that vertices ∗ → NF (A) consist of a choice of
object x̄ in A and an object x : ∗ → F (x̄) in the ∞-category over x̄. An edge

∆1 → NF (A) over a morphism α : x̄ → ȳ in A consists of a choice of objects
x : ∗ → F (x̄) and y : ∗ → F (y), along with with a morphism ξ : F (α)(x) → y in
the ∞-category F (y).

ex:point_nerv Example 6.20 ([5, 025Y]). Let C : ∗ → Cat∞ be the function which just picks an

∞-category C . Then the first term in an n-simplex (σ, τ) in NC (∗) is trivial, and
the second term determines an increasing sequence of simplices in C ,

∆0 //

τ0
((

∆1 //

τ1

!!

· · · // ∆n−1 //

τn−1

||

∆n

τn

uu
C .

So we see that the functions ϕ[n] : NC (∗)[n] → C [n], (σ, τ) 7→ τn determine a

isomorphism of simplicial sets NC (∗)
∼=→ C .

Example 6.21. For the constant functor ∗ : A → Cat+∞, which sends all object
to the terminal space ∗, the second factor in any n-simplex (σ, τ) in the weighted
nerve is completely determined, so that we obtain an isomorphism N∗(A) ∼= A.

We note that the weighted nerve construction is functorial in the obvious ways.
Namely, if F : A → Cat∞ is a functor which factors through Cat∞ and ϕ : B → A
is a functor between ∞-categories, then we have a map of simplicial sets

N(ϕ) : NFϕ(B) → NF (A)

which just composes simplices in the first factor σ 7→ σϕ, and is the identity in the
second factor τ 7→ τ . The following calculation is immediate.

https://kerodon.net/tag/025Y
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lem:1277 Lemma 6.22. Given a functor between discrete categories ϕ : B → A and a functor
F : A → Cat∞ which factors through Cat∞, the weighted nerves fit into a pullback
diagram

NFϕ(B)
N(ϕ) //

��

NF (A)

��
B

ϕ
// A.

Our main objective for the remainder of the subsection is to prove the following
result.

prop:cocart_relnev Proposition 6.23. Let F,G : A → Cat∞ be functors which admit factorizations
through Cat∞, and ξ : F → G be a natural transformation which also factors
through Cat∞. Suppose that at each object a in A the morphism ξ(a) : F (a) →
G(a) is a cocartesian fibration, and that for any morphism t : a → b the map
F (t) : F (a) → F (b) preserves ξ-cocartesian maps. Then the following hold:

(1) The induced map Nξ : NF (A) → NG(A) is a cocartesian fibration.

(2) An edge λ : F (α)(x) → y in NF (A), over an edge t : a → b in A, is
Nξ-cocartesian if and only if the underlying map λ : ∆1 → F (b) is ξ(b)-
cocartesian.

Here Nξ is the obvious map, i.e. the map which sends an n-simplex (σ, τi : 0 ≤
i ≤ n) in NF (A) to σ : ∆n → A paired with the composites ξ(ai)τi : ∆

i → F (ai) →
G(ai). In the case of the constant functor G : A → Cat∞, with G(a) = ∗ at all a in
A, Proposition 6.23 appears as follows.

Corollary 6.24. The forgetful functor q : NF (A) → A is a cocartesian fibration,

and for any map t : a → b in A, a morphism λ : F (α)(x) → y over t in NF (A) is
q-cocartesian if and only if λ is an isomorphism in F (b).

For the proof of Proposition 6.23 we employ a relative join construction C ⋆T D .
Here we consider the ∞-categories over T , we have the unique map

∆1 × T → T ⋆T

with {0} × T mapping identically to T ⋆ ∅ = T and {1} × T identically to
∅ ⋆T = T , and we consider the fiber product

C ⋆T D := (C ⋆D)×T ⋆T (∆1 × T ).

lem:1307 Lemma 6.25. Let C → T and D → T be maps of ∞-categories. The map
C ⋆T D → C ⋆D is an inner fibration.

Proof. It suffices to show that the map ∆1 × T → T ⋆ T is an inner fibration.
This follows from the fact that the composite

∆1 × T → T ⋆T → ∆0 ⋆∆0 = ∆1,

which one sees is just the projection onto the first factor, is an inner fibration.
Indeed, for a given lifting problem for an inner horn

Λni

��

// ∆1 × T

��
∆n //

::

T ⋆T

(14) eq:1317
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either ∆n has image in one of the two T factors in T ⋆ T , in which case the
problem has a unique solution, or else a solution to the associated lifting problem

Λni

��

// ∆1 × T

��
∆n //

::

T ⋆T

solves (14). □

It is relatively easy to see that the map from the usual join C ⋆D → ∆0⋆∆0 = ∆1

is an inner fibration, so that C ⋆D is in particular an ∞-category. It follows from
Lemma 6.25 that the relative join is an ∞-category as well.

Corollary 6.26. For ∞-categories C and D over another ∞-category T , the
relative join C ⋆T D is also an ∞-category.

To describe the relative join, we have the projection

C ⋆T D → C ⋆D → ∆1

and one the fibers over {0} and {1} are copies of C and D respectively. Furthermore,
for any map α : ∆1 → C ⋆T D with α|{0} = x in C and α|{1} = y in D one calculates

HomC⋆T D(x, y) = Hom∆1×T ((0, x̄), (1, ȳ)),

where x̄ and ȳ are the images of x and y in T , respectively. This latter mapping
space is the product

Hom∆1(0, 1)×HomT (x̄, ȳ) = {∗} ×HomT (x̄, ȳ).

So in total we calculate

HomC⋆T D(x, y) =

 HomC (x, y) if x and y are in C
HomD(x, y) if x and y are in D
HomT (x̄, ȳ) if x is in C and y in D .

The mapping spaces vanish when x is in D and y is in C , as there are simply no
1-simplices which begin at x and end in y by the definition of the join.

The proof of Proposition 6.23 relies on the following generic observation.

lem:reljoin_cocart Lemma 6.27 ([5, 02RH]). Consider a diagram of ∞-categories

C

q

��

F // T

p

��
D // V

in which q and p are cocartesian fibrations and F preserved cocartesian morphisms.
The the induced map z : C ⋆T T → D ⋆V V is also a cocartesian fibration. Fur-
thermore, a map α : x → y in C ⋆T T is z-cocartesian if and only if one of the
following two conditions holds:

(a) Both x and y are in C , and α is q-cocartesian.
(b) One of x or y is not in C , and the image of α along the map C ⋆T T →

∆1 × T → T is p-cocartesian.

https://kerodon.net/tag/02RH
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While the proof is not extraordinarily complications, but requires one to touch
on various points regarding the relative join. We refer the reader to [5], and in
particular [5, 0241], for the details.

We now provide our argument for Proposition 6.23.

Proof of Proposition 6.23. Via Lemma 6.22 we reduce to the case of an n-simplex
A = ∆n, and we proceed by induction to observe the conclusions of Proposition 6.23
over such a base. In the case n = 0, the functors F : G : ∗ → Cat∞ just choose ∞-
categories and the transformation ξ is just a map of ∞-categories ξ : F (∗) → G(∗)
which is specifically a cocartesian fibration. Under the identifications

NF (∗) = F (∗) and NG(∗) = G(∗)

of Example 6.20 we have Nξ = ξ. Since ξ is a cocartesian fibration by hypothesis we
obtain condition (1). Condition (2) demands that a map α : x → y in F (∗) is Nξ-
cocartesian if and only if it is ξ-cocartesian, which is a tautology and in particular
is true.

Suppose now that the result holds over A0 = ∆n−1, and consider A = ∆n =
A0 ⋆ {n}. We take two functors

F,G : A → Cat∞

and a transformation ξ : F → G as prescribed. We have natural decompositions

NF0(A) ∼= NF (A0) ⋆F (n) F (n) and NG0(A) ∼= NG(A0) ⋆G(n) G(n)

where the map NF (A) → F (n) and NG(A) → G(n) are provided by the structural
morphisms F (m ≤ n) : F (m) → F (n) and G(m ≤ n) : G(m) → G(n). Here also
F0 and G0 are the obvious restrictions.

The map Nξ0 : NF0(A0) → NG0(A0) is a cocartesian fibration by our induction
hypothesis, and ξ(n) : F (n) → G(n) is a cocartesian fibration by assumption. Also
by assumption the map NF0(A0) → F (n) preserves cocartesian edges. It follows
that the map in question

Nξ = Nξ ⋆ξ(n)ξ(n) : N
F (A0) ⋆F (n) F (n) → NG(A0) ⋆G(n) G(n)

is a cocartesian fibration by Lemma 6.27. Lemma 6.27 also verifies the proposed
description of cocartesian morphisms in NF (A). □

sect:weighted_fib
6.9. Fibrations over discrete categories via weighted nerves.

thm:weight_nerv_univ Theorem 6.28 ([5, 027J]). Let A be a discrete category and F : A → Cat∞ be a
functor which factors through the discrete category Cat∞. Then there is an equiv-
alence of cocartesian fibrations

NF (A) ∼
µ

//

""

∫
A F

~~
A .

We describe the functor µ : NF (A) →
∫
A F , but leave the verification that it is

an equivalence to the text [5]. Our job here is simple–given an n-simplex in the
weighted nerve we need to produce an n-simplex in the ∞-category

∫
A F .

https://kerodon.net/tag/0241
https://kerodon.net/tag/027J
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We consider an n-simplex ω : ∆n → NF (A), which is specified by a pair (σ :
∆n → A, τi : ∆i → F (ai)), where ai = σ(i). From ω we produce a diagram

ω′ : {−1} ⋆∆n → Nhc(Cat∞) = Cat∞

with ω′|∆n = f(σ) and ω′(−1) = ∗. Such a diagram corresponds to an n-simplex
in the undercategory (Cat∞)∗/ so that we have a diagram

∆n ω′
//

��

(Cat∞)∗/

��
A

F
// Cat∞.

Since A has image in the pith Cat∞ = (Cat∞)Pith, any such lift ω′ also has image in
the pith P.Cat∞ = (Cat∞)∗/)

Pith by Corollary 5.21 and Proposition 5.22. Hence

ω′ defines a map into the fiber product ∆n →
∫
A F , and we denote this n-simplex

simply ω′ by an abuse of notation.
Let us proceed with the construction of the associated simplex ω′ : {−1} ⋆

∆n → Cat∞. Below we take A the underlying simplicial category for A, so that
A = Nhc(A). We define, following [5, 027A], ω′ as the unique simplicial functor

ω′ : Path({−1} ⋆∆n) → Cat∞

with

ω′|Path(∆n) = F ◦ σ : Path(∆n) → A → Cat∞

and ω′(−1) = ∗ and each map

Hom(−1, i) = N(Subsetsop−1,i) → Fun(∗, F (ai)) = F (ai)

given as the composite

N(Subsetsop−1,i)
ρ→ ∆i τi→ F (ai),

where ρ is induced by the map of partially ordered sets

Subsetsop−1,i → ∆i, S 7→ min(S − {−1}).

One can check that ω′ is in fact a well-defined simplicial functor, and given a
diagram

∆n ω // NF (A)

∆m

OO

ν
// NF (A)

=

OO

one checks directly from the definition the corresponding diagram

Path{−1} ⋆∆n ω
′

// Cat∞

Path{−1} ⋆∆m

OO

ν′
// Cat∞.

=

OO

In this way we obtain maps NF (A)[n] → (
∫
A F )[n] which assemble into a map of

simplicial sets µ : NF (A) →
∫
A F .

https://kerodon.net/tag/027A
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Finally, it is argued in [5, Proof of ] that the map µ is an equivalence by first
noting that the induced maps on each fiber

µa : F (a) ∼= NF (A)a → (

∫
A
F )a

is an equivalence, which is certainly expected from the fiber calculations of 6.7, and
als that µ preserved cocartesian edges. This latter point is determined via the ex-
plicit descriptions of cocartesian edges in each ∞-category provided in Proposition
6.23 and Corollary 6.11.

lem:simplicial_fun Lemma 6.29. Let A be a discrete category. Any functor F : A → Cat∞ is isomor-
phic to one a functor F ′ : A → Cat∞ which factors through the discrete subcategory
Cat∞.

Proof. Let CatKan be the category of simplicial categories which are enriched in
Kan complexes. By [3, Theorem 2.2.5.1] the homotopy coherent nerve provides an
equivalence of homotopy categories

hNhc : hCatKan
∼→ hCat∞.

In particular, every functor between homotopy coherent nerves F : Nhc(A) →
Nhc(B) is, up to natural isomorphism, identified with Nhc(F ′) for some simplicial
functor F ′. We note finally that any simplicial functor A → Cat+∞ necessarily
factors through the discrete category Cat∞ = Cat+∞[0]. □

From Theorem 6.28 in conjunction with a result from Section ?? below, Theorem
?? and Proposition ??, we obtain a classification of all cocartesian fibrations over
a discrete category.

thm:discrete_cocart Theorem 6.30. Let A be a discrete category and q : E → A be an arbitrary co-
cartesian fibration. The there is a functor F : A → Cat∞ ⊆ Cat∞ for which we
have an equivalence E

∼→ NF (A) of cocartesian fibrations over A.

7. Transport II: Homotopy representations
sect:htf

7.1. Homotopy transport representations. Consider a cocartesian fibration
q : X → S and an edge α : s → t in S. We then have the fibers Xs and Xt over
these respective points, both of which are ∞-categories.

We consider the diagram

{0} ×Xs
//

��

X

q

��
∆1 ×Xs

// S

where the top arrow is the inclusion and the bottom arrow is the composite of the
projection with α,

∆1 ×Xs → ∆1 × {s} evα→ S.

By Theorem 2.7 the above diagram is split by a transformation

ξα : ∆1 ×Xs → X

which has α!|{0}×Xs
equal to the inclusion and has

ξα|∆1×{s′} : ∆1 × {s′} → X
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a q-cocartesian morphism over α. In particular, the restriction at 1 produces a
functor

α! := ξα|{1}×Xs
: Xs → Xt.

Furthermore, this transformation ξα is uniquely determined up to a contractible
space of choices, so that α! is similarly uniquely determined up to a contractible
space as well.

def:homotop_transp Definition 7.1. Given a cocartesian fibration q : X → S and any edge α : s → t
in the base, we let α! : Xs → Xt denote the uniquely determined functor which
comes equipped with a cocartesian transformation ξα over α, as above. We call
α! : Xs → Xt the homotopy transport functor over α.

prop:1297 Proposition 7.2. Let X → S be a cocartesian fibration. Suppose that we have
a 2-simplex A : ∆2 → S and take αij = A|∆{i,j} : si → sj. Then there is an
isomorphism

(α02)! ∼= (α12)!(α01)!

in Fun(Xs0 , Xs2).

Proof. Take Xi = Xsi . Consider a diagram Ã : ∆1 ×∆1 → S which appears as

s2
id // s2

s0 α01

//

α02

OO
α02

==

s1,

α12

OO

which we might obtain by expanding A for example. Then we have a lifting problem

{0} ×∆1 ×X0

��

ξα02 // X

��
∆1 ×∆1 ×X0

Ã×{s0}
//

66

S

and can take ξA : ∆1 × ∆1 × X0 → X to be the unique cocartesian solution.
Restricting ξA to ∆1×{0}×X0 provides a cocartesian lift of α01 and so is identified
with ξα01

, and similarly restricting ξA to the edge ∆1 × {1} ×X0 is identified with
idα02 . By the 2-of-3 property for q-cocartesian maps, we also see that the restriction
of ξA to the diagonal ∆1 ×X0 is a cocartesian lift of α02 and so is identified with
ξα02

as well.
We have only the edge {1} × ∆1 × X0 → X to be identified. By the 2-of-3

property again we see that FA provides a cocartesian solution to the diagram

{1} × {0} ×X0

��

(α01)!

//

ξA|...

++{0} ×X1
//

��

X

��
{1} ×∆1 ×X0

id×(α01)!

//
ξA|...

33

∆1 ×X1
// S.
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However we have the alternate cocartesian lift

{1} × {0} ×X0

��

(α01)!

// {0} ×X1
//

��

X

��
{1} ×∆1 ×X0

id×(α01)!

// ∆1 ×X1
//

ξα12

;;

S

so that there is a unique isomorphism

ξA|{1}×∆1×X0
∼= ξα12(id× (α01)!).

So we restrict further to {1} × {1} ×X0 to get

(α02)! = ξα02
|{1} ∼= ξA|{1}×{1} ∼= ξα12

(id× (α01)!)|{1} = (α12)!(α01)!.

□

Corollary 7.3. Let q : E → C be a cocartesian fibration over an ∞-category C .
The functors α! : Xs → Xt assemble into a functor into the homotopy category of
∞-categories q̄! : hC → hCat∞.

Definition 7.4. Let q : E → C be a cocartesian fibration over an ∞-category C .
The homotopy transport representation for q is the functor on homotopy categories

q̄! : hC → hCat∞

is the functor whose value at each object x : ∗ → C is the fiber q̄!(x) = Ex, and
whose value at any morphism α : x→ y in C is the associated homotopy transport
functor α! : Ex → Ey.

More generally, we call any functor F : hC → hCat∞ which comes equipped
with a natural isomorphism ζ : F

∼→ q̄! a homotopy transport representation for q.

One observes that the homotopy transport representation is natural in diagrams
of cocartesian fibrations.

lem:1366 Lemma 7.5. Let

Y

��

F // X

��
T

f
// S

be a diagram of cocartesian fibrations, i.e. a diagram in which F preserves cocarte-
sian maps. Then for any edge α : t → t′ in T the homotopy transport functors fit
into a diagram

Yt
α! //

F

��

Yt′

F

��
Xf(t)

f(α)!

// Xf(t′)

in Cat∞.
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Proof. Follows from the fact that both Fξα and ξf(α)f provide cocartesian lifts for
the diagram

{0} × Yt //

��

{0} ×Xf(t)
//

��

X

��
∆1 × Yt // ∆1 ×Xf(t)

// S.

□

7.2. The hKan-enriched category of ∞-categories. Let A be a simplicial
category whose morphism complexes are all Kan complexes. Via the functor to
the homotopy category π : Kan → hKan we obtain a new category πA which is
enriched in hKan. (Here we note that the usual product of Kan complexes endows
hKan with a unique symmetric monoidal structure under which the projection
π : Kan → hKan is symmetric monoidal.) We compare this Kan enriched category

to the Kan enriched category πNhc(A) obtained via the mapping spaces in the
homotopy coherent nerve and their associated composition functions of Section I-9.

prop:pi_hcnerve Proposition 7.6 ([5, 02LN]). Let A be a simplicial category whose morphism com-

pelxes are Kan complexes, and let A = Nhc(A) denote its associated ∞-category.
Then the natural equivalences

HomA(x, y)
∼→ HomL

A (x, y)
∼→ HomA (x, y)

supplied by Theorems 5.27 and I-10.3 define an equivalence of hKan-enriched cat-
egories πA→ πA .

sect:ehtf
7.3. Enriched homotopy transport. Given a simplicial set S and vertices s, t :
∗ → S we take HomS(s, t) = Fun(∆1, S)×S×S{(s, t)}. For any cocartesian fibration
q : X → S we consider the evaluation map

∆1 ×HomS(s, t)×Xs → ∆1 × Fun(∆1, S)× {s} ev→ S

and the diagram

{0} ×HomS(s, t)×Xs
//

��

X

��
∆1 ×HomS(s, t)×Xs

// S.

The top map is the composite of the projection to Xs with the inclusion Xs → X.
By Theorem 2.7 there is a unique functor

ξ : ∆1 ×HomS(s, t)×Xs → X

which splits the above diagram and sends each edge ∆1×{(α, x)} to a q-cocartesian
morphism in X. The uniqueness claim of Theorem 2.7 tells us that, and each α in
HomS(s, t), ξ restricts to the transformation ξα appearing in the defintion of the
homotopy transport functor α!. So the map

ξ|{1} : HomS(s, t)×Xs → Xt

provides a paramterized family of morphisms whose fibers are the homotopy trans-
port functors α!.

https://c-negron.github.io/infty_partI.pdf
https://kerodon.net/tag/02LN
https://c-negron.github.io/infty_partI.pdf
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def:pht Definition 7.7. Given a cocartesian fibration q : X → S, we call the functor ξ|{1} :
HomS(s, t) × Xs → Xt constructed above the parametrized homotopy transport
functor for q.

Note that we can view ξ|{1} as a functor

qs,t : HomS(s, t) → Fun(Xs, Xt)

via adjunction. In the case that S is an ∞-category, we note that q̃s,t is a functor
between ∞-categories.

Consider now a cocartesian fibration E → C over an ∞-category C . Recall our
notation πC for the hKan-enriched category with By similar arguments to those
employed in our analysis of the homotopy transport functors α! : Xs → Xt, one
sees that these maps assemble into a functor of hKan-enriched categories

πC → πCat+∞

which lifts the homotopy transport functor q̄! of Section 7.1.

def:param_transp Definition 7.8. Given a cocartesian fibration q : E → C over an ∞-category C ,
we let

q! : πC → πCat∞

denote the hKan-enriched functor whose value at any object x : ∗ → C is the fiber
Ex, and whose values on morphisms

q! : HomC (x, y) → Fun(Ex,Ey)
Kan ∼= HomCat∞(Ex,Ey)

are the functors induced by parametrized homotopy transport. We call q! the
enriched homotopy transport representation associated to q.

We generally, we call any enriched functor F : πC → πCat∞ which comes
equipped with a natural isomorphism ζ : F

∼→ q! a homotopy transport representa-
tion for q.

Note that here we’ve employed the natural identification πCat+∞
∼= Cat∞ pro-

vided by Proposition 7.6 here when we replace the functor categories with the
Hom-spaces for Cat∞.

One again sees that the enriched homotopy transport representation is natural

lem:enriched_pullback Lemma 7.9. Consider a diagram of ∞-categories

E

q

��

G // K

p

��
C

F
// D

(15) eq:1464

in which p and q are cocartesian fibrations and G preserves cocartesian maps. Sup-
pose also that C and D are ∞-categories. Then the maps G|Ex : Ex → KF (x) define
a natural transformation between the enriched homotopy transport representations

G! : q! → p!F.

The proof is the same as that of Lemma 7.5. We note that when the diagram
(15) is a categorical pullback diagram then the maps G|Ex : Ex → KF (x) are

isomorphisms in hKan, so that G̃! is a natural isomorphism of hKan-enriched
functors.
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Lemma 7.10. If a diagram (15) is a pullback diagram of cocartesian fibrations,
then the composite functor

πC
F→ πD

p!→ πCat∞

is an enriched homotopy transport functor for q.

7.4. Transport functors induce homotopy transport. We have the following
fundamental result concerning homotopy transport.

thm:transport_v_transport Theorem 7.11 ([5, 02S5]). Consider the universal cocartesian fibration U : P.Cat∞ →
Cat∞. The equivalences

θ : C → (P.Cat∞)C

from Corollary 5.28 define a natural isomorphism idπCat∞
∼→ U!. This isomorphism

realizes the identity functor id : πCat∞ → πCat∞ as enriched homotopy transport
for the universal fibration.

The proof proceeds by a more general analysis of homotopy transport for co-
cartesian fibrations of the form(

Nhc(A)x/)
Pith → Nhc(A)Pith,

where A a simplicial category which is enriched in ∞-categories [5, 02RZ]. We omit
the details and refer the reader instead to the text [5].

Now, given an arbitrary cocartesian fibration q : E → C we have a categorical
pullback diagram

E //

q

��

P.Cat∞

��
C

F
// Cat∞

(16) eq:1525

which identifies a given functor F as the transport functor for q. Since homo-
topy transport is preserved under categorical pullback, we conclude that transport
functors always induce enriched homotopy transport at the level of the enriched
homotopy category.

cor:transport_v_transport Corollary 7.12. For any cocartesian fibration q : E → C , and classifying functor
F : C → Cat∞, the induced map on enriched homotopy categories

πF : πC → πCat∞

is an enriched homotopy transport functor for q. More specifically, the isomor-
phisms Ex → F (x) in hKan provided by the diagram (16) and Theorem 5.27

define an isomorphism of enriched functors πF
∼→ q!.

7.5. Homotopy transport and enriched Hom functors. For an ∞-category
C and an object x : ∗ → C , we recall the oriented fiber product {x} ×or

C C , which
is the explicitly the isofibration

{x} ×Fun({0},C ) Fun(∆
1,C ) → Fun({1},C ) = C .

We have the equivalence of isofibrations

Cx/
∼ //

  

{x} ×or
C C

zz
C

https://kerodon.net/tag/02S5
https://kerodon.net/tag/02RZ
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of Theorem I-10.15, from which we conclude that the projection {x} ×C C → C is
in fact a left fibration.

We assess homotopy transport Cx/ → C by considering this equivalent fibra-
tion. We note that the fibers of {x} ×or

C C over C are simply the mapping spaces
HomC (x, y).

prop:comp_transp Proposition 7.13. Let C be an ∞-category and x0 : ∗ → C be any object. The
composition functions

◦ : HomC (x1, x2)×HomC (x, x1) → HomC (x, x2)

from Section I-9.1 are parametrized homotopy transport for the left fibration {x}×or
C

C → C .

Proof. Take x0 = x and x⃗ = (x0, x1, x2). A morphism ∆1 × Hom(x1, x2) ×
Hom(x0, x1) → {x0} ×or

C C is equivalent to a choice of a morphism

∆1 ×∆1 ×Hom(x1, x2)×Hom(x0, x1) → C

whose restriction to {0} in the first argument is of constant value x0. Let h :
∆1 ×∆1 → ∆2 be the map which sends (0, j) to 0 and (1, j) to j + 1 and let

ω : Hom(x1, x2)×Hom(x0, x1) → Fun(∆2,C )x⃗

be any section of the trivial Kan fibration

Fun(∆2,C )x⃗ → Fun(Λ2
1,C )x⃗ = Hom(x1, x2)×Hom(x0, x1).

We consider the composite

∆1 ×∆1 ×Hom(x1, x2)×Hom(x0, x1)
h×id→ ∆2 ×Hom(x1, x2)×Hom(x0, x1) (17) eq:1582

id×ω→ ∆2 × Fun(∆2,C )x⃗
ev→ C .

One sees directly that this composite is of constant value x0 when restricted to {0}
in the first argument, and the restriction to {1} in the first argument yields the
map

∆1 ×Hom(x1, x2)×Hom(x0, x1) → ∆1 ×Hom(x1, x2)
ev→ C

since ω is a section of the aforementioned fibration. This implies commutativity of
the diagram

{0} ×Hom(x1, x2)×Hom(x0, x1) //

��

{x} ×or
C C

��
∆1 ×Hom(x1, x2)×Hom(x0, x1) //

ξ

44

C ,

where ξ is adjoint to the composite (17). So therefore realize the restriction

ξ|{1} : ∆1 ×Hom(x1, x2)×Hom(x0, x1) → Hom(x0, x2)

as enriched transport for the given fibration, which one checks directly is simply
the composition function for HomC , i.e. the uniquely determined composite

Hom(x1, x2)×Hom(x0, x1) → Fun(∆2,C )x⃗ → Fun(∆{0,1},C )(x0,x2) = Hom(x0, x2)

in hKan. □

https://c-negron.github.io/infty_partI.pdf
https://c-negron.github.io/infty_partI.pdf
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We now find that the Hom-functor

HomC (x,−) : πC → πKan

is the enriched homotopy transport representation for the oriented fiber product
{x} ×or ×or

C C → C , and hence also for the fibration Cx/ → C .

Corollary 7.14. Let C be any ∞-category and x : ∗ → C be any object. The
Hom-functor

HomC (x,−) : πC → πKan

is an enriched homotopy transport functor for the left fibration Cx/ → C .

8. Transport III: Naturality of transport

8.1. Foundations: Weighted nerves in the simplicial setting. In Section 6.8
we introduced the weighted nerve, which produces a cocartesian fibration

NF (A) → NG(A)
for each pair of functors F,G : A → Cat∞ ⊆ Cat∞ from a discrete category A
and transformation F → G which is appropriately cocartesian. Since the contant
functor ∗ : A → Cat∞ is terminal, and ∞-categories are cocartesian fibrations over
a point, we have the canonical fibration

NF (A) → N∗(A) = A
associated to any discrete functor into Cat∞. We recall here a relative version of
this construction.

For any functor F : A → sSet from a discrete category we can define the simplicial
set NF (A) exactly as in Definition 6.19. So, n-simplices in NF (A) consist of the
choice of an n-simplex σ : ∆n → A along with an expanding sequence of n-simplices
τi : ∆

i → F (ai), where ai = σ(i) at each i and these τi are assumed to fit into
diagrams

∆i incl //

τi

��

∆i+1

i+1

��
F (ai)

Fσ(i<i+1)
// F (ai+1).

We have the following apparent generalization of Proposition 6.23.

prop:relnev_simp Proposition 8.1 ([5, 046X]). Let F,G : A → sSet be functors from a discrete
category A, and ξ : F → G be a natural transformation. Suppose that at each object
a in A the morphism ξ(a) : F (a) → G(a) is a cocartesian fibration, and that for
any morphism t : a → b the map F (t) : F (a) → F (b) preserves cocartesian edges.
Then the following hold:

(1) The induced map Nξ : NF (A) → NG(A) is a cocartesian fibration.

(2) An edge λ : F (α)(x) → y in NF (A), over an edge t : a → b in A, is
Nξ-cocartesian if and only if the underlying map λ : ∆1 → F (b) is ξ(b)-
cocartesian.

For the proof one employs the simplicial generalization of the relative join

K ⋆T L = (K ⋆ L)×T⋆T (∆1 × T ),

observes a simplicial generalization [5, 02RH] of Lemma 6.27, and argues exactly
as in the proof of Proposition 6.23.

https://kerodon.net/tag/046X
https://kerodon.net/tag/02RH
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8.2. Foundation: Lifting witnessing data. Given a cocartesian fibration q :
X → S over a simplicial set S, we have the space of transport functors with wit-
nessing data T W it(q), as defined in Definition 6.13. This is the space of diagrams

X
F̃ //

q

��

P.Cat∞

U

��
S

F
// Cat∞

which witness F as a transport functor for q, or equivalently the space of functors
F : S → Cat∞ which are paired with a diagram

X
G //

q
��

∫
S
F

}}
S

in which G is an equivalence of cocartesian fibrations.

prop:tdata_res Proposition 8.2 ([5, 02SK]). Let q : X → S be a cocartesian fibration, i : K → S
be an inclusion of simplicial sets, and qK : XK → K be the corresponding pullback
fibration. Suppose that every vertex in S is in the image of i. Then the restriction
functor i∗ : T W it(q) → T W it(qK) is a trivial Kan fibration.

We first note that the restriction functor

i∗ : Fun(X,Cat∞)×Fun(S,Cat∞) Fun(X,P.Cat∞

→ Fun(XK ,Cat∞)×Fun(K,Cat∞) Fun(XK ,P.Cat∞)

does in fact preserve the subcomplexes of transport data, by Lemma 6.12. So the
functor i∗ : T W it(q) → T W it(qK) does in fact exist, and is well-defined. We
provide the (somewhat involved) proof of Proposition 8.2 in Section ?? below.

8.3. Naturality of transport.

prop:tnat Proposition 8.3. Consider a map of cocartesian fibrations

X ′ F //

q′   

X

q
��

S ,

and let T ′ : S → Cat∞ and T : S → Cat∞ be transport functors for q′ and q
respectively. Consider also the relative join Y = X ′ ⋆X X and let pF : Y →
S ⋆S S = ∆1 × S be the map induced by q′ and q. The following hold:

(1) pF is a cocartesian fibration.

(2) There are canonical maps X ′ → Y0 and X → Y1 to the fibers Yi = Y ×∆1×S
({i} × S) which are both isomorphisms of cocartesian fiberations over C .

(3) There exists a transport functor ζF : ∆1×C → Cat∞ for pF which satisfies
(ζF )0 = T ′ and (ζF )1 = T .

https://kerodon.net/tag/02SK
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Here when we say the maps X ′ → Y0 and X → Y1 are isomorphisms, we mean
they are isomorphisms in the discrete category of cocartesian fibrations over S. In
particular, they are isomorphisms of simplicial sets.

Proof. (1) Follows from Lemma 6.27, or rather from its simplicial generalization [5,
02RH]. We argue points (2) and (3).

The transport functors F and F ′ are equivalently a transport functor [T ′ T ] :
S⨿S → Cat∞ for the cocartesian fibration q′⨿q : X ′⨿X → S⨿S. We consider the
inclusion i : S⨿S = ∂∆1×S → ∆1×S. After specifying witnessing data for F ′ and
F , ζF is obtained by lifting along the pullback map i∗ : T W it(pF ) → T W it(q′⨿q),

T W it(p)

i∗

��
∗

[F ′ F ]

//

ζF
66

T W it(q′ ⨿ q).

We note that such a lift exists since i∗ is a trivial Kan fibration, by Proposition
8.2. □

We observe that the transformation ζF is unique.

thm:uniq_tnat Theorem 8.4. Consider a map of cocartesian fibrations

X ′ F //

q′   

X

q
��

S ,

and let T ′ : S → Cat∞ and T : S → Cat∞ be transport functors for q′ and q
respectively. Suppose we have specified witnessing data

µ′ : X ′ ∼→
∫
S

T ′ and µ : X
∼→

∫
S

T

as well (Definition 6.8), and consider the corresponding fibration q′⨿ q : X ′⨿X →
S ⨿ S with transport [T ′ T ] : S ⨿ S → Cat∞. Let pF : Y → ∆1 × S be the fibration
from Proposition 8.3 and i : S ⨿ S ∼= ∂∆1 × S → ∆1 × S be the inclusion. Then
the space

T W it(pF )×T Wit(q′⨿q)
{
[µ′ µ]

}
of transformations ζF : ∆1 → Cat∞ with witnessing data µF : Y

∼→
∫
∆1 ζF and

specified restrictions is a contractible Kan complex.

Proof. Follows from the fact that the map i∗ : T W it(pF ) → T W it(q′ ⨿ q) is a
trivial Kan fibration, by Proposition 8.2, and the fact that the class of trivial Kan
fibrations is stable under pullback. □

def:zeta_F Definition 8.5. Consider a map of cocartesian fibrations

X ′ F //

q′   

X

q
��

S

https://kerodon.net/tag/02RH
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and suppose T ′ : S → Cat∞ and T : S → Cat∞ are transport functors with
respective witnessing data

µ′ : X ′ ∼→
∫
S

T ′ and µ : X
∼→

∫
S

T.

A transformation ζF : T ′ → T induced by F is any transformation in the fiber

T W it(pF )×T Wit(q′⨿q)
{
[µ′ µ]

}
from Theorem 8.4.

As demonstrated in Theorem 8.4, the given fiber is contractible, so that the
transformation ζF is uniquely specified.

8.4. Does the witnessing data actually matter? One might ask the question:
In determining the transformation ζF : T ′ → T associated to a given functor F ,
does the choice of witnessing data for T ′ and T actually matter? The short answer
to this question is, in a generic sense no, but in a specific sense yes. The no part
of this answer comes from the observation that, as one varies witnessing data for
T ′ and T then one can lift the corresponding paths in T W it(q′ ⨿ q) to paths in
T W it(pK) along the trivial Kan fibration

i∗ : T W it(pK) → T W it(q′ ⨿ q).

However, in following this lifted path one actually changes the underlying transfor-
mation ζF , though one obviously does stay within a single isomorphism class for
such transformations. To illustrate this one can consider the case of a point S = ∗.

In order to keep our presentation at least slightly efficient, we leave the proof of
the following to the interested reader.

Proposition 8.6. Let F : C → D be functor between ∞-categories with correspond-
ing fibration pF : C ⋆D D = NF (∆1) → ∆1. Note that we have an identification
(C ⋆D D)×∆1 ∂∆1 = C ⨿ D , and consider these underlying categories as functors
C ,D : ∗ → Cat∞. Consider also the sequence of maps

T W it(pF ) → T W it(C ⨿ D) → Fun(∂∆1,Cat∞).

Given another functor F ′ : ∆1 → Cat∞ with F ′(0) = C and F ′(1) = D , F ′ and
F both lie in the image of the fiber

T W it(pF )×Fun(∂∆1,Cat∞) {(C ,D)} → Fun(∆1,Cat∞)

if and only if there exist equivalences α : D → D and β : C → C at which one has
a natural isomorphism F ′ ∼→ αFβ−1.

For fixed witnessing data µC : C →
∫
∗ C and µD : D →

∫
∗ D , F ′ and F lie in

the image of the fiber

T W it(pF )×T Wit(C⨿D) {(µC , µD)} → Fun(∆1,Cat∞)

if and only if there is a natural isomorphism F ′ ∼→ F .

We note also that the fiber

T W it(pF )×Fun(∂∆1,Cat∞) {(C ,D)},
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though it is a Kan complex, needn’t be contractible. Indeed, when C = D and F
is an automorphism, the forgetful functor

T W it(pF )×Fun(∂∆1,Cat∞) {(C ,C )}

→ Fun(∆1,CatKan
∞ )Kan ×Fun(∂∆1,Cat∞) {(C ,C )} = AutCat∞(C )

identifies the components of the fiber with the components of the automorphism
group

π0 AutsCat∞(C ) = AuthCat∞(C ).

In particular the “witnessless fiber” is not even connected when C non-homotopic
automorphisms. One can consider the case C = Sing(Tn) for example, where one
has necessarily non-homotopic automorphisms which exchange the generators in
the fundamental group.

8.5. Equivalences and natural isomorphisms. The following can be observed
by checking on the fibers over S and the characterization

Proposition 8.7. Consider a map of cocartesian fibrations

X ′ F //

q′   

X

q
��

S ,

and let T ′ : S → Cat∞ and T : S → Cat∞ be transport functors for q′ and q
respectively. The transformation ζF : ∆1 × S → Cat∞ induced by F is a natural
isomorphism between T ′ and T if and only if F is an equivalence of cocartesian
fibrations.

Given naturally isomorphic maps of cocartesian fibrations F0, F1 : X ′ → X, with
corresponding natural isomorphism

∆1 ×X ′ ξ̄ //

##

X

��
S ,

we can replace ξ̄ with the corresponding map ξ : ∆1 ×X ′ → ∆1 ×X over ∆1 × S
where ξ is specifically obtained as the composite

∆1 ×X ′ δ×1−→ ∆1 ×∆1 ×X ′ 1×ξ̄−→ ∆1 ×X.

We note that, on objects, we have ξ(i, x) = (i, ξ̄(i, x)) and on morphisms we have

ξ(0 < 1, idx) = (0 < 1, ξ̄x) ξ(i, α) = (i, Fi(α)).

Since the maps ξ̄x are isomorphisms in the fiber Xs, over a specific point in S, we
observe from the above description that ξ preserves cocartesian edges.

Taking the weighted nerve then provides a cocartesian fibration

qξ : N
ξ(∆1) → ∆1 × (∆1 × S) = ∆1 ×∆1 × S

symm×1−→ ∆1 ×∆1,
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where symm is the symmetry (factor swapping) on sSet. The fibers of qξ along the

inclusions {i}×∆1 × S → ∆1 ×∆1 × S recover the nerves NFi(∆1), and the fibers
along inclusions ∆1 × {(i, s)} recover the nerves

∆1 ×X ′
s = NidX′

s (∆1) and ∆1 ×Xs = NidXs (∆1).

From this information, and Proposition 8.2, one sees that the associated transport
functor

ζξ̄ : ∆
1 ×∆1 × S → Cat∞

provides a natural isomorphism ζF0

∼→ ζF1
. So we observe the following.

prop:resp_isoms Proposition 8.8. Consider maps of cocartesian fibrations

X ′
F0 //
F1

//

q′   

X

q
��

S

and transport functors T ′, T : S → Cat∞ for q′ and q. Suppose that F0 and
F1 are isomorphic as maps between isofibrations over S. Then the corresponding
transformations ζF0

, ζF1
: T ′ → T are naturally isomorphic as well.

8.6. Composition and homotopy straightening.

prop:resp_comps Proposition 8.9. Consider maps of cocartesian fibrations

X ′′ F ′
//

q′′ !!

X ′

q′

��

F // X

q
~~

S

(18) eq:2301

and trasport functors T ′′, T ′, T : S → Cat∞ for q′′, q′, and q respectively. The
induced transformations ζF ′ , ζF and ζFF ′ fit into a 2-simplex

T ′

ζF

��
T ′′

ζFF ′
//

ζ′F

>>

T

in Fun(S,Cat∞). This is to say, ζFF ′ is a composite ζFF ′ = ζF ◦ ζF ′ .

Proof. The sequence of maps FF ′ : X ′′ → X ′ → X define a 2-simplex σ : ∆2 →
sSet which factors through Cocart(S), and the diagram (18) defines a natural trans-
formation to the constant diagram σ → S which evaluates at each vertex i : ∗ → ∆2

to a cocartesian fibration. Hence the induced map

Nσ(∆2) → NidS (∆2) = ∆2 × S

is a cocartesian fibration by Proposition 8.1. The transport functors for the restric-
tions

Nσ(∆2)∆{0,1} = NF
′
(∆2), Nσ(∆2)∆{1,2} = NF (∆2), Nσ(∆2)∆{0,2} = NFF

′
(∆2)

are ζF ′ , ζF , and ζFF ′ respectively. These transport functors collectively define a
functor

∂ζσ : ∂∆2 × S → Cat∞
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which we fill, using Proposition 8.2, to the proposed 2-simplex ζσ : ∆2 × S →
Cat∞. □

We combine Propositions 8.8 and 8.9 to obtain a functor at the homotopical
level.

cor:htop_st Corollary 8.10. For any simplicial set S, the assignments

{ q : X → S } 7→ { a chosen trasport functor T : S → Cat∞ }
X ′ F //

q′   

X

q
��

S


7→ { the induced transformation ζF : T ′ → T }

provides a well-defined functor h St : hCocart(S) → hFun(S,Cat∞).

Of course, here we have made some choices in order to define the functor h St.
Specifically, we have specified a transport functor for each cocartesian fibration.
However the resulting functor uniquely determined up to a unique natural isomor-
phism via contractibility of the space of such choices. Alternatively, one can replace
the category Cocart(S) with an equivalent category of pairs consisting of a cocarte-
sian fibration over S with a specific choice of transport functor with witnessing
data.

It’s clear that the functor h St is essentially surjective, and it is relatively easy to
argue that it is fully faithful as well. Hence it is an equivalence. The inverse to h St
is provided by a functor hUn which simply pulls back along the universal fibration
univ : P.Cat∞ → Cat∞, i.e. by the assignment T 7→

∫
S
T , and applies cocartesian

lifts

{0} ×
∫
S
T0

��

//
∫
∆1×S ξ

��
∆1 ×

∫
S
T0

∃!

88

// ∆1 × S

⇒ Fξ :

∫
S

T0 →
∫
S

T1

to transformations ξ : ∆1 × S → Cat∞.
One can show that these functors lift to equivalences of ∞-categories.

thm:str_unstr Theorem 8.11. The functors h St and hUn lift to mutually inverse equivalences of
∞-categories St : Cocart(S) → Fun(S,Cat∞) and Un : Fun(S,Cat∞) → Cocart(S).

As we won’t use this refinement of Corollary ??, we confine the proof to the
appendix.

Remark 8.12. One of the most fundamental results in the text [3] is the production
of the straightening and unstraightening equivalences [3, Theorem 3.2.0.1]. On
objects it is clear that our functors St and Un agree with those from [3]. We’ve
not been able to explicitly compare our functors with those of [3] at the level
of morphisms or mapping spaces. We expect, however, that this topic will be
reformulated essentially completely in the text [5], in accordance with the general
philosophy exemplified throughout [5, 027M, 028K, 028M].

https://kerodon.net/tag/027M
https://kerodon.net/tag/028K
https://kerodon.net/tag/028N
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8.7. Transformations over a varying base. Consider a diagram

X ′ F //

q′

��

X

q

��
S

f
// U

in which q and q′ are cocartesian fibrations and F preserves cocartesian edges. Then
we have the corresponding map of cocartesian fibrations to the pullback

X ′ FS //

q
  

XS

qS
~~

S

Consider transport functors T ′ : S → Cat∞ and T : U → Cat∞ for q′ and q with
respective witnessing data

µ′ : X ′ ∼→
∫
S

T ′ and µ : X
∼→

∫
U

T.

We recall from Lemma 6.12 that the composite Tf : S → Cat∞ is a transport
functor for the pullback qS , along with the pulled back data µS : XS →

∫
S
Tf .

Take

pF : X ′ ⋆XS
XS → ∆1

the cocartesian fibration associated to FS (Lemma 6.27).

def:zeta_Frel Definition 8.13. For a diagram of cocartesian fibrations as above, with specified
transport functors etc. The transformation ζF : T ′ → Tf induced by F is any
element in the contractible space

T W it(pF )×T Wit(q′⨿qS)

{
(µ′, µS)}.

Rather the transformation induced by F is, in the sense of Definition 8.5, the
transformation induced by the pullback FS : X ′ → XS .

8.8. At the homotopy level. Consider a diagram of cocartesian fibrations

E ′ F //

q′   

E

q
��

C

over an ∞-category C , and the corresponding fibration NF (∆1) → ∆1 × S. The
enriched homotopy transport representation

∆1 × πC = π(∆1 × C ) → πCat∞

restricts to recover the enriched homotopy transport functors q′! and q! at the points
0 and 1 : ∗ → ∆1 respectively (Definition 7.8), and at each object x : ∗ → C a
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morphism transfx : E ′
x → Ex which fits into a diagram

HomC (x, y)
q! //

q′!
��

Fun(Ex,Ey)

(transfx)
∗

��
Fun(E ′

x,E
′
y) (transfx)∗

// Fun(E ′
x,Ey)

(19) eq:2458

over arbitrary points x, y : ∗ → C .
One calculates the transformation in question by evaluating the unique cocarte-

sian solution

{0} × E ′
x

��

// NFx(∆1)

��
∆1 × Ex //

∃! F̃x

66

∆1

(20) eq:2468

at {1} × Ex.

Lemma 8.14. In the above situation, there is a cocartesian solution F̃x : ∆1×E ′
x →

NFx(∆1) to the lifting problem (20) which satisfies F̃x|{1} = Fx : E ′
x → Ex.

Proof. We consider the identification NF (∆1) = E ′
x ⋆Ex

Ex. The unique map ∆1 ×
E ′
x → E ′

x ⋆ Ex which restricts to the identity on {0} × E ′
x and Fx on {1} × E ′

x, and
the map id∆1 × Fx : ∆1 × E ′

x → ∆1 × Ex, define a map of simplicial sets to the
weighted nerve

F̃x : ∆1 × E ′
x → NF (∆1).

By construction F̃x is a map over ∆1. Furthermore the restriction F̃x : ∆1 ×
{e} → NF (∆1) recovers the cocartesian edge (e, idF (e) : F (e) → F (e)) in the

nerve. Hence F̃x provides the unique cocartesian solution to the lifting problem

(20). Finally, we have by construction F̃x|{0} = idE ′
x
and F̃x|{1} = Fx. □

This lemma tells us that the mystery transformations transfx and transfy ap-
pearing in (19) are explicitly given by the fibers Fx and Fy respectively. We now
have a complete description of the enriched homotopy transport representation for
the fibration NF (∆1) → ∆1×C , and hence for the enriched transformation induced
by F .

cor:enrich_zeta_F Corollary 8.15. Consider a diagram of ∞-categories

E ′ F //

q′

��

E

q

��
C ′

f
// C

in which q′ and q are cocartesian fibrations and F preserves cocartesian edges. Let
T ′ : C ′ → Cat∞ and T : C → Cat∞ be transport functors, with specified witnessing
data, and ζF : T ′ → Tf be the transformation induced by F . Then under the
identifications πT ′ ∼= q′! : πC ′ → πCat∞ and πT ∼= q! : πC → πCat∞ from
Corollary 7.12, the transformation πζF : q′! → q!f is calculated by the fibers of F
along C ,

(πζF )x = Fx : E ′
x → EF (x).
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Example 8.16. Consider a functor between ∞-categories f : C → D and the
corresponding map of left fibrations

{x} ×or
C C

F //

��

{F (x)} ×or
D D

��
C

f
// D ,

at a given object x : ∗ → C . By Proposition 7.13 the associated enriched homotopy
transport functors are the corepresentable functors

HomC (x,−) : πC → πKan and HomD(fx,−) : πD → πKan

respectively, and by Corollary 8.15 the transformation induced by F evaluates at
each object y to return the expected map

πζF = f : HomC (x, y) → HomD(fx, fy).

9. Initial and terminal objects

Before beginning with our study in earnest, with the introduction of Hom func-
tors and the Yoneda embedding for ∞-categories, we discuss the notions of initial
and terminal objects in an ∞-category.

9.1. Initial and terminal basics.

Definition 9.1. Let C be an ∞-category. An object x in C is called initial if, for
each object z in C , the mapping space HomC (x, z) is contractible. An object z in C
is called terminal if, for each object z in C , the space HomC (z, y) is is contractible.

One sees that an object x is initial (resp. terminal) in C if and only if x is
terminal (resp. initial) in the opposite category C op. So we can freely translate
between results for initial versus terminal objects. Note also that we can replace
the mapping space HomC (x, y) with either the left or right pinched spaces when
evaluating initial-ness or terminal-ness of objects.

lem:init_unique Lemma 9.2. Let C be an ∞-category, and let CInit and CTerm denote the full ∞-
subcategories whose objects are the initial and terminal objects in C , respectively.
Then each of the categories CInit and CTerm is either empty or a contractible Kan
complex.

This is to say, the initial (or terminal) object in an ∞-category C is unique,
provided any such object exists.

Proof. We only consider the case of CInit. Let us suppose that this subcategory is
nonempty. Via contractibility of the mapping spaces we conclude that the functor
CInit → ∗ is fully faithful and essentially surjective, and hence an equivalence of
∞-categories. So CInit is a contractible Kan complex. □

lem:2181 Lemma 9.3. If x is initial (resp. terminal) in C , then another object x′ is initial
(resp. terminal) in C if and only if x′ is isomorphic to x.

Proof. For any isomorphism α : x→ x′ the induced maps

α∗ : HomC (x, y) → HomC (x′, y) and α∗ : HomC (y, x) → HomC (y, x′)
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are isomorphisms in hKan, at all y in C . So contractibility of the left-hand spaces
implies contratibility of the right-hand spaces. □

One also sees that equivalences of ∞-categories preserve initial and terminal
objects.

lem:equiv_initial Lemma 9.4. If F : C → D is an equivalence between ∞-categories, and x is initial
(resp. terminal) in C , then F (x) is initial (resp. terminal) in D

Proof. Suppose that x is initial in C . First note that any isomorphism β : y → y′

in D induces isomorphisms

β∗ : HomD(z, y)
∼→ HomD(z, y′)

in the homotopy category of Kan complexes. So an object z in D is initial if and
only if the relevant mapping spaces are contractible at a dense collection of objects
in D . (By a dense collection we mean a collection which contains a representative
for every isoclass in D .) Since any equivalence is both fully faithful and essentially
surjective, we have that the mapping spaces HomD(Fx, y) are contractible at all y
in the image of C , and hence at all y in D . So F (x) is initial in D . The case where
x is terminal is proved similarly. □

Warning 9.5. Initial and terminal objects are not well-behaved under fibering.
Consider for example the cone C = {x2 + y2 = z : x, y, z ∈ R} and its projection
onto the z-axis line Rz ∼= R. The projection Sing(C) → Sing(Rz) is a Kan fibration

and the objects 1⃗ = (1, 1, 1) and 1 are both initial and terminal in Sing(C) and

Sing(Rz) respectively, since these spaces are contractible. However, 1⃗ is not initial
or terminal in the fiber Sing(C)1 = Sing(S1). In fact, this fiber admits no such
objects.

9.2. Aside: trivial fibrations via the fibers. For the analysis that follows, it is
convenient to have a characterization of trivial Kan fibrations which can be checked
on the fibers.

prop:triv_fibs Proposition 9.6. A map of simplicial sets f : C → S is a trivial Kan fibration if
and only if f is a left (or right) fibration and, at each point s : ∗ → S, the fiber Cs
is a contractible Kan complex.

Sketch proof. If f is a trivial Kan fibration then it is both a left and right fibration,
and all of its fibers are contractible. As for the other direction, assume now that
f is a left fibration and that all of its fibers are contractible. (The case of a right
fibrations is then obtained by taking opposites.)

We must show that each lifting problem of the form

∂∆n

��

// C

��
∆n //

<<

S

admits a solution. In the case that n = 0, such a solution exists since the fibers
Cs are all non-empty. So we assume n > 0. By replacing S with ∆n, and C with
∆n ×S C , we may assume also that both S and C are ∞-categories. For fun we



52 CRIS NEGRON

can finally replace this lifting problem with the related lifting problem

{0} × ∂∆n σ̄ //

��

C

��
∆1 ×∆n

σ
//

::

S,

(21) eq:1722

which is obtained by restricting along the projections

p : ∆1 ×∆n → ∆n, p(0, i) = i, p(1, i) = n,

and which recovers our original problem after restricting to {0}×∆n. It suffices to
solve this second problem.

By [5, 0153] the class of left anodyne maps is stable under the cartesian action
of sSet on itself, so that the inclusion {0} × ∂∆n → ∆1 × ∂∆n is left anodyne.
Since the map f is left anodyne, it follows that the lifting problem (21) extends to
a problem

∆1 × ∂∆n σ̄ //

��

C

��
∆1 ×∆n

σ
//

::

S,

Since the fibers of f are trivial Kan fibrations, the above problem extends further
to a problem of the form

Y (0)
σ̄ //

��

C

��
∆1 ×∆n

σ
//

;;

S,

where Y (0) is the pushout

Y (0) = (∆1 × ∂∆n)
∐

{1}×∂∆n

({1} ×∆n).

By [5, Proof of 00TH] the inclusion Y (0) → ∆1 × ∆n can be factored into a
sequence Y (0) → Y (1) → · · · → Y (n + 1) = ∆1 × ∆n with each Y (i + 1) fitting
into a pushout diagram

Λn+1
i+1

��

// Y (i)

��
∆n+1 // Y (i+ 1).

Furthermore, this sequence can be constructed so that at Y (n) = ∆1 × ∆n the
sequence

∆1 ∼= ∆{n,n+1} → ∆n+1 → ∆1 ×∆n

recovers the edge ∆1 × {n}.

https://kerodon.net/tag/0153
https://kerodon.net/tag/00TH
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Now, since f is inner anodyne we can solve, in order, the lifting problems

Y (i− 1)

��

// C

��
Y (i) //

;;

S

at all 0 < i ≤ n. For the final lifting problem, along the inclusion Y (n) → Y (n+1),
we need to solve a lifting problem of the form

Λn+1
n+1

��

// C

��
∆n+1 //

==

S

in which σ|∆{n,n+1} is of a constant value s in S. Since the fiber Cs is a Kan
complex, the morphism ∆{n,n+1} → Λn+1

n+1 → C is an isomorphism in C . We can
therefore solve this final lifting problem, by Proposition I-5.33, and hence obtain
the desired solution to the problem (21). □

When applied to the case of a Kan fibration we have the following, which can
also be deduced from Propositions I-4.9 and I-4.21.

Corollary 9.7. A map between Kan complexes f : X → Y is a trivial Kan
fibration if and only if it is a Kan fibration and, at each point y : ∗ → Y , the fiber
Xy is contractible.

We recall that a map between Kan complexes is a trivial Kan fibration if and
only if it is a Kan fibration and an equivalence. This is Proposition I-4.9. We have
the following variant in the ∞-setting as another corollary.

cor:triv_equiv_infty Corollary 9.8. A left (or right) fibration of ∞-categories F : C → D is a trivial
Kan fibration if and only if it is an equivalence.

Proof. Consider the diagram of fibrations

C
F //

F   

D

~~
D .

From Theorem 3.8 we conclude that F is an equivalence if and only if, at each point
y : ∗ → D , the fiber Cy → ∗ is an equivalence of Kan complexes, i.e. if and only if
each fiber Cy is contractible. By Proposition 9.6 this occurs if and only if F is a
trivial Kan fibration. □

9.3. Initial objects and undercategories.

prop:terminal_over Proposition 9.9. An object in an ∞-category x : ∗ → C is initial if and only if the
forgetful functor Cx/ → C is a trivial Kan fibration. Dually, an object y : ∗ → C
is terminal if and only if the functor C/y → C is a trivial Kan fibration.

Proof. If x is initial then all of the left pinched mapping spaces are contractible, so
that all of the fibers of the left fibration Cx/ → C are contractible. It follows that
this map is a trivial Kan fibration. For the converse, we simply note that trivial

https://c-negron.github.io/infty_partI.pdf
https://c-negron.github.io/infty_partI.pdf
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Kan fibrations are stable under pullback. The arguments in the terminal case are
similar. □

Let us now give a technical lemma.

lem:1699 Lemma 9.10. For each positive integer n, the map

(∆1 ⋆ ∂∆n)
∐

({0}⋆∂∆n)

{0} ⋆∆n → ∆1 ⋆∆n ∼= ∆n+2

induced by the respective inclusions is an isomorphism onto the horn Λn+2
0 .

See [5] for the proof. We have the following characterization of isomorphisms via
initial and terminal objects.

prop:isom_initial Proposition 9.11. For a map α : x → y in an ∞-category C , the following are
equivalent:

(a) α is an isomorphism.
(b) α is initial when considered as an object in the undercategory Cx/.
(c) α is terminal when considered as an object in the overcategory.

Proof. We prove the equivalence between (a) and (b). The equivalence between (a)
and (c) is obtained by taking opposites. The implication (b) ⇒ (a) just follows by
considering maps between α and idx in the undercategory. So suppose that α is
an isomorphism. By Proposition 9.9, α is initial in Cx/ if and only if the forgetful
functor

Cα/ ∼= (Cx/)α/ → Cx/

is a trivial Kan fibration. Now, via a consideration of the identification from Lemma
9.10, solving a lifting problem of the form

∂∆n

��

// Cα/

��
∆n // Cx/

is equivalent to solving the corresponding lifting problem

Λn+2
0

��

// C

��
∆n+2 // ∗

in which the initial edge ∆{0,1} → C is α. Such a problem admits a solution
by Proposition I-5.33, so that the forgetful functor is seen to be a trivial Kan
fibration. □

We take a moment to discuss some examples before returning to the theoretical
foundations of this topic.

https://c-negron.github.io/infty_partI.pdf
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9.4. Initial and terminal objects in simplicial nerves.

Definition 9.12. An object x in a simplicial category A is called initial (resp.
terminal) if, for each y in A, the mapping complex HomA(x, y) (resp. HomA(y, x))
is a contractible Kan complexes.

The easiest way for this to occur is if the relevant mapping complexes are just
points. For example, one sees immediately that ∅ and ∗ are initial and terminal in
Kan, respectively.

For A enriched in Kan complexes, and A = Nhc(A), the equivalence

HomA(x, y)
∼→ HomL

A (x, y)

of Theorem 5.27 tells us that an object x is initial (resp. terminal) in A if and only
if x is initial (resp. terminal) when considered as an object in the ∞-category A .
The analogous claim is seen to hold for terminal objects via a consideration of the
opposite categories.

Lemma 9.13. Let A be a simplicial category which is enriched in Kan complexes.
Then an object x is initial (resp. terminal) in A if and only if the corresponding

object x is initial (resp. terminal) in Nhc(A).

The following corollary is not an immediate consequence of triviality of the map-
ping categories Fun(∅,C ) and Fun(C , ∗), when C is an ∞-category.

cor:1761 Corollary 9.14. The empty set ∅ is initial in both Kan and Cat∞. The point ∗
is terminal in both Kan and Cat∞.

9.5. Zero objects in pointed spaces. Though we will not use the term explicitly,
a zero object in an ∞-category is an object which is simultaneously initial and
terminal. Such objects are familiar from our studies of abelian categories. In the
∞-setting, the theory of abelian categories is, to some extent and in an indirect
manner, reflected in the theory of stable categories. In the stable setting one again
demands the existence of a zero object.

prop:tzero_under Proposition 9.15. If x is terminal in an ∞-category C , then x is both initial and
terminal in the category Cx/.

By x in Cx/ we mean any morphism x → x. Since x is terminal, this lift of x
to an object in Cx/ is uniquely determined up to a contractible space. Practically
speaking, we can just take this lift to be idx : x→ x.

Proof. The fact that x is initial in Cx/ follows by Proposition 9.11. For terminality,
we consider the forgetful functor

Cx//x → C ,

where Cx//x = (Cx/)/x = (C/x)x/. For any inclusion of simplicial sets A → B, the
existence of a solution to a lifting problem

A //

��

Cx//x

��
B // Cx/
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is equivalent to the existence of a solution to the corresponding lifting problem

{x} ⋆ A //

��

C/x

��
{x} ⋆ B // C .

By Proposition 9.9 a solution to the latter problem exists, since x is terminal in C .
It follows that the map Cx//x → Cx/ is a trivial Kan fibration, and hence that x is
terminal in Cx/, by Proposition 9.9. □

Recall form Corollary 9.14 that the 1-point space ∗ is terminal in Kan.

Corollary 9.16. The 1-point space ∗ is both initial and terminal in the ∞-category
Kan∗/ of pointed Kan complexes.

9.6. Zero objects in derived categories.

Definition 9.17. An object x in a dg category A is said to be initial (resp. ter-
minal) if, at each y in A, the Hom complex Hom∗

A(x, y) (resp. Hom∗
A(y, x)) is

acyclic.

Recall our calculation of the mapping spaces in the dg nerve A = Ndg(A) via
the Hom complexes in A,

HomL
A (x, y)

∼→ K(Hom∗
A(x, y))

(Proposition I-12.7). By Theorem I-11.13, the above calculation tells us that the

mapping HomL
A (x, y) are contractible whenever the complex Hom∗

A(x, y) is acyclic.
So we observe the following.

lem:init_dg Lemma 9.18. Let A be a dg category and take A = Ndg(A). If an object x
is initial (resp. terminal) in A, then the corresponding object x is initial (resp.
terminal) in A .

Remark 9.19. The converse to Lemma 9.18 holds if we assume that our dg cate-
gory A has a good shift functor (see Section 12.1).

For any abelian category A, the object 0 is both initial and terminal in the
dg category Ch(A) of cochains over A, and hence also in the subcategories of K-
projective and K-injective complexes. We recall that the derived ∞-category D(A)
is defined by taking the dg nerve of the dg category of K-injective objects in Ch(A)
when we have enough such objects, or K-projectives when we have enough such
objects (see Section I-13).

Corollary 9.20. For any Grothendieck abelian category A, the zero complex 0 is
both initial and terminal in the derived ∞-category D(A).

9.7. Initial objects and weak contractibility. We phrase all results below in
terms of initial objects. The corresponding results hold for terminal objects via
duality.

Lemma 9.21. A Kan complex X admits an initial object if and only if X is
contractible.

https://c-negron.github.io/infty_partI.pdf
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Proof. If x is initial in X , then every object in X admits a morphism from X ,
and hence is isomorphic to x (since X is a Kan complex). Since any object which
is isomorphic to an initial object is initial, we conclude that X consists entirely of
initial objects. We conclude that X is contractible by Lemma 9.2. □

In the case of an ∞-category C we do not gain such a precise understanding
of C via the existence of an initial object. This is clear from the examples dis-
cussed above. We can, however, constrain certain relative phenomena between
∞-categories via the preservation of initial objects. The remainder of this section
is dedicated to an elaboration on this, somewhat criptic, point.

lem:1936 Lemma 9.22. An object x in C is initial if and only if the forgetful functor Cx/ →
C admits a section F : C → Cx/ with F (x) = idx.

Proof. If x is initial then the forgetful functor is a trivial Kan fibration, by Propo-
sition 9.9. It follows that the lifting problem

∗ idx //

x

��

Cx/

��
C

id
//

>>

C

admits a solution s : C → Cx/. This solution provides the desired section. Con-
versely, if we have such a section F then for each y in C we can split the identity
on the mapping space as

HomC (x, y)
F→ HomCx/

(idx, F (y))
forget→ HomC (x, y).

Since idx is initial in Cx/, by Proposition 9.11, each mapping space HomCx/
(idx, F (y))

is contractible. Thus each mapping space HomC (x, y) is a retract of a contractible
space, and hence contractible itself. □

We record a little lemma.

lem:1957 Lemma 9.23 ([5, 0196]). If i : A → B is an inclusion of simplicial sets, then the
induced map

{∗} ⋆ i : {∗} ⋆ A→ {∗} ⋆ B
is left anodyne.

Proof. The class of i at which {∗} ⋆ i is left anodyne is saturated. We we need only
show that it contains the inclusions ∂∆n → ∆n. But in this case the inclusion in
question is identified with the left anodyne map Λn+1

0 → ∆n+1. □

prop:init_lanodyne Proposition 9.24. An object x in C is initial if and only if the inclusion x : ∗ → C
is left anodyne. If y is terminal in C , then the inclusion y : ∗ → C is right anodyne.

Proof. We deal with the initial claim. If x : ∗ → C is left anodyne then we can
solve the lifting problem

∗ idx //

x

��

Cx/

��
C

id
//

>>

C

https://kerodon.net/tag/0196


58 CRIS NEGRON

and hence obtain a section F : C → Cx/ as in Lemma 9.22. We conclude that x is
initial in C .

Conversely, if x is initial then the section F : C → Cx/ of Lemma 9.22 provides
a map F ′ : {∗} ⋆ C → C with F ′|C = idC , F ′(∗) = x, and F ′(∗ → x) = idx. In
particular, F ′ is defined on each simplex outside of C by taking

F ′({∗} ⋆∆m) = F (∆m).

This map F ′ gives a diagram

∗

x

��

x // {∗} ⋆ {x} //

��

∗

x

��
C // {∗} ⋆ C

F // C

so that the inclusion {x} → C is a retract of the inclusion {∗} ⋆ {x} → {∗} ⋆ C .
Since this latter inclusion is left anodyne, by Lemma 9.23, we conclude that the
inclusion {x} → C is left anodyne as well. □

As a consequence of Proposition 9.24 we observe a kind of relative triviality for
C .

cor:initial_eval Corollary 9.25. Suppose f : X → S is a left fibration, and that C admits an
initial object x : ∗ → C . Then the map

Fun(C , X) → X ×S Fun(C , S), F 7→ (F |x, fF ). (22) eq:2002

is a trivial Kan fibration.

Proof. Immediate from Propositions 9.24 and 4.3. □

Let’s consider what Corollary 9.25 is telling, in semi-human terms. In the ex-
treme case where X → ∗ is a Kan complex, the right hand side of (22) is just X
and we obtain a trivial Kan fibration

evx : Fun(C ,X ) → X

which just evaluates a functor F at x : ∗ → C . This says that for any choice of a
point z : ∗ → X there is a unique functor Fz : C → X which evaluates as Fz(x) =
z. Indeed, we can just take the fiber of evx at z to obtain a space Fun(C ,X )z
which parametrizes such functors, and observe that this space is contractible. In
this way C “looks like a point” relative to any Kan complex.

In the relative setting, we consider a left fibration f : X → S and see that for
any choice of a functor F̄ : C → S, and a point z in X which lifts F (x), there is a
unique lift of F̄ to a functor F : C → X with F (x) = z. Rather, we observe that
any lifting problem of the form

∗ //

x

��

X

f

��
C //

>>

S

admits a unique solution.
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9.8. Equivalences of fibrations via initial objects.

prop:equiv_initial Proposition 9.26. Let

C
F //

  

D

~~
T

be a diagram of ∞-categories in which both of the maps to T are left fibrations. If
C admits an initial object x, then F is an equivalence if and only if F (x) is initial
in D .

Proof. If F is an equivalence then it preserves initial objects, by Lemma 9.4. Sup-
pose conversely that F is such a map, that x is initial in C , and that the image
F (x) is initial in D . Consider the lifting problem

∗ x //

F (x)

��

C

��
D

==

// T .

By Corollary 9.25 there exists a solution to this problem, and hence there exists
a functor G : D → C over T with GF (x) = x. By Corollary 9.25 again the
composition GF is also seen to be isomorphic to the identity in FunT (C ,C ). We
also have FG(Fx) = F (x) so that FG is isomorphic to the identity on D . Thus F
is an equivalence. □

Again, one observes a corresponding statement for right fibrations and terminal
objects, via the opposite duality.

At first glance this proposition seems ridiculous. Indeed, it suggests that if
f : E → C is a left fibration of ∞-categories, and e is an object in E with image
x in C , then the induced map on undercategories F : Ee/ → Cx/ is an equivalence.
This is because F fits into a diagram

Ee/ //

  

Cx/

~~
C

and which both maps to E are left fibrations, and F is seen to send the initial
object ide to the initial object idx. However, one sees that this is as bad as it gets.

cor:2491 Corollary 9.27. Let C → T be a left fibration, suppose that C admits an initial
object x, and let t denote the image of x in T . Then there is an equivalence
F : C → Tt/ of left fibrations over T which sends x to idt.

So Proposition 9.26, said another way, classifies left fibrations up to equivalence
via isoclasses of objects in T .

Proof. By Proposition 9.26 the map Cx/ → Tt/ is an equivalence of left fibra-
tions which sends idx to idt. The proposed equivalence C → Tt/ is obtained by
composing the equivalence Cx/ → Tt/ with a section F : C → Cx/ as in Lemma
9.22. □
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10. Aside: Simplicialification for dg categories

10.1. Simplicial categories for dg categories. Let k be a commutative ring and
consider the category sSetk of simplicial k-modules. This category is symmetric
monoidal with the expected product M ⊗k N , where

(M ⊗k N)[r] :=M [r]⊗k N [r].

This product admits inner-Homs, so that sSetk is naturally enriched in itself, and
we obtain the corresponding simplicial category sSetk. Explicitly the morphism
complexes Funk(M,N) are the complexes with n-simplices

Funk(M,N)[n] = HomsSetk(k∆
n ⊗kM,N).

Since all simplicial k-modules are Kan complexes, the simplicial category sSetk is
Kan-enriched and we have the forgetful simplicial functor sSetk → Kan.

Definition 10.1. We take Kank := Nhc(sSetk).

Via faithfulness of the functor sSetk → Kan we observe that the induced functor
on ∞-categories Kank → Kan is an inclusion of simplicial sets.

Recall that we have the Dold-Kan functor

K : Ch(k) → sSetk

which restricts to an equivalence K≤0 from connective cochains. In particular, K
factors through the truncation

Ch(k) → Ch(k)≤0, X 7→ (· · · → X−1 → Z0X → 0)

and is identified with the composite of this truncation and the equivalence K≤0.
We let Ch(k) denote the usual dg category of k-cochains.

prop:K_lax Proposition 10.2 ([5, 00SD]). The functor K admits a lax-monoidal structure
mV,W : K(V ) ⊗k K(W ) → K(V ⊗k W ). Furthermore, at each pair of objects
this morphism mV,W is a (non-linear) homotopy equivalence.

Proof. This lax monoidal structure is adjoint to the monoidal structure on the
normalized cochain functor provided by the Alexander-Whitney map [5, 00S6].
Since the Alexander-Whitney maps are quasi-isomorphism [5, 00SB], we conclude
that each mV,W is a homotopy equivalence. In particular, mV,W is obtained as the
composite

K(V )⊗kK(W )
∼→ KN(K(V )⊗kK(W ))

K(AW)→ K(NK(V )⊗kNK(W ))
∼→ K(V⊗kW ).

□

In the case that one of V or W is concentrated in degree 0 one observes natural
identifications K(V )⊗k K(W ) ∼= K(V ⊗W ) and the aforementioned lax monoidal
structure extends these identifications to arbitrary complexes. In the case where
V is concentrated in degree 0, for example, we have K(V )[n] = V at all n and the
aforementioned identification is explicitly the map

V ⊗k Hom∗
k(N∆n,W ) → Hom∗

k(N∆n, V ⊗k W ), v ⊗ f 7→ (x 7→ v ⊗ f(x)).

Corollary 10.3. For any dg category A there is an associated simplicial category
KA obtained by applying the lax monoidal functor K to the morphism complexes.

https://kerodon.net/tag/00SD
https://kerodon.net/tag/00S6
https://kerodon.net/tag/00SB
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The identificationsK(V )[0] = V 0 induce an identification of homotopy categories

hNhc(KA) = hKA = H0A = hNdg(A).

It’s shown in [4, 5] that this equivalence lifts to the ∞-categorical level.

thm:dk_compare Theorem 10.4 ([5, 00SV]). For any dg category A, there is a natural equivalence
of ∞-categories

ZA : Nhc(KA)
∼→ Ndg(A)

which is furthermore a trivial Kan fibration and fits into a diagram over the asso-
ciated discrete category

Nhc(KA)
ZA // Ndg(A)

Z0A

::ee

.

By naturality, we mean that any dg functor F fits into a diagram

Ndg(A)
Ndg F // Ndg(B)

Nhc(KA)
NhcKF //

Z

OO

Nhc(KB).

Z

OO

10.2. Derived Dold-Kan for vector spaces. If one considers dg categories as,
loosely, categories enriched in the ∞-category of vector

Lax monoidality tells us that the Dold-Kan functor K enriches to a simplicial
functor K Ch(k)∗ → sSetk which just sends a cochain V to the object KV and
which is defined on morphisms via the unique map

K Homk(V,W ) → HomsSetk
(KV,KW )

which is compatible with evaluation.

thm:enriched_dk Theorem 10.5. Let Ch(k) denote the dg category of cochains. If k is a field, the
simplicial functor

K : KCh(k)∗ → sSetk

restricts to an equivalence on KCh(k)≤0.

Proof. In this case a map in Ch(k)≤0 is a homotopy equivalence if and only if
it is a quasi-isomorphism. It follows via the Dold-Kan equivalence, Theorems I-
11.12 & I-11.13 and Proposition I-11.16, that a map in sSetk is is linear homotopy
equivalence if and only if it is a homotopy equivalence. In particular, the comparison
map mV,W : K(V ) ⊗k K(W ) → K(V ⊗k W ) is a linear homotopy equivalence. It
follows that K induces a monoidal euqivalence on homotopy categories

hK : D(k)≤0 ∼→ hKank.

Now, both of the categories D(k) and hKank admit inner-Homs, which are just
given by the inner-Homs at the pre-homotopical level Hom∗

k and HomsSetk
. Since

hK is an equivalence we now obtain a unique isomorphism of inner-Homs

K Hom∗
k(V,W )

∼→ HomsSetk
(KV,KW )

https://kerodon.net/tag/00SV
https://c-negron.github.io/infty_partI.pdf
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in hKank which is compatible with evaluation. This unique isomorphism is the im-
age of the correpsonding map at the pre-homotopical level, from which we conclude
that the original morphism is a homotopy equivalence. This implies that K is fully
faithful, and essential surjectivity just follows form the fact that the non-enriched
Dold-Kan functor is essentially surjective. □

We refer to the enriched equivalence of Theorem 10.5 as the enriched Dold-Kan
equivalence.

cor:infty_dk Corollary 10.6. Suppose k is a field. Then enriched Dold-Kan provides a functor
between ∞-categories K : V ectk → Kank which restricts to an equivalence of
∞-categories

K : V ect≤0
k

∼→ Kank.

Here V ectk := Ndg(Ch(k)) denotes the ∞-category of connective cochains, and
we’ve written simply K for the composite of equivalences

V ectk
∼→ Nhc(KCh(k))

NhcK→ Kank

by an abuse of notaiton.

10.3. Derived Dold-Kan for abelian categories with projectives. Let A be
an abelian category with enough projectives. We recall the following strengthening
of the usual Dold-Kan equivalence.

Theorem 10.7 (Dold-Kan, [4, Theorem 1.2.3.7]). Let A be any abelian category
and A′ be any additive subcategory in A which is closed under taking summands.
Then the Dold-Kan functor K : Ch(A′) → Fun(∆op,A′) restricts to an equivalence

K : Ch(A′)≤0 ∼→ Fun(∆op,A′)

with inverse given by the normalized cochains functor.

Though our notation is a bit cumbersome, we recall that the category Fun(∆op,A′)
is simply the category of simplicial “sets” T whose simplicices T [n] have the struc-
ture of objects in A′, and whose structure maps are all maps in A′. In the case
where A′ is the full subcategory ProjA of projectives in A we obtain an equivalence

Proj≤0
A

∼→ Fun(∆op,ProjA).

Definition 10.8. Let k be a field and Vect be the category of finite-dimensional
vector spaces. A k-linear category A is a Vect-module category for which the action
map Vect×A → A commutes with all colimits which exist in either factor.

Remark 10.9. When A is locally finite, i.e. has all objects of finite length and finite
dimensional morphisms, one should replace Vect with the subcategory Vectfin of
finite dimensional vector spaces in the above definition. Equivalently, one can
consider such A along with a Vect-action on its Ind-category.

Note that when A is k-linear then the category sSetk acts on simplicial objects
in A via the expected formula

V ⊗kM [n] := V [n]⊗kM [n].
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Via the same arguments as employed in [5, 00RF, kerodon] one produces the
Eilenberg-Zilber morphisms, Alexander-Whitney morphisms, and (associative and
unital) adjoint morphism

mV,M : K(V )⊗k K(M) → K(V ⊗kM)

which compares the Vect-action on Ch(A) with the sSetk-action on Fun(∆op,A).

Lemma 10.10. Suppose A is a k-linear abelian category. Then for an arbitrary
complex of vector spaces V and complex of objectsM in A, the map mV,M : K(V )⊗k
K(M) → K(V ⊗kM) is a quasi-isomorphism.

Proof. One argues exactly as in [5] and Proposition 10.2. However, when necessary,
on should replace the simplicial abelian group Z[∆n] with T [∆n] in arguments from
[5], where T is an arbitrary object in A. □

Using the lax structure maps m we can enrich the Dold-Kan equivalence to a
simplicial functor

K : KCh(A) → Fun(∆op,A),
where the k-linear simplicial mapping complexes on Fun(∆op,A) are the inner-
Homs relative to the sSetk-action. On objects we simply M take the associated
space KM and the maps

K Hom∗
A(M,N) → HomFun(KM,KN)

are adjoint to the evaluation morphisms

K Hom∗
A(M,N)⊗k KM

m→ K(Hom∗
A(M,N)⊗kM)

Kev→ KN.

Definition 10.11. For a k-linear abelian category A with enough projectives, take

KanA := Nhc Fun(∆op,ProjA).

thm:enriched_d2 Theorem 10.12. Let A be a k-linear abelian category with enough projectives, and
take Proj≤0

A the dg category of connective cochains of projectives. The enriched
Dold-Kan functor

K : KProj≤0
A → Fun(∆op,ProjA)

is an equivalence of simplicial categories.

Proof. Same as the proof of Theorem 10.5. □

cor:derived_dk_A Corollary 10.13. For any k-linear abelian category A which has enough projec-
tives, there is an equivalence of ∞-categories

K : D≤0(A) ∼→ KanA.

11. Representable and corepresentable functors

Definition 11.1. Let C be an ∞-category. A functor F : C → Kan is corepre-
sented by an object x in C if F is a transport functor for the left fibration Cx/ → C .
We say F is corepresentable if it is corepresented by some object in C .

We say a functor G : C op → Kan is represented by an object y in C if it is
corepresented by y when considered as an object in C op, i.e. if it is a contravariant
transport functor for the right fibration C/y → C . A corepresentable functor is a
fnuctor which is corepresented by some object in C .

https://kerodon.net/tag/00RF
https://kerodon.net/tag/00S0
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We note that if F and F ′ are corepresented by an object x in C , then F and F ′

are isomorphic, via the uniqueness of transport functors. We also see, by Corollary
9.27, that a functor F : C → Kan is representable if the corresponding ∞-category
Un(F ) ∼=

∫
C F has an initial object. It is clear from Corollary 9.27 that h is

representable if, in some sense, it has an “initial object” in some fiber F (x).

def:initial_fun Definition 11.2. Given a functor F : C → Kan, we say an object 1x : ∗ → F (x)
is an initial object for F , over x, if at each y in C the composite

HomC (x, y)
F→ HomKan(F (x), F (y))

θ−1

→ Fun(F (x), F (y))
1∗x→ F (y) (23) eq:initial_fun

is an isomorphism in hKan.

Note that this condition is really a restriction on the induced functor on enriched
categories πF : πC → πKan. Since the isomorpihsms θ of Theorem 5.27 is seen to
preserve identity morphisms, we see that the above composite at x,

HomC (x, x) → F (x)

sends the identity idx : x→ x to 1x. Since the θ−1 assemble into an equivalence of
HKan-enriched categories πKan

∼→ πKan (Proposition 7.6), we also observes at
any choice of 1x : ∗ → F (x) a diagram

F (x)
F (α) // F (y)

HomC (x, x)
α∗
//

OO

HomC (x, y).

OO

Our first aim is to prove the following.

thm:rep_funs Theorem 11.3. A functor F : C → Kan is corepresented by an object x in C if
and only if F admits an initial object which lies over x, 1x : ∗ → F (x).

11.1. Left fibrations with initial transport. Consider a left fibration q : E → C
with transport functor F : C → Kan. The induced functor πF : πC → πKan
is determined by paramtrized homotopy transport, according to Corollary 7.12.
Hence the composite of (23) at any object 1x : ∗ → F (x) ∼= Ex is identified with
the composite

HomC (x, y)× {1x} → HomC (x, y)× Ex → Ey, (24) eq:2540

where the final map is given by parametrized homotopy transport (Definition 7.7).
More precisely, the adjunction

Adj : HomKan(Hom(x, y),Fun(∗,Ey))
∼→ HomKan(Hom(x, y)× {∗},Ey)

the map (23) is identified with the map (24). One sees directly that any map
γ : HomC (x, y) → Fun(∗,Ey) ∼= Ey fits into a diagram

HomC (x, y)× {∗}
Adj(γ) // Ey

HomC (x, y)
γ

//

∼=

OO

Fun(∗,Ey),

∼=

OO

so that γ is an euqivalence if and only if Adj(γ) is an equivalence. So we see that
an object 1x : ∗ → F (x) is initial if and only if the maps (24) are all equivalences.
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prop:2653 Proposition 11.4. Let F : C → Kan be any functor and take q : E =
∫

C F → C
the corresponding left fibration. For any choice object x in C , any object 1x : ∗ →
F (x), and let x̃ be the image of 1x in Ex under the equivalence θ : F (x) → Ex.
Then x̃ is initial in E if and only if 1x is an initial object for F .

Proof. Via the equivalence Cx/
∼→ {x}×̃C C we see that the oriented fiber product

admits an initial object. By the specific expression of this equivalence give in
Section I-(10.5) one sees that this equivalence sends idx to idx, so that the identity
specifically is seen to be initial in {x} ×or

C C .
By Corollary 9.25 there is a unique map of left fibrations t : {x} ×or

C C → E
which sends idx to x̃. This map is an equivalence if and only if all of the induced
maps on the fibers

t : HomC (x, y) → Ey
are isomorphisms.

Since enriched homotopy transport for the oriented fiber product is given by
composition on HomC (Proposition ??), the diagrams

HomC (x, y)× Ex // Ey

HomC (x, y)×HomC (x, x)
◦ //

id×t

OO

HomC (x, y)

t

OO

commute at all y in C , where the top map is enriched homotopy transport for E .
Restricting to idx in the second factor produces a diagram

HomC (x, y)× {x̃} // Ey

HomC (x, y)× {idx}
id

//

id

OO

HomC (x, y)

ty

OO

from which we see that ty is an equivalence at all y if and only if the maps (24) are

all isomorphisms in hKan. Via the equivalence of enriched functors πF
∼→ q! we

observe that these maps are all equivalences if and only if 1x is an initial object for
F . □

Now, for an arbitrary left fibration q : E → C , with transport functor F : C →
Kan, we have the equivalence of left fibrations E

∼→
∫

C F which is implicit in the
assertion that F is a transport functor. We therefore see that E admits an initial
object if and only if

∫
C F admits an initial object. So Proposition 11.4 implies the

following.

Corollary 11.5. Let q : E → C be a left fibration between ∞-categories. Then
E admits an initial object x̃ over a point x in C if and only if the corresponding
transport functor F admits an initial object 1x : ∗ → F (x).

We now observe the proof of Theorem 11.3.

Proof of Theorem 11.3. By Proposition 11.4 a functor F admits an initial object
over x if and only if the corresponding left fibration

∫
C F admits an initial object in

the fiber over x. This occurs if and only if there is an equivalence of left fibrations

Cx/
∼→

∫
C

F
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over C . The existence of such an equivalence, by definition, characterizes F as a
transport functor for the fibration Cx/ → C . □

11.2. Corepresentable functors for simplicial categories. Let A be a simpli-
cial category which is enriched in Kan complexes. At any choice of an object x in
A we have the simplicial functor

HomA(x,−) : A→ Kan.

Taking homotopy coherent nerves then provides a functor

HomNhc(A)(x,−) : Nhc(A) → Kan.

prop:simplicial_corep Proposition 11.6. Let A be a Kan-enriched simplicial category and take A =
Nhc(A). At any object x in A the functor HomA (x,−) : A → Kan is corepre-
sented by x.

Proof. Since the map πA→ πA induced by the equivalences of Theorem 5.27 is an
equivalence of ∞-categories, we have an identification of hKan-enriched functors

HomA (x,−) ∼= HomA (x,−).

Since the functor HomA (x,−) admits an initial object over x, so does HomA (x,−).
It follows that HomA (x,−) is corepresented by x. □

Corollary 11.7. For A and A as in Proposition 11.6, a functor F : A → Kan
is corepresentable if and only if F admits an isomorphism

HomA (x,−)
∼→ F

at some x in A.
sect:corep_dg

11.3. Corepresentable functors for dg categories. Let A be a dg category,
and A = Ndg(A). At any object x in A we have the dg functor Hom∗

A(x,−) :
A → Ch(k).

lem:2851 Lemma 11.8. Let A be a dg category. At any object V in A the simplicial functor

K ◦Hom∗
A(V,−) : KA → KCh(k)

K→ sSetk

is equal to the functor HomKA(V,−) : KA → sSetk.

Proof. Take hV = Hom∗
A(V,−) and hV = HomKA(V,−). On objects these functors

are the same. For the composite, the original map

hV : Hom∗
A(W,W ′) → Hom∗

k(hVW,hVW
′)

fits into, and is specified by, a diagram

Hom∗
A(W,W ′)⊗k hV (W )

hV ⊗kid

��

◦

))
Hom∗

k(hVW,hVW
′)⊗ hV (W )

ev
// hV (W ′).

Hence KhV fits into a diagram

K Hom∗
A(W,W ′)⊗k KhV (W )

KhV ⊗kid

��

K◦

**
K Hom∗

k(hVW,hVW
′)⊗k KhV (W )

ev
// KhV (W ′).
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Taking inner-Homs for sSetk now gives a diagram

K Hom∗
A(W,W ′)

KhV

��

hV

**
K Hom∗

k(hVW,hVW
′)

K
// HomsSetk

(KhVW,KhVW
′).

This implies an equality between these two functors on morphism complexes as
well. □

lem:2889 Lemma 11.9. Given a diagram in Cat∞

C

ξ

��

F

""
D

G
// Kan

in which ξ is an equivalence, then F is corepresentable by an object x if and only if
G is corepresentable by ξ(x).

Proof. We have an isomorphism of functors F ∼= G ◦ ξ. Since representability
is stable under isomorphism, we may assume F = G ◦ ξ. Fix arbitrary points
x, y : ∗ → C and take x′ = ξ(x), y′ = ξ(y).

We consider the corresponding maps on π-enriched categories to observe a dia-
gram

HomC (x, y)× F (x) //

ξ×id
��

HomKan(F (x), F (y))× F (x)
ev //

=

��

F (y)

=

��
HomD(x′, y′)×G(ξx) // HomKan(G(x

′), G(y′))×G(x′)
ev

// G(y′)

in hKan in which all vertical maps are isomorphisms. From this diagram we see
that F admits an initial object if and only if G admits an initial object. Hence F
is representable if and only if G is representable. □

We understand that, at any dg category, the functor

HomKA(V,−) : Nhc(KA) → Kank ⊆ Kan

is corepresented by the given object V . This follows by Proposition 11.6. Naturality
of the equivalence Z from Theorem 10.4, in conjunction with Lemmas 11.8 and 11.9
above, tell us that the Hom-complexes for dg categories also provide representable
functors, in the only way that makes sense.

prop:dg_corep Proposition 11.10. Let A be any dg category with associated ∞-category A =
Ndg(A). At any object V in A the functor

K Hom∗
A(V,−) : A → V ect→ Kan

is corepresented by V .

Corollary 11.11. Let A be any dg category with associated ∞-category A =
Ndg(A). A functor F : A → Kan is corepresented by an object V in A if and
only if F is isomorphic to the functor K Hom∗

A(V,−).



68 CRIS NEGRON

11.4. Representable functors for simplicial and dg categories.

Lemma 11.12. Let A be a simplicial category which is enriched in Kan complexes.
Then we have Nhc(Aop) = Nhc(A)op.

Here the opposite category Aop is simply the category obtained by applying the
symmetry on sSet to the morphisms. The identification of opposites follows from
the identification

FunsCat(Path∆
n, Aop) = Fun((Path∆n)op, A) = Fun(Path((∆n)op), A)

We now consider the functor HomA(−, y), for y in A as a functor from the opposite
category

HomA(−, y) : A
op → sSet.

As a corollary to Proposition 11.6 we observe the following.

cor:simp_rep Corollary 11.13. Let A be a simplicial category which is enriched in Kan com-
plexes. Then at any object y in A, the functor

HomA(−, y) : N
hc(A)op → Kan

is a representable functor which is represented by y.

In the dg setting we also have the opposite category Aop. Here we employ the
Koszul sign rule in the symmetric on Ch(k), so that composition for Aop inherits
a sign

f ·op g := (−1)deg(f) deg(g)gf.

One can check the following.

lem:2965 Lemma 11.14. For any dg category A, the maps on n-simplices

Ndg(A)op[n] → Ndg(Aop)[n], {fI : I ⊆ [n]} 7→ {(−1)|I|(|I|−1)/2fI : I ⊆ [n]},

define an isomorphism of ∞-categories Ndg(A)op
∼→ Ndg(Aop).

From Proposition 11.10 and Lemma 11.9 we now observe the following.

Proposition 11.15. For any dg category A, and any object W in A, the functor

K Hom∗
A(−,W ) : Ndg(A)op → Kan

is a representable functor which is represented by W .

Here of course we have abused notation to view the functor Hom∗
A(−,W ) :

Nhc(Aop) → V ect as a functor from Ndg(A)op, via the identification of Lemma
11.14.

12. Twisted arrows and bifunctorial Homs
sect:twarrows

12.1. The twisted arrows category.

Definition 12.1. Given a simplicial set C , we define the twisted arrow category
Tw(C ) as the simplicial set whose n-simplices are

Tw(C )[n] := HomsSet((∆
n)op ⋆∆n,C ).



KERODON REMIX II [IN PREPARATION] 69

Restricting along the inclusions

(∆n)op → (∆n)op ⋆∆n and ∆n → (∆n)op ⋆∆n

provides a natural map to the product

λ : Tw(C ) → C op × C . (25) eq:lambda

To get our heads on straight here, let’s observe directly that an object in Tw(C )
is a choice of a morphism α : x → y in C . A morphism from an objects α : x → y
to some other α′ : x′ → y′ is a diagram of the form

x
α //

  

y

��
x′

α′
//

OO >>

y′.

If we consider the fiber {(x, y)} ×(C op×C ) Tw(C ), a simplex in this fiber can be
visualized as some directed diagram from x to y which is “completely filled in”,

x ··· //
···
��

···
<< y.

We prove below that these fibers are a type of bifunctorial Hom space for C , where
bifunctoriality simply refers to the fact that one has two variables to tune in the
base.

We note that the join (∆n)op ⋆∆n is identified with ∆2n+1 via the bijection

[2n+ 1] → [n]⨿ [n], i 7→
{
n− i in the first set if i ≤ n
i− n in the second set if i ≥ n.

prop:tw_inner Proposition 12.2 ([5, 03JT]). The restriction map λ : Tw(C ) → C op × C is a
left fibration. More generally, if C → S is an inner fibration of simplicial sets, then
the restriction map Tw(C ) → (C op × C )×(Sop×S) Tw(S) is a left fibration.

We only outline the main points of the proof. The reader can find details in the
cited text.

Proof outline. We wish to show that any lifting problem of the form

Λnn−i

��

// Tw(C )

��
∆n //

55

(C op × C )×(Sop×S) Tw(S),

with i ≤ n, admits a solution. Such a lifting problem admits a solution if an only
if the corresponding problem

K0
//

��

C

��
∆2n+1 //

<<

S

(26) eq:1641

admits a solution, where K0 ⊆ ∆2n+1 is some subcomplex which we descirbe below.
Given a subset J ⊆ [2n+1], the non-degenerate simplex ∆J ⊆ ∆2n+1 lies in K0

if and only if J is contained in one of [n] or [2n + 1] − [n], or J is contained in a

https://kerodon.net/tag/03JT


70 CRIS NEGRON

subset [2n + 1] − {j, 2n + 1 − j} with j ̸= i. It is argued in [5] that the inclusion
K0 → ∆2n+1 is in fact anodyne, by factoring this map into a sequence of inclusions

K0 → K1 → · · · → Km = ∆2n+1

in which each Ki+1 is obtained from Ki by attaching a single non-degenerate sim-
plex. Each such inclusion Ki → Ki+1 is shown to be anodyne, so that the compo-
sition K0 → ∆2n+1 is in fact anodyne, and we find that the problem (26) admits a
solution, as desired. □

Since C op×C is itself an ∞-category whenever C is an ∞-category, we find that
the twisted arrow category Tw(C ) is also an ∞-category in this case.

Corollary 12.3. If C is an ∞-category, the twisted arrow category Tw(C ) is also
an ∞-category.

Via Proposition 12.2, and the general phenomena of transport for left fibrations
(Proposition 6.17), we understand that the left fibration λ : Tw(C ) → C op × C
identifies a associated transport functor

H : C op × C → Kan.

This transport functor is uniquely determined, up to a contractible space of choices,
by the assertion that H fits into a categorical pullback diagram

Tw(C ) //

��

Kan∗/

��
C op × C

H
// Kan.

def:hom_functor Definition 12.4. A Hom-functor for and ∞-category C is a transport functor

H : C op × C → Kan

for the left fibration λ : Tw(C ) → C op × C .

The first aims of this section are to provide a calculation of the fibers of the
twisted arrow fibration sufficient conditions which allow us to identify a Hom functor
when we see one. Of interest are Hom functors for nerves of dg and simplicial
categories (e.g. Hom functors for derived categories).

Let us note, as a bit of foreshadowing, that any Hom functor determines maps
into the functor categories

H∗ : C → Fun(C op,Kan) and H∗ : C op → Fun(C ,Kan).

We will eventually find that these functors are both fully faithful embeddings.

12.2. Fibers of the twisted arrows fibration. At any points in an ∞-category
x : ∗ → C we can restrict along the projection (∆n)op → ∗ to obtain an inclusion
into the twisted arrows category

Cx/ → {x} ×C op Tw(C ). (27) eq:2199

This map fits into a diagram over C .

lem:initial_tw Lemma 12.5 ([5, 03JW]). At any object x : ∗ → C op, and isomorphism α : x →
x′, the map α is an initial object in the fiber {x} ×C op Tw(C ).

https://kerodon.net/tag/03JW
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We note that we can take x′ = x and α = idx. In particular, we observe that the
fiber of the twisted arrow category over any point in C op admits an initial object.

Outline of proof. We want to show that the forgetful map

({x} ×C op Tw(C ))α/ → {x} ×C op Tw(C )

is a trivial Kan fibration. We note that solving the relevant lifting problem along an
inclusion ∂∆n−1 → ∆n−1 is equivalent to extending the boundary of an n-simplex
σ̄ : ∂∆n → Tw(C ), with n > 0 and σ̄|{0} = α, to an n-simplex σ : ∆n → Tw(C ).
This problem, in turn, is equivalent to solving a lifting problem of the form

K
τ0 //

��

C

��
∆2n+1 //

<<

∗

(28) eq:2209

with K the subcomplex in ∆2n+1 which is the union of the J-simpleces ∆J →
∆2n+1, where J ⊆ [2n + 1] is any subset which is either contained in [n] or [2n +
1]− [n] or [2n+1]−{i, 2n+1− i} for some i. The assumption that σ̄ lands in the
fiber {x} ×C op Tw(C ) forces τ0|∆n to be of constant value x, and the assmuption
that σ̄|{0} = α forces τ0|∆{n,n+1} = α

Now, one argues that there is a factoring of the inclusion K → ∆2n+1 into a
sequence of inclusions

K = K0 → K1 → · · · → Km = ∆2n+1

with each Ki+1 fitting into a pushout square

Λdiki

��

// Ki

��
∆di // Ki+1

with each ki < di, or ki = 0, di > 1, and ∆{0,1} → Λdi0 → ∆2n+1 landing in the
1-skeleton Sk1 ∆

n+1 ⊆ K. This final condition implies that, in the case ki = 0, and
map τi : Ki → C extending τ0 : K → C sends the initial vertex

∆{0,1} → Λdi0 → Ki
τi→ C

to an isomorphism in C .
Using the above information, and Proposition I-5.33, we can produce sequential

solutions to the lifting problems

Ki
τi //

��

C

��
Ki+1

//

τi+1

==

∗

in order to produce the desired solution τ = τm : ∆2n+1 → C to the problem
(28). □
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prop:2273 Proposition 12.6. The maps (27) define equivalences of left and right fibrations

Cx/
∼ //

  

{x} ×C op Tw(C )

xx
C .

Proof. The map F : Cx/ → {x} ×C op Tw(C ) preserves the initial object idx, and
so is an equivalence of ∞-categories by Proposition 9.26. It follows that F is an
equivalence of cocartesian fibrations, by Proposition 3.5. □

We recall that the fibers of any equivalence of isofibrations are again equivalences
(Corollary I-6.24). So Proposition 12.6 tells us that the fibers of the twisted arrows
category Tw(C ) are identified with the mapping spaces for C .

cor:tw_fibers Corollary 12.7. Let C be an ∞-category. At any pair of points x, y : ∗ → C the
natural map

HomL
C (x, y) = Cx/ ×C {y} → {x} ×C op Tw(C )×C {y}

is an equivalence of Kan complexes.

Corollary 12.8. For any Hom functor H : C op × C → Kan, i.e. classifying
functor for the twisted arrows fibration, the restriction

C
x×id→ C × C

H→ Kan

at any point x : ∗ → C is a classifying functor for the forgetful functor Cx/ → C .

12.3. Recognition for Hom functors.
sect:simp_hom

12.4. Hom functors for simplicial and dg categories.

13. Limits and colimits
sect:lim_colim

Let C be an ∞-category and K be a simplicial set. We consider the embedding

C ∼= Fun(∗,C ) → Fun(K,C )

induced by the terminal map K → ∗ and, for any object x in C , let x denote the
corresponding image in Fun(K,C ). This map x is just the constant function at x,
i.e. the composite

K → ∗ x→ C .

def:lim_colim Definition 13.1. Let C be an ∞-category and p : K → C be an arbitrary map
from a simplicial set. A transformation l : y → p is said to exhibit y as a limit of p
if, for each object x in C , the composite

HomC (z, y) → HomFun(K,C )(z, y)
l∗→ HomFun(K,C )(z, p)

is an isomorphism in hKan. A transformation c : p → x is said to exhibit x as a
colimit of p if at each z in C the composite

HomC (x, z) → HomFun(K,C )(x, z)
c∗→ HomFun(K,C )(p, z)

is an isomorphism in hKan.

Definition 13.2. Let p : K → C be a diagram in an ∞-category C . We say an
object y is a limit (resp. colimit) for p if there is a transformation l : y → p (resp.
c : p→ y) which exhibits y as a limit (resp. colimit) for p.

https://c-negron.github.io/infty_partI.pdf
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sect:char_lim
13.1. Characterizations of limits. Having fixed diagram p : K → C , we recall
the oriented fiber product

C ×or
Fun(K,C ) {p} := Fun(∆1 ×K,C )×Fun(∂∆1×K,C ) (C × {p}).

Here C maps to Fun({0}×K,C ) via the constant functions and pmaps to Fun({1}×
K,C ) as the given diagram. The objects in this oriented product are transforma-
tions z → p in Fun(K,C ).

prop:3309 Proposition 13.3. Let C be an ∞-category and p : K → C be an arbitrary dia-
gram. For a transformation l : y → p in Fun(K,C ), the following are equivalent:

(a) l exhibits y as a limit of p in C .
(b) l is terminal in the category C ×or

Fun(K,C ) {p}.

Proof. We have the pullback diagram of right fibrations

C ×or
Fun(K,C ) {p} //

f ′

��

Fun(K,C )×or
Fun(K,C ) {p}

f

��
C

const
// Fun(K,C )

so that enriched homotopy transport for the fibration f ′ is the composite of the
constant functor with the transport functor for f ,

f ′! = f! const : πC op → πKan,

by Lemma 7.9. Additionally the fiber of C ×or
Fun(K,C ) {p} over a given point z is

the fiber of the fibration Fun(K,C ) ×or
Fun(K,C ) {p} at the constant diagram z, i.e.

the space HomFun(K,C )(z, p). Hence enriched transport for f ′ is the composite

HomC (z, y)×HomFun(K,C )(y, p)
const×1→ HomFun(K,C )(z, y)×HomFun(K,C )(y, p)

◦op

→ HomFun(K,C )(z, p),

by Proposition 7.13. Hence a transformation l in HomFun(K,C )(y, p) exhibits y as
a limit for p if and only if l provides a terminal object for the transport functor
associated to the right fibration C ×or

Fun(K,C ){p} → C . Here by a terminal object for

a “contravariant” functor to Kan we simply mean an initial object for the functor
C op → Kan, in the sense of Definition 11.2.

As in the proof of Proposition 11.4, we see that l is terminal for the transport
functor associated to the given fibration if and only if l is terminal as an object in
the oriented fiber product C ×or

Fun(K,C ) {p}. □

As in the case of a single object K = ∗, we have at general K the equivalence of
right fibrations

C/p
∼ //

  

C ×or
Fun(K,C ) {p}

xx
C

from Theorem I-10.15. On objects this equivalence sends a diagram t : ∆0 ⋆K → C
to the diagram ∆1 ×K → C obtained by restricting along the comparison map

∆1 ×K → ∆0 ⋆ K
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of Section I-10.3, which sends the the subcomplex {0} ×K to the cone point {0}
and sends {1} ×K identically to the subcomplex K.

cor:lim_cone Corollary 13.4. There exists a transformation l : y → p which exhibits an object y
as a limit of a diagram p : K → C if and only if there is a diagram l′ : ∆0 ⋆K → C
for which the corresponding object l′ : ∗ → C/p is terminal and which has l(0) = y.

Furthermore, if l exhibits y as a limit of p, then a diagram l′ : ∆0 ⋆ K → C is
terminal in C/p if and only if its image in C ×or

Fun(K,C ) {p} is isomorphic to l.

Proof. Follows from Proposition 13.3, the fact that terminal objects are preserved
under equivalence (Lemma 9.4), and the fact that terminal objects are unique up
to isomorphism (Lemma 9.2). □

cor:isom_lim Corollary 13.5. Consider any diagram p : K → C , and suppose there is an iso-
morphism α : y

∼→ y′ in C . Then y is a limit for p if and only if y′ is a limit for
p.

Proof. The forgetful functor C/p → C is a right fibration, and hence an isofibration
by Lemma I-5.31. So if ỹ : ∗ → C/p is any lift of y to the overcategory, there is
an isomorphism α̃ : ỹ → ỹ′ in C/p which lifts the given isomorphism α. Hence ỹ is
initial if and only if ỹ′ is initial, by Lemma 9.3. It follows by Corollary 13.4 that y
is a limit of p if and only if y′ is a limit of p. □

cor:lim_isom Corollary 13.6. If y and y′ are limits for a diagram p : K → C , then y and y′

are isomorphic in C .

Proof. By Lemma 9.2 the space of terminal objects in C/p is contractible. In
particular, any two initial lifts ỹ and ỹ′ of y and y′ are necessarily isomorphic. □

sect:char_colim
13.2. Characterizations of colimits. The obvious analogs of the arguments pro-
vided in Section 13.1 provide the following characterization of colimits in a given
∞-category C .

prop:char_colim Proposition 13.7. Let p : K → C be an arbitrary diagram in an ∞-category C .
The following are equivalent:

(a) There exists a morphism c : p → x in Fun(K,C ) which exhibits x as a
colimit of p.

(b) There is an initial object c in {p} ×or
Fun(K,C ) C which lies over x in C .

(c) There exists an initial object x̃ in Cp/ which maps to x in C .

We can furthermore compare objects in the undercategory Cp/ and tranforma-
tions in Fun(K,C ) via the equivalence of left fibrations

Cp/
∼ //

  

{p} ×or
Fun(K,C ) C

xx
C

from Theorem I-10.15. In particular, an object x̃ in Cp/ is initial if and only if the
image c : p → x in {p} ×or

Fun(K,C ) C is initial, by Lemma 9.4. Finally c is initial in

the oriented fiber product if and only if c exhibits x as a colimit of p, in the sense of
Definition 13.1, by similar arguments to those employed in the proof of Proposition
13.3.
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Corollary 13.8. Given a digram p : K → C , and isomorphic objects x, x′ : ∗ → C ,
x is a colimit of p if and only if x′ is a colimit of p. Furthermore, any two colimits
of p are isomorphic in C .

Proof. Follows from the fact that the forgetful functor Cp/ → C is an isofibration
and stability of initial objects under isomorphism. □

13.3. Limit and colimit diagrams. Given the conclusions of Corollary 13.4 and
Proposition 13.7, the following definition now makes sense.

Definition 13.9. Let p : K → C be a diagram in an ∞-category. We call a
diagram l′ : ∆0 ⋆ K → C a limit diagram for p if l′|K = p and l′ is terminal when
considered as an object in the overcategory C/p. We call a diagram c′ : K⋆∆0 → C
a colimit diagram if c′|K = p and c′ is initial when considered as an object in the
undercategory Cp/

We say a diagram l : ∗ → C/p exhibits an object y as a limit of p if l is terminal
and l(0) = y. Similarly, we say c : ∗ → Cp/ exhibits an object x as a colimit of p if
c is initial and c(0) = x.

13.4. Limits and colimts under equivalence. We record an expected result.

prop:lim_diagram_equivalence Proposition 13.10. Let F : C → D be an equivalence of ∞-categories.

(1) A diagram p̃ : {0} ⋆ K → C is a limit diagram in C if and only if the
diagram F p̃ : {0} ⋆ K → D is a limit diagram in D .

(2) A diagram p̃′ : K ⋆ {1} → C is a colimit diagram in C if and only if the
diagram F p̃′ : K ⋆ {1} → D is a colimit diagram in D .

Proof. (1) Take p = p̃|K . By Corollary I-6.22 and Proposition I-6.23 the induced
map on oriented fiber products

C ×or
Fun(K,C ) {p} → D ×or

Fun(K,D) {Fp}

is an equivalence. By naturality of the slice diagonal equivalence (Theorem I-
10.15) we find that the induced map C/p → D/Fp is an equivalence as well. Since
equivalences preserve and detect terminal objects, by Lemma 9.4, we see that p̃ :
∗ → C/p is terminal if and only if F p̃ : ∗ → D/Fp is terminal. (2) Follows by taking
opposites. □

As one sees from the proof, the analogous result holds for limit and colimit
transformations as well.

prop:lim_transf_equivalence Proposition 13.11. Let F : C → D be an equivalence of ∞-categories and let
p : K → C be any diagram.

(1) A transformation l : x→ p exhibits an object x in C as a limit of p if and
only if Fl : F (x) → Fp exhibits the object Fx in D as a limit of Fp.

(2) A transformation c : p → y exhibits and object y in C as a colimit of p if
and only if Fc : Fp→ F (y) exhibits the object Fy in D as a colimit of Fp.

Proof. Refer to Propositions 13.3 and 13.7 and proceed as in the proof of Proposi-
tion 13.10. □
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13.5. Some results for change of diagrams. We recall that a map of simplicial
sets i : K → L is called a categorical equivalence if, for each ∞-category C , the
induced map

i∗ : π0(Fun(L,C )Kan) → π0(Fun(K,C )Kan)

is an equivalence of ∞-categories (Definition I-10.11 and Lemma I-10.12).

Example 13.12. If i : K → L is inner anodyne, then i is a categorical equivalence
by Corollary I-5.8.

Example 13.13. If F : A → B is an equivalence of discrete categories–or more
generally ∞-categories–then F is a categorical equivalence.

prop:lim_catequiv Proposition 13.14. Suppose that a map i : L → K is a categorical equivalence,
and let p : K → C be a diagram in an ∞-category. A transformation l : y → p
exhibits an object y as a limit if p if and only if the corresponding transformation
l|L : y → p|L exhibits y as a limit of p|L. Dually, a transformation c : p → x
exhibits x as a colimit of p if and only if c|L : p|L → x exhibits x as a colimit of
p|L.

Proof. We have the diagram

HomC (z, y) //

((

HomFun(K,C )(z, y)
l∗ //

∼
��

HomFun(K,C )(z, p)

∼
��

HomFun(L,C )(z, y)
(li)∗ // HomFun(L,C )(z, p)

in hKan, from which we conclude that the top composite is an equivalence if and
only if the bottom composite is an equivalence. Hence l is a limit transformation
if and only if li is a limit transformation. The case of c versus ci is similar. □

Corollary 13.15. Let K be a category, or more generally an ∞-category. If K
has an initial object a : ∗ → K, then for any diagram p : K → C the value p(a) is a
limit for p. Similarly, if K has a terminal object z : ∗ → K, then for any diagram
p : K → C the value p(z) is a colimit for p.

Proof. If a is initial or terminal then the inclusion a : ∗ → K is inner anodyne, by
Proposition 9.24. □

Corollary 13.16. Suppose i : L→ K is a categorical equivalence and let p : K →
C be a diagram. Take p′ = pi : L→ C .

(1) For any object l : ∗ → C/p, l is a limit diagram if and only if the image of
l under the forgetful functor C/p → C/p′ is a limit diagram.

(2) For an object c : ∗ → Cp/, c is a colimit diagram if and only if the image
of c under the forgetful functor Cp/ → Cp′/ is a colimit diagram.

Proof. We prove (1). Consider the diagram

C/p

��

∼ // C ×or
Fun(K,C ) {p}

��
C/p′

∼ // C ×or
Fun(L,C ) {p

′}.
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By Propositions 13.3 and 13.14 we see that an object in C ×or
Fun(K,C ) {p} is terminal

if and only if its image in C ×or
Fun(L,C ) {p

′}. By preservation of terminal objects

under equivalence, Lemma 9.4, we therefore find that a diagram l is initial, i.e. a
limit diagram, if and only if its image in C/p′ is initial. □

prop:isom_replace Proposition 13.17. Suppose that p, p′ : K → C are diagrams in an ∞-category,
and that ξ : p→ p′ is a morphism in Fun(K,C ) for which, at each vertex x : ∗ → K,
the map ξ(x) : p(x) → p′(x) is an isomorphism in C .

(1) A transformation l : y → p exhibits y as a limit of p if and only if the
transformation ξl exhibits y as a limit of p′.

(2) A transformation c : p′ → x exhibits x as a colimit of p′ if and only if
cξ : p→ x exhibits x as a colimit of p.

Proof. By Proposition I-7.9 the map ξ is an isomorphism in the∞-category Fun(K,C ).
So (1) follows from a consideration of the diagram

HomFun(K,C )(z, y)

l∗uu

ξ∗l∗

))
HomFun(K,C )(z, p)

ξ∗ // HomFun(K,C )(z, p
′)

in hKan. One similarly observes (2). □

prop:lim_isom_diagram Proposition 13.18. Let C be an ∞-category.

(1) If F : ∆1 → Fun({0} ⋆ K,C ) is an isomorphism of diagrams, then the
restriction F |{0} is a limit diagram in C if and only if F |{1} is a limit
diagram in C .

(2) If F ′ : ∆1 → Fun(K ⋆ {1},C ) is an isomorphism of diagrams, then F ′|{0}
is a colimit diagram in C if and only if F ′|{1} is a colimit diagram in C .

Proof. We deal with the case of a limit, the case of a colimit being similar. Take

p = F |{0}×K , p′ = F |{1}×K , x = F |(0,0), x′ = F |(1,0)
and

ξ = F |∆1×K : p→ p′, α = F |∆1×{0} : x→ x′.

We have the unique map t : ∆1 × K → {0} ⋆ K which is of constant value 0 on
{0} ×K and the identity K → K ⊆ {0} ⋆ K on {1} ×K. The transformation F
therefore determines a map

Λ : ∆1 ×∆1 ×K
id×t→ ∆1 × ({0} ⋆ K)

F→ C ,

which we might interpret at a morphism Λ : ∆1 ×∆1 → Fun(K,C ).
Let l : x→ p and l′ : x′ → p′ denote the transformation associated to F |{0} and

F{1}, under the slice diagonal equivalences C/q → C ×or
Fun(K,C ) {q}. This morphism

Λ has restrictions

Λ|(0,0) = x, Λ|(1,0) = x′, Λ|(0,1) = p, Λ|(1,1) = p′

and

Λ|{0}×∆1 = l, Λ|{1}×∆1 = l′, Λ|∆1×{0} = α, Λ|∆1×{1} = ξ.

https://c-negron.github.io/infty_partI.pdf


78 CRIS NEGRON

Hence the non-degenerate 2-simplices in the square ∆1 ×∆1 exhibit the diagonal
as the simultaneous composites

ξl = l′α : x→ p′

in the enriched category π Fun(K,C ).
We recall that, by our assumption that F is a natural isomorphism, and Propo-

sition I-7.9, the maps α and ξ are isomorphisms. Hence α provides an isomorphism
between l′α and l′ in C ×or

Fun(K,C ) {p
′}. Specifically, the diagram

p′

x
α
//

comp
@@

x′

l′

OO

expands to a degenerate diagram

p′
idp′ // p′

x
α

//

comp

88

comp

OO

x′

l′

OO

which provides the claimed isomorphism. Hence l′ is terminal in the oriented fiber
product if and only if l′α is terminal in the oriented fiber product. Consequently, l′

exhibits x′ as a limit of p′ if and only if l′α exhibits x as a limit of p, by Proposition
13.3. So we see finally

F |{0} is a limit diagram ⇔ l exhibits x as a limit of p (Proposition 13.3)

⇔ ξl(= l′α) exhibits x as a limit of p′ (Proposition 13.17)

⇔ l′ exhibits x′ as a limit of p′

⇔ F |{1} is a limit diagram (Proposition 13.3).

□

We leave the details for the following related result to the reader.

prop:isom_lim_diagram Proposition 13.19. Let C be an ∞-category.

(1) Let F : ∆1 → Fun({∗} ⋆ K,C ) be a transformation of diagrams which
restricts to a natural isomorphism on K, and suppose that F |{0} is a limit
diagram. Then F |{1} is a limit diagram if and only if F restricts to an
isomorphism at the cone point in {∗} ⋆ K.

(2) Let F ′ : ∆1 → Fun(K ⋆ {∗},C ) be a transformation of diagrams which
restricts to a natural isomorphism on K, and suppose that F ′|{0} is a colimit
diagram. Then F ′|{1} is a colimit diagram in C if and only if F ′ restricts
to an isomorphism at the cone point in K ⋆ {∗}.

Idea of proof. For (1), for example, one argues as in the proof of 13.19 and refers to
uniqueness of terminal objects in the oriented product C ×or

Fun(K,C ) {p
′} (Lemmas

9.2 and 9.3). □

prop:lift_isom_lim Proposition 13.20. Suppose we have diagrams p0, p
′
0 : K → C , an isomorphism

ζ0 : p0
∼→ p′0, and limit diagrams p, p′ : {0} ⋆ K → C . The following hold.
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(1) There is an isomorphism ζ : p
∼→ p′ with ζ|K = ζ0.

(2) The full subcategory Y ⊆ Fun(∆1 × {0} ⋆ K,C ) spanned by such isomor-
phisms ζ lifting ζ0 is a contractible Kan complex.

Furthermore, the analogous result holds for colimit diagrams in C .

Proof. The result for colimits follows by taking opposites. (1) In the case of limits,
we consider the isofibration Fun({0} ⋆ K,C ) → Fun(K,C ) provided by restriction
(Corollary I-6.14). Hence we can lift p′0 to an object p′′ : {0} ⋆ K → C and ζ0
to an isomorphism ζ ′ : p

∼→ p′′. From Proposition 13.18 we conclude that p′′ is a
limit diagram. Thus p′′ and p′ are terminal in C/p′0 and we have an isomorphism
η : p′′ → p′ in C/p′0 .

Translating the information above, we have a diagram η : ∆1 ⋆ K → C and we
have the unique map

π : ∆1 × ({0} ⋆ K) → ∆1 ⋆ K

which, when interpreted as a map ∆1 → Fun({0} ⋆ K,∆1 ⋆ K), restricts to the
inclusion {0} ⋆K → ∆1 ⋆K at 0 and the inclusion {0} ⋆K ∼= {1} ⋆K → ∆1 ⋆K at
1. Restricting along π,

π∗ : Fun(∆1 ⋆ K,C ) → Fun(∆1 × {0} ⋆ K,C ),

we obtain an transformation π∗(η) : p′′ → p′ in Fun({0} ⋆K,C ) which evaluates at
each object as

π∗(η)(x) =

{
η|∆1 : p′′(0) → p′(0) when x = 0
idx when x ∈ K[0].

In particular, π∗(η) evaluates to an isomorphism at all vertices, and is therefore a
natural isomorphism by Theorem I-7.6. We obtain the claimed isomorphism ζ as
the composite π∗(η)ζ ′ : p→ p′.

(2) By Proposition I-5.33 the map ζ is a cocartesian lift of the map ζ along
the isofibration Fun({0} ⋆ K,C ) → Fun(K,C ). By Proposition 2.4, the space
Y ′ ⊆ Fun(∆1 × {0} ⋆ K,C ) spanned by cocartesian lifts ζ ′ : p → p′′ of ζ0 is
contractible. Since all isomorphisms lifting ζ0 are cocartesian, by Proposition I-
5.33, this subspace Y ′ is precisely the full subcategory of isomorphisms over ζ0.

We now consider the isofibration

Y ′ ⊆ Fun(∆1 × {0} ⋆ K,C ) → Fun({1} × {0} ⋆ K,C )

and take the fiber Y = Y ′×Fun({1}×{0}⋆K,C ) {p′}. This fiber is the full subcategory
in Y ′ spanned by the objects p and p′. Contractibility of Y ′ implies contractibility
of Y . Hence the isomorphism ζ : p → p′ is seen to be unique up to a contractible
space of choices. □

13.6. Limits and colimits under adjunctions. As in the discrete setting, one
can show that any left adjoint respects colimits and any right adjoint respects
limits. We begin this discussion with a result concerning exponentiation of natural
transformations. For each functor F : C → D between ∞-categories, and simplicial
set K, we have the induced functor

F∗ : Fun(K,C ) → Fun(K,D).

This assigment F 7→ F∗ extends to a map of simplicial sets.
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prop:exp_nat Proposition 13.21. Let Ci and D be ∞-categories, and K be a simplicial set.
Take EK = Fun(K,E ) for any ∞-category E . There is a map of ∞-categories

(−)∗ : Fun(C ,D) → Fun(CK ,DK)

which is natural in K, which is the apparent isomorphism when K = ∗, and which
on objects sends a functor F to the induced map F∗. Furthermore, for any triple
of ∞-categories the diagram

Fun(C1,C2)× Fun(C0,C1)
(−)∗×(−)∗ //

◦
��

Fun(CK
1 ,CK

2 )× Fun(CK
0 ,CK

1 )

◦
��

Fun(C0,C2)
(−)∗

// Fun(CK
0 ,CK

2 )

commutes.

Construction 13.21. This is a general fact about simplicial categories. For any
n-simplex F : ∆n → Fun(C ,D) we define F∗ via composition in Cat∞,

F∗ :=
(
∆n × CK F×1→ Fun(C ,D)× CK ◦→ DK

)
.

At each vertex {i} and Fi = F |{i} we have directly F∗|{i} = (Fi)∗.
As for composition, following around the left of the proposed diagram produces

from a pair of simplices (G,F ) : ∆n → Fun(C1,C2)× Fun(C0,C1) the simplex

∆n × CK (G,F )×1→ Fun(C1,C2)× Fun(C0,C1)× CK
0

◦(◦×1)→ CK
2 .

Proceeding along the right of the proposed diagram produces the n-simplex

∆n × CK (G,F )×1→ Fun(C1,C2)× Fun(C0,C1)× CK
0

◦(1×◦)→ CK
2 .

By associativity of composition these simplices are equal. □

We note that the composite of a natural transformation ζ : ∆1 × C0 → C1 with
a functor F : C1 → C2 is recovered as the composite of 1-simplices

Fζ = (s∗0F )η

where s0 : ∆1 → ∆0 is the degeneracy map. Similarly the composition of ζ with a
functor G : C−1 → C0 is identified with a composite of 1-simplices

ζ(id∆1 ×G) = ζ(s∗0G).

It follows that the functor from Proposition 13.21 respects these compositions be-
tween natural transformations and functors. We therefore observe preservation of
adjoints under exponentiation.

cor:exp_adj Corollary 13.22. Suppose a functor F : C → D is left adjoint to a functor G :
D → C . Let η : idC → GF and ϵ : FG → idD be the associated unit and counit
transformations. Then for any simplicial set K, the transformations η∗ and ϵ∗
exhibit the functor F∗ : Fun(K,C ) → Fun(K,D) as left adjoint to the functor
G∗ : Fun(K,D) → Fun(K,C ).

We use the above information to prove that left adjoints preserve colimits.
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prop:left_cocont Proposition 13.23. Suppose a functor F : C → D admits a right adjoint, and let
p : K → C be a diagram in C . If a given transformation c : p → x exhibits an
object x as a colimit to p in C , then the transformation Fc : Fp → F (x) exhibits

F (x) as a colimit to the diagram Fp : K → D .

Proof. By Corollary 13.22 the functor F∗ : Fun(K,C ) → Fun(K,D) admits some
right adjoint G∗ which is induced by a right adjoint G : D → C to F . We therefore
have, at each z in D , a diagram

HomD(F (x), z) //

∼=
��

HomFun(K,D)(F∗x, z)

∼=
��

(F∗c)
∗
// HomFun(K,D)(F∗p, z)

∼=
��

HomC (x,G(z)) // HomFun(K,C )(x,G∗z)
c∗
// HomFun(K,C )(p,G∗z),

in hKan by Corollary I-14.4. It follows that the top row is an isomorphism in
hKan since the bottom row is an isomorphism in hKan by hypothesis. □

Similar arguments establish the analogous result for limits and right adjoints.

prop:right_cont Proposition 13.24. Suppose a functor G : D → C admits a left adjoint, and let
q : K → D be a diagram in D . If a given transformation l : y → q exhibits an
object y as a limit to q in D , then the transformation Gl : G(y) → Gq exhibits G(y)

as a limit to the diagram Gq : K → C .

13.7. Co/completeness and co/continuity.

def:fin_small Definition 13.25. A simplicial set K is called finite if K has only finitely many
non-degenerate simplices. We call K small if, for each n ≥ 0, the set of n-simplices
K[n] is small.

Definition 13.26. We say an ∞-category C is complete (resp. cocomplete) if, for
each diagram p : K → C from a small simplicial set, p admits a limit (resp. colimit)
in C . A functor F : C → D from a complete (resp. cocomplete) category is called
continuous (resp. cocontinuous) if F commutes with limits (resp. colimits).

From Propositions 13.23 and 13.24 we observe the following.

Proposition 13.27. Suppose C and D are both complete and cocomplete, and let
F : C → D be any functor. If F admits a right adjoint then F is cocontinuous. If
F admits a left adjoint then F is continuous.

13.8. Limits and colimits in functor categories.

prop:fun_complete Proposition 13.28. Let C be a complete ∞-category and L be any simplicial set.
Then the ∞-category Fun(L,C ) is complete and for any diagram p : K → Fun(L,C )
an extension {0} ⋆ K → Fun(L,C ) is a limit diagram if and only if, at each x in
L, evaluation

{0} ⋆ K → Fun(L,C )
x∗

→ C

produces a limit diagram in C .

prop:fun_cocomplete Proposition 13.29. Let C be a cocomplete ∞-category and L be any simplicial
set. Then the ∞-category Fun(L,C ) is cocomplete and for any diagram p : K →
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Fun(L,C ) an extension K ⋆ {1} → Fun(L,C ) is a colimit diagram if and only if,
at each x in L, evaluation

{0} ⋆ K → Fun(L,C )
x∗

→ C

produces a colimit diagram in C .

14. Limits and colimits in Cat∞ and Kan

14.1. Limits in ∞-categories. Consider an arbitrary diagram p : K → Cat∞ and
the corresponding cocartesian fibration E → K. One can take explicitly E =

∫
K
p

here. A limit diagram for p is a particular diagram from the join p̃ : ∆0⋆K → Cat∞,
which is then specified by the corresponding fibration E ′ → ∆0 ⋆K, which fits into
a pullback diagram

E

��

// E ′

��
C // ∆0 ⋆ K.

Definition 14.1. For any cocartesian fibrationsX → S and Y → S, take FunCCart
S (X,Y )

to be the full ∞-subcategory in FunS(X,Y ) spanned by those functors which pre-
serve cocartesian edges.

Notation 14.2. For any simplicial set K, we take K< := ∆0 ⋆K. We refer to the
vertex {0} in K< as the cone point in K<.

We have the following general result.

Lemma 14.3 ([5, 018Q]). Consider inclusions of simplicial sets f : A → A′ and
g : B → B′, and the corresponding inclusion

µ : (A ⋆ B′)
∐

(A⋆B)

(A′ ⋆ B) → A′ ⋆ B′.

If f is anodyne, then µ is left anodyne. If g is anodyne, then µ is right anodyne.

In considering the extreme cases where f = idA and B = ∅ we find the following.

cor:cone_lano Corollary 14.4. The inclusions {0} → K< is left anodyne.

We also have the following basic result, whose proof we omit.

prop:3558 Proposition 14.5 ([5, 035S]). For any cocartesian fibration q : X → S, left an-
odyne morphisms of simplicial sets S0 → S, and X0 = X ×S S0, the restriction
functor

FunCCart
S (S,X) → FunCCart

S0
(S0, X0)

is a trivial Kan fibration.

Note that in the case of a cocartesian fibration over a point C → ∗, i.e. an
∞-category, we have FunCCart

∗ (∗,C ) = Fun(∗,C ) ∼= C .

cor:conical_sections Corollary 14.6. Let K be any simplicial set. For any cocartesian fibration E →
K< the restriction functor

FunCCart
K< (K<,E ) → FunCCart

{0} ({0},E0) = E0

is a trivial Kan fibration.

https://kerodon.net/tag/018Q
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Proof. By Corollary 14.4 the inclusion {0} → K< is left anodyne, and hence the
result follows by Proposition 14.5. □

lem:extend_transp Lemma 14.7. Suppose that we have a pullback diagram of cocartesian fibrations

E

q

��

// E ′

q′

��
K // K ′

where K → K ′ is a monomorphism and let F : K → Cat∞ be the transport functor
for q. There exists a transport functor F ′ : K ′ → Cat∞ for q′ with F ′|K = F .

Proof. Let G : K ′ → Cat∞ be any transport functor for q′. Then there is an
isomorphism ξ : G|K

∼→ F by uniqueness of transport and Lemma 6.12. We have
now the restriction functor

Fun(K ′,Cat∞) → Fun(K,Cat∞)

which is an isofibration by Proposition I-??. Hence there exists a functor F ′ : K →
Cat∞ which extends F and an isomorphism ξ′ : G

∼→ F ′ which lifts the isomorphism
ξ. It follows by unstraightening, Section ??, that there is an equivalence E ′ ∼→∫
K′ F

′ of cocartesian fibrations over K and hence that F ′ is a transport functor for
q′. □

We have the following characterization of colimit diagrams in Cat∞.

thm:diff_crit Theorem 14.8 (Diffraction criterion, [5, 02T8]). Given any diagram p : K → Cat∞,
an extension p′ : K< → Cat∞ is a limit diagram if and only if, for the corresponding
cocartesian fibrations E =

∫
K
p and E ′ =

∫
K< p

′, the restriction functor

FunCCart
K< (K<,E ′) → FunCCart

K (K,E )

is an equivalence of ∞-categories.

Lurie then shows that such extensions p′ always exist [5, 02TG], so that we
obtain completeness of the ∞-category Cat∞.

thm:infty_lim Theorem 14.9. Any diagram p : K → Cat∞ admits a limit. Furthermore, for the
associated cocartesian fibration E =

∫
K
p, the ∞-category FunCCart

K (K,E ) is a limit
for the diagram p.

Proof. Existence of the limit follows by the Diffraction Criterion of Theorem 14.8,
and for any limit diagram p′ : K< → Cat∞ with corresponding cocartesian fibration
E ′ we have equivalences

p′(0)
∼→ E ′

0
∼→ FunCCart

K< (K<,E ′)
∼→ FunCCart

K (K,E ).

Here the first equivalence follows by the fiber calculation of Theorem 5.27, the
second equivalence is from Corollary 14.6, and the third equivalence follows by the
Diffraction Criterion. By definition p′(0) is a limit for p, and by Corollary 13.5 we

find that the ∞-category FunCCart
K (K,E ) is also a limit for p. □

To clean the situation up slightly, in the setting of Theorem 14.9 we know
that there exists a colimit diagram p′ : K< → Cat∞ and an equivalence F0 :
FunCCart

K (K,E ) → p′(0) which is uniquely determined up to a contractible space.
We have the right fibration C/p → C along which we can lift the equivalence F0 to

https://c-negron.github.io/infty_partI.pdf
https://kerodon.net/tag/02T8
https://kerodon.net/tag/02TG
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a uniquely associated diagram p′′ : K< → Cat∞ with p′′(0) = FunCCart
K (K,E ) and

an equivalence p′′
∼→ p′. In particular, p′′ is also a limit diagram for p′. So for any

diagram p : K → Cat∞ we can find, specifically, a limit diagram p′ : K< → Cat∞
with cone point p′(0) = FunCCart

K (K,E ) for E =
∫
K
p.

We now restrict our attention to small diagrams K → Cat∞ to observe com-
pleteness.

cor:infty_complete Corollary 14.10. The ∞-category of ∞-categories Cat∞ is complete.
sect:lim_description

14.2. Describing limits in Cat∞. From the description of the cocartesian fibra-
tion

∫
K
F → K provided in Section 6.2 we can understand objects in the∞-category

FunCCart
K (K,

∫
K
F ), to some minimal extent. A section t : K →

∫
K
F specifies, at

least, a choice of an object tx : ∗ → F (x) over each vertex x in K, and over each
edge α : x → y we have a morphism tα : F (α)(tx) → ty. Since every edge in K is

cocartesian, the section t lies in FunCCart
K (K,

∫
F
K) if and only if each map tα is an

isomorphism in F (y). Apply t to 2-simplices in K provide compatibilities for the
tα.

In the special case where K is a discrete category, this relatively shallow de-
scription of objects in the space of sections can be filled out completely. First, by
Lemma 6.29 we may assume that F : K → Cat∞ is a strictly commuting diagram of
∞-categories, i.e. is the nerve of a simplicial functor from the underlying plain cat-
egory. The ∞-category

∫
K
F can then be replaced with the weighted nerve NF (K)

by Theorem 6.28. A section t : K → NF (K) in FunCCart
K (K,NF (K)) specifies for

each compatible collection of morphisms αij : xi → xj in K for 0 ≤ i < j ≤ n, i.e.
each n-simplex α : ∆n → K, an expanding sequence of simplices

∆i

τi(α)

��

// ∆j

τj(α)

��
F (xi)

F (αij)
// F (xj)

in which each constituent morphism τi(α)|∆{a,b} : ∆1 → F (xi) is an isomorphism

in the ∞-category F (xi). Said imprecisely, an object in FunCCart
K (K,NF (K)) is

just a choice of objects tx : ∗ → F (x) for each x in K, a choice of an isomorphism
tα : F (α)(tx) → ty over each morphism α : x→ y in K which enjoy arbitrarily high
levels of compatibility under composition. The easiest way for this compatibility
to occur is for each compatibility to be degenerate. We discuss this case below.

14.3. Comparing limits in Cat∞ to discrete limits. Let us take, for any strictly
commuting diagram p : K → Cat∞ indexed by a discrete category K. Take

lim0(p) := the limit of p in the discrete category sSet .

We make no claim that this limit is an ∞-category at general p, however we do
claim that there is a comparison map

λ : lim0(p) → FunCCart
K (K,E ) (29) eq:comp_lambda

where E is the weighted nerve.
For each object x let πx : lim0(p) → p(x) be the corresponding projection. For

an n-simplex σ : ∆n → lim0(p) define the simplex

λ(σ) : ∆n ×K → E
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as follows: Consider an m-simplex τ = (τ1, τ2) : ∆
m → ∆n ×K and take

xi = τ2(i), αij = τ2(i ≤ j) : xi → xj , Ei = p(xi), πi = πxi
.

We define λ(σ)(τ) : ∆m → E = Np(K) to be the sequence of simplices {σi : ∆i →
Ei : 0 ≤ i ≤ m} with each σi equal to the composite

σi = (∆m → ∆n ×K → ∆n πiσ→ Ei).

The assignment τ 7→ λ(σ)(τ) is compatible with restriction and so defines a map
of simplicial sets λ(σ) : ∆n × K → E . These λ(σ) are furthermore compatible
with restriction in the ∆n factor, so that we obtain the proposed comparison map
λ : lim0(p) → FunCCart

K (K,E ) of (29).

def:comp_lambda Definition 14.11. For any discrete category K and strictly commuting diagram
p : K → Cat∞ we let lim0(p) denote the corresponding limit in the discrete category
sSet and

λ : lim0(p) → FunCCart
K (K,E )

denote the comparison morphism constructed above.

There are some obvious cases where the discrete limit lim0(p) is an ∞-category.
For example, one might consider the limit of a sequence of inner fibrations · · · →
C2 → C1 → C0, or the pullback of a pair of inner fibrations. In this case we obtain
an easy extension of the given diagram p : K → Cat∞ to a strictly commuting
diagram over the cone of K.

Definition 14.12. Suppose p : K → Cat∞ is a strictly commuting diagram of
∞-categories, and suppose the discrete limit lim0(p) in sSet is an ∞-category. We
define

p0 : K< → Cat∞ ⊆ Cat∞
to be the discrete limit diagram associated to lim0(p) in Cat∞.

Remark 14.13. The limit lim0(p) is an actual limit for the corresponding map of
discrete categories Plain(p) : K → sSet, in both the “classical” and ∞-categorical
sense. So we are interested in probing continuity of the inclusion Cat∞ → Cat∞,
and the failures of continuity. This lim0 notation is just used to indicate where a
specific limit occurs.

Proposition 14.14. Let K be a discrete category and p : K → Cat∞ is a strictly
commuting diagram of ∞-categories. Suppose that the discrete limit lim0(p) is

an ∞-category, and take E = Np(K) and E 0 = Np
0

(K<). Then the trivial Kan
fibration

FunCCart
K< (K<,E 0) → FunK<({0},E 0) ∼= lim0(p)

admits a section λ0 : lim0(p) → FunCCart
K< (K<,E 0). This section is an equivalence

of ∞-categories and fits into the diagram

FunCCart
K< (K<,E 0) // FunCCart

K (K,E )

lim0(p)

λ0

OO

λ

55

.

Proof. The discrete limit lim0(p) is also the limit for the diagram p0. So we can
take λ0 to be the comparison map for the strictly commuting diagram p0. □
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The diffraction criterion, Theorem 14.8, now provides a necessary and sufficient
criterion for determining when the discrete limit of a strictly commuting diagram
in Cat∞ is an ∞-categorical limit.

cor:disc_v_infty_lim Corollary 14.15. Let K be a discrete category and p : K → Cat∞ is a strictly
commuting diagram of ∞-categories. Suppose that the discrete limit lim0(p) is an
∞-category. Then the corresponding strictly commuting diagram p0 : K< → Cat∞
with cone point lim0(p) is a limit diagram in Cat∞ if and only if the comparison
map

λ : lim0(p) → FunCCart
K (K,E )

of Definition 14.11 is an equivalence of ∞-categories.

ex:products Example 14.16 (Products). Let K be a discrete set, K =
∐
x∈K{x}. For any

diagram p : K → Cat∞ the weighted nerve Np(K) is simply the coproduct ⨿x∈KEx,
where Ex = p(x). This is because every n-simplex in K is constant, so that every
n-simplex in the weighted nerve factors through a unique fiber ∆n → Ex → Np(K).
Consequently,

FunCCart
K (K,Np(K)) = FunK(⨿x{x},⨿xEx) =

∏
x∈K

Ex.

This limit agrees with the usual limit, the map λ is an isomorphism, and we see
that products in Cat∞ are just the usual products from Cat∞.

14.4. Colimits in ∞-categories. We again outline a construction of colimits in
the ∞-category of ∞-categories. We provide the basic rationalle, but omit argu-
ments for some of the technical pinch points. Of course, one can find all details in
the original text [5]. We begin with a brisk discussion of localization. Recall that
a marked simplicial set (E,W ) is a simplicial set E with a prescribed collection
W ⊆ E[1] which contains all degenerate edges.

def:localize Definition 14.17. For a marked simplicial set (E,W ) a (Dwyer-Kan) localization
of E relative to W is a map of simplicial sets F : E → D into an ∞-category D for
which, at each ∞-category C , the restriction functor

F ∗ : Fun(D ,C ) → Fun(E,C )

is an equivalence onto the full subcategory of all maps E → C which send all edges
in W to equivalences in C .

It is the case that such localizations always exist and are unique.

Lemma 14.18. For any marked simplicial set (E,W ), a localization functor θ :
E → D exists. Furthermore, any two localizations F : E → D and F ′ : E → D ′

admit an equivalence ϑ : D → D ′ which fits into homotopy commuting diagram

D
ϑ // D ′

E

F

__

F ′

>>

.

Proof. Take D a fibrant replacement for (E,W ) in the model category of marked
simplicial sets, with respect to the cartesian model structure [3]. Uniqueness follows
by the expected nonsense argument. □



KERODON REMIX II [IN PREPARATION] 87

In the event that we do not have a specific realization of the lecalization in mind,
we write E [W−1] for the localization of a simplicial set E relative to a collection of
edges W .

Given a pullback diagram of cocartesian fibrations

E
i //

q

��

Ẽ

q̃

��
K // K ⋆ {1}

(30) eq:3939

we have the unique solution the lifting problem

{0} × E
i //

��

Ẽ

q̃

��
∆1 × E //

99

K ⋆ {1}

(31) eq:3946

where the bottom map is the unique map of simplicial sets which is q on {0} × E
and the terminal map E → {1} on {1} × E (see Section 6.8). We recall that there

is a unique cocartesian solution s : ∆1 × E → Ẽ to this problem by Theorem 2.7,

i.e. one which sends each edge ∆1 × {e} to a cocartesian morphism in Ẽ .

Definition 14.19. Given a pullback diagram of cocartesian fibrations (30), and an

equivalence Ẽ ×(K⋆{1}) {1} → E1, a refraction diagram for Ẽ is a map of simplicial
sets Rf : E → E1 which appears as the restriction Rf = s|{1}×E of a cocartesian

solution s : ∆1 × E → Ẽ to the lifting problem (32).

By uniqueness of s, we see that the refraction diagram Rf : E → E1 is uniquely

specified by the fibration q̃ : Ẽ → K ⋆ {1} and the choice of identification Ẽ1
∼= E1.

thm:refract Theorem 14.20 (Refraction Criterion, [5, 02UU]). Let F : K → Cat∞ be a di-
agram of ∞-categories, and q : E =

∫
K
F → K the corresponding cocartesian

fibration. An ∞-category E1 is a colimit for the diagram F if and only if there is a
pullback diagram of cocartesian fibrations

E //

q

��

Ẽ

q̃

��
K // K ⋆ {1}

for which the fiber Ẽ1 admits an equivalence Ẽq
∼→ E1, and for which the refraction

diagram Rf : E → E1 exhibits E1 as a localization of E relative to the class W of
q-cocartesian morphisms.

We note that the transport functor F̃ : K ⋆ {1} → Cat∞ associated to such a

cocartesian fibration Ẽ → K⋆{1} has F̃ |K ∼= F and has F̃ (1) equivalent to E1. Since

the forgetful functor (Cat∞)F̃ |K/ → Cat∞ we see that the diagram F̃ determines,

up to isomorphism, an object e1 : ∗ → CF̃ |K/ over E1. Now, by Proposition 13.17,

e1 realizes E1 as a colimit of F̃ |K if and only if E1 is a colimit of F . So the assertion
of Theorem 14.20 at least makes sense. Furthermore, by considering refraction

https://kerodon.net/tag/02UU
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diagrams one can intuit the nature of the refraction criterion and the necessity of
the proposed localization.

We refer the reader directly to [5] for a precise accounting of Theorem 14.20 and
its proof.

prop:refract_exist Proposition 14.21. Given any cocartesian fibration q : E → K over a simplicial

set K, there exists a cocartesian fibration q̃ : Ẽ → K ⋆ {1} for which the refraction
diagram Rf : E → E1 exhibits E1 as a localization of E .

Proof. Take any localization F : E → E1 and corresponding cocartesian fibration
E [W−1] → {1}. Then we have the diagram

E
F //

q

��

E [W−1]

��
K // {1}

where the top map F preserves cocartesian edges. By Lemma 6.27 we then obtain
a cocartesian fibration

q̃ : Ẽ := E ⋆E1
E1 → K ⋆{1} {1}.

We have K ⋆{1} {1} ∼= K ⋆ {1}, and identifications of the fibers

E
∼=→ Ẽ ×(K⋆{1}) K, E1

∼=→ Ẽ ×(K⋆{1}) {1}.

We have the unique map ∆1 ×E → E ⋆E1 which is the identity E → E ⊆ E ⋆E1

at {0} and the localization F : E → E1 ⊆ E ⋆ E1 at {1}. We also have the map
id×F : ∆1×E → ∆1×E1. These two morphisms fit into the appropriate diagram

∆1 × E //

��

∆1 × E1

��
E ⋆ E1

// E1 ⋆ E1

and so define a morphism to the relative join s : ∆1 × E → Ẽ which sends each
edge ∆1 × {e} to the pairing of the unique edge e → F (e) in E ⋆ E1 with the edge

∆1 ×{F (e)} in E1. By the characterization of q̃-cocartesian edges in Ẽ provided in
Lemma ?? we see that s provides a cocartesian solution to the lifting problem

{0} × E
i //

��

Ẽ

q̃

��
∆1 × E //

s

99

K ⋆ {1}.

(32) eq:3946

Since s|{1}×E = F , we see that F is realized as the refraction diagram for q̃. □

We combine Theorem 14.20 with Proposition 14.21 to see that Cat∞ arbitrary
colimits.

cor:infty_co_complete Corollary 14.22. The ∞-category Cat∞ is both complete and cocomplete.

Proof. Follows by Corollary 14.10, Theorem 14.20, and Proposition 14.21. □
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ex:coprod Example 14.23 (Coproducts). Let K be a discrete set, K =
∐
x∈K{x}. We have

already argued in Example 14.23 that for any diagram p : K → Cat∞ the corre-
sponding fibration q : E = Np(K) → K is just the coprodct

E =
∐
x∈K

Ex,

where Ex = p(x) in the above expression.
SinceK is a discrete set, and hence has only identity morphisms, the q-cocartesian

morphisms in E are precisely equivalences, so that the localization with respect to
cocartesian edges simply returns E itself, E [W−1] = E . Hence the discrete colimit
diagram for E in Cat∞ ⊆ Cat∞ is a colimit diagram, by Theorem 14.20, and we
find that coproducts in Cat∞ are just the usual coproducts of ∞-categories.

Remark 14.24. It is a bit odd that we’ve, apparently, shown that Cat∞ admits
limits and colimits indexed by arbitrary simplicial sets, rather than all small sets.
However we recall our sizing conventions. All simplicial sets, ∞-categories, and
Kan complexes, are in our universe of “medium sized” sets, while we make special
exemptions for the ∞-categories Cat∞ and Kan, which lift in our universe of
“large” sets. So all simplicial sets are small relative to our large categories Cat∞
and Kan, and the claim that Cat∞ admits all colimits indexed by medium sized
simplicial sets poses no philosophical or material error. In any case, we are only
concerned with the existence of small limits and colimits in Cat∞.

sect:lim_spaces

14.5. Limits and colimits in spaces. Our ultimate conclusion here is that Kan
is complete and cocomplete, and is in fact closed under both limits and colimits in
the ambient category Cat∞.

thm:kan_complete Theorem 14.25. The ∞-category Kan is complete and the inclusion Kan →
Cat∞ is continuous.

Proof. Given a diagram p : K → Kan we have the inclusion Kan/p → (Cat∞)/p
which identifies Kan/p with a full ∞-subcategory in (Cat∞)/p. Furthermore,
Kan/p is seen to fit into a pullback diagram

Kan/p

��

// (Cat∞)/p

��
Kan // Cat∞.

It follows that the limit diagram l : ∗ → (Cat∞)/p is a limit in Kan/p if and only
if the cone point lim(p) in Cat∞ is a Kan complex.

Take E =
∫
K
p → K the left fibration associated to p. By the calculation of

Theorem 14.9 we must show that the functor category FunCCart
K (K,E ) is a Kan

complex, and for this it suffices to show that the ∞-category FunK(K,E ) is a
Kan complex. Since the fibers of Ex over K are all Kan complexes, it follows that
for any natural transformation ζ : ∆1 × K → E between functors F and G the
maps ζ(x) : F (x) → G(x) are isomorphisms in Ex. Hence each transformation in
FunK(K,E ) is an isomorphism by Proposition I-7.9, we see that FunK(K,E ) is a

Kan complex, and since FunCCart
K (K,E ) is a full ∞-subcategory in FunK(K,E ) we

conclude that FunCCart
K (K,E ) is a Kan complex. □

https://c-negron.github.io/infty_partI.pdf
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thm:kan_cocomplete Theorem 14.26. The ∞-category Kan is cocomplete and the inclusion Kan →
Cat∞ is cocontinuous.

Proof. Fix a diagram p : K → Kan. Since Cat∞ is cocomplete by Corollary 14.22,
it suffices to show that the colimit C = colim(p) is a Kan complex.

Let i : Kan → Cat∞ be the inclusion, and recall from Proposition I-14.15 that
this functor is left adjoint to the associated Kan complex functor. The counit of
this adjunction is provided by a transformation idCat∞ → i(−)Kan which is just the
inclusion CKan → C on objects. This counit transformation realizes these functors
as adjoints at the level of the enriched homotopy categories as well, by Corollary
??, and we have an induced adjunction for the functors

i∗ : Fun(K,Kan) → Fun(K,Cat∞) and (−)Kan
∗ : Fun(K,Cat∞) → Fun(K,Kan)

by Proposition 13.21. Here i∗ is just the inclusion.
Take c : i∗p→ C a transformation which exhibits an ∞-category C as a colimit

for i∗p in Cat∞ and take X = CKan. Let ϵ : X → C be the inclusion. Then we
have the diagram

HomCat∞(C ,X )

ϵ∗

��

// HomFun(K,Cat∞)(C ,X )

ϵ∗

��

c∗ // HomFun(K,Kan)(p,X )

ϵ∗∼=
��

HomCat∞(C ,C ) // HomFun(K,Cat∞)(C ,C )
c∗
// HomFun(K,Cat∞)(i∗p,C )

Since c exhibits C as a colimit to p both the top and bottom composites are
isomorphisms. It follows that the map

ϵ∗ : HomCat∞(C ,X ) → HomCat∞(C ,C )

is an isomorphism. Take f : C → X a homotopy lift of the identity on C , so that
we have a 2-simplex

X

ϵ

!!
C

f
>>

id
// C .

in Cat∞.
By definition, this 2-simplex is a simplicial map

Path(∆2) → Cat∞

with the appropriate restrictions, which is then a choice of an isomorphism ϵf
∼→

idC in Fun(C ,C ). Via the identification

ϵ∗ : Fun(X ,X )
∼→ Fun(X ,C )Kan

from Lemma I-10.10 this natural isomorphism restricts to a natural isomorphism

fϵ
∼→ idX .

So, by definition, the inclusion X → C is an equivalence with inverse f : C → X .
Consequently, C is a Kan complex and so is in fact equal to X . □

By Theorems 14.25 and 14.26 we can calculate limits in Kan via the semi-explicit
expressions from Theorems 14.9 and 14.20.

https://c-negron.github.io/infty_partI.pdf
https://c-negron.github.io/infty_partI.pdf
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cor:lim_calckan Corollary 14.27. Let p : K → Kan be a diagram of Kan complexes and E =∫
K
p→ K be the associated left fibration. Let W be the collection of all morphisms

in E . We have lim(p) = FunK(K,E ) and colim(p) = E [W−1].

We note that it is not obvious that the localization E [W−1] is a Kan complex.
However, this is simply forced by the conclusion of Theorem 14.26.

Proof. Both formula follow from the fact that all morphisms in a left fibration are
cocartesian. □

14.6. ∞-pullback vs. homotopy pullback vs. discrete pullback in spaces.
We deal with the case of Kan complexes first, then discuss the ∞-setting. Let

X1

f1

��
X0

f0

// Y

(33) eq:4226

be a diagram of Kan complexes, which is equivalently a functor Plain(Λ2
2) → Kan.

We can then calculate the limit of the corresponding diagram p : Λ2
2 → Kan via

the weighted nerve E = Np(Λ2
2). We have the identifications of the fibers

E0
∼= X0, E1

∼= X1, E2
∼= Y .

A section of the weighted nerve Λ2
2 → E is the information of a choice of objects

x0, x1, and z in X0, X1 and Y respectively, and morphisms α0 : x0 → z and
α1 : x1 → z in the weighted nerve. These morphisms are explicitly isomorphisms
αi : fi(xi) → z in Y , and since all morphisms in Y are isomorphisms we needn’t
concern ourselves with this restriction. So we find that objects in the functor
category FunΛ2

2
(Λ2

2,E ) are identified with objects in the fiber product

Fun(Λ2
2,Y )×Fun({0,1},Y ) (X0 × X1).

Here we have {0, 1} = ∂Λ2
2 and the map Fun(Λ2

2,Y ) → Fun({0, 1},Y ) is re-
striction to the boundary. This map is a Kan fibration by Corollary I-3.12. The
map

(X0 × X1) → Fun({0, 1},Y ) ∼= Y × Y

is the product f0 × f1.
Now, an n-simplex in FunΛ2

2
(Λ2

2,E ) is the data of a pair of n-simplices σi : ∆
n →

Xi, an n-simplex τ : ∆n → Y , and transformations ξi : fi(σi) → τ . This data
specifies an n-simplex in the aforementioned fiber product, so that we obtain an
identification

lim(p) = FunΛ2
2
(Λ2

2,E ) = Fun(Λ2
2,Y )×Fun({0,1},Y ) (X0 × X1) (34) eq:4273

Though this description of the limit is explicit, it is somewhat inefficient. We
can, in particular, replace the functor space Fun(Λ2

2,Y ) with the space Fun(∆1,Y )
via “composition”. In particular, we have the anodyne maps

∆1 ∼= ∆{0,2}

%%

Λ2
2

~~
∆2

https://c-negron.github.io/infty_partI.pdf
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which induce trivial Kan fibrations

Fun(∆2,Y )

ww ''
Fun(∆1,Y ) Fun(Λ2

2,Y ),

by Corollary I-3.12. These trivial Kan fibrations fit into a diagram of Kan fibrations
over Fun({0, 1},Y ) so that we obtain, via Proposition I-6.3, an induced equivalence

Fun(∆1,Y )×Fun({0,1},Y ) (X0 × X1)
∼→ Fun(Λ2

2,Y )×Fun({0,1},Y ) (X0 × X1).

We recall finally that the left-hand fiber product is the homotopy pullback from
Section I-6.3,

X0 ×htop
Y X1 = Fun(∆1,Y )×Fun({0,1},Y ) (X0 × X1).

Proposition 14.28. Given a diagram p : Λ2
2 → Kan, which explicitly appears as

(33), the homotopy pullback X1 ×htop
Y X1 is a limit of p.

We recall that the homotopy pullback is isomorphic to the standard pullback in
the event that one of the maps fi is a Kan fibration by Proposition I-6.5.

cor:4379 Corollary 14.29. Consider a diagram p : Λ2
2 → Kan, which explicitly appears as

(33). If one of the maps fi is a Kan fibration, the the usual fiber product X1×Y X2

is a limit of p in Kan.

We also have the comparison morphism

X0 ×Y X1
∼= Y ×(Y ×Y ) (X0 × X1) → Fun(Λ2

2,Y )×Fun({0,1},Y ) (X0 × X1)

given by restricting along the terminal map Λ2
2 → ∗, and a similar restriction map

for Fun(∆2,Y )×Fun({0,1},Y ) (X0 × X1). These maps fit into a diagram

Fun(∆2,Y )×Fun({0,1},Y ) (X0 × X1)

∼

**

∼

vv
X0 ×htop

Y X1 Fun(Λ2
2,Y )×Fun({0,1},Y ) (X0 × X1)

X0 ×Y X1

hh

OO

33

.

from which we conclude the following.

Corollary 14.30. If one of the maps fi in a diagram (33) is a Kan fibration, then
the comparison functor

X0 ×Y X1 → Fun(Λ2
2,Y )×Fun({0,1},Y ) (X0 × X1)

is an equivalence.

One can check directly that, under the identification

FunΛ2
2
(Λ2

2,E ) = Fun(Λ2
2,Y )×Fun({0,1},Y ) (X0 × X1)

from (34), the comparison map employed in Corollary ?? is identified with the
comparison map λ from Definition 14.11. So Corollary 14.15 provides a strong
refinement of Corollary 14.29.

https://c-negron.github.io/infty_partI.pdf
https://c-negron.github.io/infty_partI.pdf
https://c-negron.github.io/infty_partI.pdf
https://c-negron.github.io/infty_partI.pdf
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cor:kan_pullback Corollary 14.31. Consider a diagram p : Λ2
2 → Kan, which explicitly appears as

(33). If one of the maps fi is a Kan fibration then the (strictly commuting) pullback
diagram

X0 ×Y X1

%%

//

��

X1

f1

��
X0

f1

// Y

is a limit diagram in Kan.

One can use this explicit result to determine the precise ∞-categorical pullback
diagram for Fun(Λ2

2,Y )×Fun({0,1},Y ) (X0 × X1).

Exercise 14.32. Consider arbitrary maps of Kan complexes fi : Xi → Y , i = 0, 1,
and corresponding functor p : Λ2

2 → Kan. Prove that the “obvious diagram” in
Kan,

Fun(Λ2
2,Y )×Fun({0,1},Y ) (X0 × X1)

�� **

// X1

��
X0

// Y

is a limit diagram. Furthermore, determine what the “obvious diagram” is.

14.7. Replacing limits with discrete limits. We have just seen how one can
compute an ∞-categorical pullback in Kan by first replacing a diagram with an
isomorphic one in which some maps are Kan fibrations. Specifically, for any diagram

X1

��
X0

// Y

we can factor the map X0 → Y into a composite of an equivalence X0 → X ′
0 and a

Kan fibration X ′
0 → Y (Proposition I-6.2). The above diagram is then isomorphic

to the diagram

X1

��
X ′

0
// Y

in Fun(Λ2
2,Kan), so that they have the same limits by Proposition 13.17. Corollary

14.31 now tells us that the limit for the latter diagram is computable via the discrete
limit. This is not an isolated phenomena. 7.5.3.12

Definition 14.33. Let Λ be a plain category and let p : K → Cat∞ be a strictly
commuting diagram. We say p is isofibrant if for each functor F : K → Cat∞
which is paired with a subfunctor F ′ ⊆ F in which the inclusion F ′(x) → F (x) is
a equivalence at each x in K, and each natural transformation ξ′ : F ′ → p, the
transformation ξ′ admits an extension to a transformation ξ : F → p.

We say a strictly commuting diagram p : K → Cat∞ is isofibrant if it, in the
implicit factorization K → Cat∞ → Cat∞, the corresponding diagram K → Cat∞
is isofibrant.

https://c-negron.github.io/infty_partI.pdf
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We have an alternate characterization of isofibrant diagram via functor cate-
gories. In the statement below, for functors F0, F1 : Λ → sSet we employ the
simplicial structure on the collection of natural transformations Nat(F1, F1) estab-
lished in Section ?? above.

prop:isofibrant Proposition 14.34 ([5, 034H]). A diagram p : K → Cat∞ is isofibrant if and only
if, for each functor F : K → Cat∞ and subfunctor F ′ ⊆ F which is a pointwise
categorical equivalence, the restriction map

Nat(F, p) → Nat(F ′, p)

is a trivial Kan fibration. Furthermore, in this case, for any choice of functor
G : K → Cati nfty and subfunctor G′ ⊆ G the restriction map

Nat(G, p) → Nat(G′, p)

is an isofibration.

cor:isofib_in_cat Corollary 14.35. For any isofibrant diagram p : K → Cat∞ the discrete limit
lim0(p) in sSet is an ∞-category.

Proof. For the first claim take G = ∗ and G′ = ∅ in Proposition 14.34. □

Lurie also establishes the following.

prop:isofib_in_kan Proposition 14.36 ([5, 034S]). Let p : K → Kan be an isofibrant diagram. Then
the discrete limit lim0(p) in sSet is a Kan complex.

Though it is not our primary point of view, one can also look at these issues from
the perspective of the existence or non-existence of limits in the discrete categories
Cat∞ and Kan.

Corollary 14.37. The discrete categories Cat∞ and Kan admit all limits which
are indexed by isofibrant diagrams.

In considering diagrams indexed by partially ordered sets, we have the following
example.

prop:po_isofib Proposition 14.38 ([5, 034D]). Let K = (K0,≤) be a partially ordered set in
which every non-empty subset K ′ ⊆ K admits a (not necessarily unique) maxi-
mal element. Then a strictly commuting diagram p : K → Cat∞ is isofibrant if and
only if, at each x in K, the map to the discrete limit

p(x) → lim0(K>x → sSet)

is an isofibration of simplical sets.

ex:isofib_seq Example 14.39. Any tower of isofibrations Ci+1 → Ci which is indexed by the
non-negative integers,

· · · → C2 → C1 → C0,

defines an isofibrant diagram p : Zop≥0 → Cat∞. Similarly, any tower of Kan fibra-
tions · · · → X2 → X1 → X0 defines an isofibrant diagram of Kan complexes.

ex:4510 Example 14.40. Consider a diagram of ∞-categories

C1

F1

��
C0

F0

// T

https://kerodon.net/tag/034H
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in which each of the Fi are isofibrations. The corresponding diagram in Cat∞ is
isofibrant.

It is in fact the case that any strictly commuting diagram in Cat∞ admits an
isofibrant replacement.

Theorem 14.41 ([5, 03AT]). Let p : K → Cat∞ be a strictly commuting diagram
of ∞-categories. Then there is an isofibrant diagram p′ : K → Cat∞ which admits
a natural isomorphism p

∼→ p′.

It’s furthermore shown in [5, 03B1] that, when p : K → Cat∞ is isofibrant, the
comparison map from the discrete limit

λ : lim0(p) → FunCCart
K (K,

∫
K

p)

of Definition 14.11 is an equivalence of ∞-categories. So Corollary 14.15 implies
that the discrete limit is a limit of p in Cat∞, and that the discrete limit diagram
provides a limit diagram in Cat∞.

thm:isofib_lim Theorem 14.42 ([5, 03B1]). If p : K → Cat∞ be an isofibrant diagram then the
discrete limit lim0(p) is a limit for p, and the corresponding strictly commuting
diagram p0 : K< → Cat∞ with cone point lim0(p) is a limit diagram in Cat∞.

As an corollary we obtain an weak analog to Corollary 14.31 in the ∞-categorical
context.

Corollary 14.43. Consider a diagram of ∞-categories Λ2
2 → Cat∞ as in Exam-

ple 14.40, in which each of Fi : Ci → T is an isofibration. Then the (strictly
commuting) pullback diagram

C0 ×T C1
//

�� $$

C1

��
C0

// T

is a limit diagram in Cat∞.

As in the case of Kan complexes, one can argue directly that it suffices to have
only one of the Fi an isofibration in order to obtain the above computation.

Example 14.44. Let C0 → C1 → C2 → · · · be a sequence of injective maps of
∞-categories, p : Z≥0 → Cat∞ the corresponding strictly commuting diagram, and
consider the discrete colimit

C = colim0(p).

We see that C is an ∞-category by directly checking the lifting criterion.
For any other ∞-category K , the functor Fun(−,K ) : Cat∞ → Cat∞ produces

a sequence of isofibrations

· · · → Fun(C2,K ) → Fun(C1,K ) → Fun(C0,K )

by Proposition I-6.13, and hence has a limit in Cat∞. The functor Fun(−,K ) seen
to commute with discrete colimits via the sequence of natural isomorphisms

HomCat∞(Z ,Fun(colim0 −,K )) ∼= HomCat∞(colim0 −,Fun(Z ,K )

∼= lim0 HomCat∞(−,Fun(Z ,K )) ∼= lim0 HomCat∞(Z ,Fun(−,K )).

https://kerodon.net/tag/03AT
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Hence Fun(C ,K ) = lim0
i Fun(Ci,K ). By Theorem 14.42 we find that Fun(C ,K )

is a limit of the corresponding diagram Fun(p−,K ) : Zop
≥0 → Cat∞ at each K in

Cat∞. We will see later that this implies C = colim(p).

14.8. Geometric realization of spaces. We cover one particular instance of a
colimit.

Proposition 14.45. Let X be a Kan complex, and consider the corresponding
simplicial object

X• : ∆op → Set ⊆ Kan, X•([n]) := X [n].

Then there is a transformation X• → X which exhibits X as a colimit of the
diagram X•.

15. Kan extension

We give a bare bones presentation of Kan extensions, which we only provide as
a foundation for our subsequent analysis of the Yoneda embedding. A significant
amount of our textual landscape here is dedicated to a discussion of size constrains
on ∞-categories and fibrations. The point being, a Kan extension might be thought
of as a varying family of (co)limits. The existence of the requisite (co)limits, in
advantageous settings, should depends only on vary course size restrictions imposed
on the emergent diagrams in such a setting.

15.1. Kan extensions. Before beginning, let us establish some notations. Con-
sider a map of simplicial sets i : K → C , where C is an ∞-category, and let
x, y : ∗ → C be any objects in C . We take

K/x := K ×C C/x and Ky/ := K ×C Cy/,

These simplicial sets are, respectively, left and right fibrations over K. We have
the slice diagonal morphisms K/x → C ×or

C {x} and Ky/ → {y}×or
C C which define

natural transformations

γ : i|K/x
→ x and γ′ : y → i|Ky/

(35) eq:kan_ext_transf

respectively.

Definition 15.1. Consider a simplicial set K and a pair of maps to ∞-categories
i : K → C and F̄ : K → D . A left Kan extension of F̄ : K → D along i is the
data of a functor F ′ : C → D and a transformation ζ : F̄ → Fi for which, at each
object x in C , the transformation

F̄ |K/x

ζ−→ Fi|K/x

F (γ)→ F (x)

exhibits F (x) as a colimit of the diagram F̄ |K/x
: K/x → D .

We have the obvious dual notion.

Definition 15.2. Consider a simplicial set K and a pair of maps to ∞-categories
i : K → C and F̄ : K → D . A right Kan extension of F̄ : K → D along i is the
data of a functor F ′ : C → D and a transformation ζ ′ : F ′i→ F̄ for which, at each
object y in C , the transformation

F ′(y)
F (γ′)−→ F ′i|Ky/

ζ′−→ F̄ |Ky/

exhibits F (x) as a limit of the diagram F̄ |Ky/
: Ky/ → D .



KERODON REMIX II [IN PREPARATION] 97

To orient ourself, we can consider the case of a point C = ∗. Then the functor
K → ∗ carries no information, we have K/x = Ky/ = K, and a left Kan extension

for a functor F̄ : K → D is simply the choice of a colimit colim(F̄ ) : ∗ → D .
Similarly, a right Kan extension is a choice of a limit. We recall that colimits and
limits are unique up to a contractible space of choices, so that these choices of left
and right extensions are uniquely determined.

In the case of a single edge C = ∆1, the map i : K → ∆1 splits K into
subcomplexes Ki = K ×∆1 {i} in which all edges in K either occur in one of the
Ki or move from K0 to K1. The important subcomplexes here, however, are K0

and K≤1 = K itself, as we have

K0 = K/0 and K ∼= K/1

since 1 is terminal in ∆1.
Consider a map F̄ : K → D and let F̄0 denote the restriction F̄0 = F̄ |K0

. A left
Kan extension for F̄ along i is then a choice of colimits colim(F̄0) and colim(F )
and a choice of a particular morphism

f : colim(F̄0) → colim(F̄ ).

This morphism is the left Kan extension itself f : ∆1 → D , and the map f is the
unique morphism obtained via the universal property of the colimit for F̄0. Namely,
the implicit transformation F̄ |K1/

= F̄ → colim(F̄ ) restricts to a tranformation

F̄ |K0
→ colim(F̄ ) and this transformation determines such a map f . This situation

can be depicted coarsely in a diagram

F̄ // colim(F̄ )

F̄ |K0

∪

//

::

colim(F̄0).

f

OO

Similarly, a left Kan extension of F̄ is a choice of limits and corresponding morphism
f ′ : lim(F̄ ) → lim(F̄1) which we can place in a coarsely depicted diagram

lim(F̄ ) // F̄ |K1

lim(F̄0) //

;;

f ′

OO

F̄ |K0
.

∪

A similar analysis holds when C = ∆1 is replaced with any simplex ∆n. In the
case that the (∞-)category C admits more complicated collections of morphisms,
the indexing category at each point, Kx/ or K/y, expands to account for variances
in morphisms and endmorphisms at the given vertex. However we can still think of
the left Kan extension, say, as codifying relationships between a family of colimits
in D which are parametrized, more-or-less, by the “bundle of fibrations” K/x over
C .

15.2. Size constraints on ∞-categories and simplicial sets. Recall, from Def-
inition 13.25 above, that a simplicial set K is called small if, at each nonnegative
integer n, the collection of n-simplices K[n] is a small set.
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Definition 15.3. An ∞-category C is called essentially small if C is equivalent
to a small ∞-category, and C is called locally small if for each pair of objects
x, y : ∗ → C the Kan complex HomC (x, y) is essentially small.

Locally small ∞-categories are the “normal” ∞-categories which one expects to
arise from everyday studies in algebra and representation theory. We record some
apparent examples.

Example 15.4. By a dg category we mean a category enriched in dg vector spaces,
and all dg vector spaces are small by definition. Hence, for any dg category A, the
dg nerve Ndg(A) is a locally small ∞-category. This follows by the calculations of
the pinched mapping spaces from Proposition I-??.

For specific examples, we find that the homotopy ∞-category K (A) of any
additive category A is locally small, and the derived ∞-category D(A) of any
Grothendieck abelian category is locally small.

ex:infty_small Example 15.5. Let A be a simplicial category which is enriched in small Kan
complexes. Then, via the equivalence of Theorem 5.27, the homotopy coherent
nerve Nhc(A) is locally small.

For a specific example, let C and D be essentially small ∞-categories. Then we
have an equivalence of Kan complexes between Fun(C ,D)Kan and Fun(C ′,D ′)Kan

for some small ∞-categories C ′ and D ′. One sees directly that at each non-negative
integer n the set

HomsSet(∆
n × C ′,D ′) = Fun(C ′,D ′)[n]

is small. Hence the functor category Fun(C ′,D ′) is small, as is its associated Kan
complex, and it follows that the Kan complex Fun(C ,D)Kan is essentially small. So
we see that the ∞-category Catsm∞ of essentially small ∞-categories is locally small.
Similarly, we find that the ∞-category Kansm of essentially small Kan complexes
is locally small as well.

One can establish the expected relation between local smallness and essential
smallness.

prop:locsmall_essmall Proposition 15.6 ([5, 03TW]). For an ∞-category C , the following are equiva-
lent:

(a) C is essentially small.
(b) C is locally small and the set π0(CKan) is finite.

One can employ this characterization to provide sufficient conditions for local
smallness of functor categories.

lem:locsmall_fun Lemma 15.7. If C is an essentially small ∞-category and D is a locally small
∞-category, then the functor category Fun(C ,D) is locally small.

Proof. Since the endofunctor Fun(−,D) preserves equivalences we can assume C
is small. Then for any two functors F, F ′ : C → D there exists a small (full) ∞-
subcategory D ′ ⊆ D through which both F and F ′ factor. We can take in particular
D ′ the full ∞-subcategory spanned by the small set of objects F (C [0]) ∪ F ′(C [0]),
and observe essential smallness of D ′ as an application of Proposition 15.6. We
now find that any two functors exist in the full ∞-subcategory Fun(C ,D ′). It was
argued in Example 15.5 that the ∞-category Fun(C ,D ′) is essentially small, and

https://c-negron.github.io/infty_partI.pdf
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in particular locally small. Since the embedding Fun(C ,D ′) → Fun(C ,D) pre-
serves mapping spaces, via full faithfulness, we conclude that the functor category
Fun(C ,D) is essentially small. □

It will be helpful to have a notion of essential smallness for simplicial sets. Recall
that a map of simplicial sets K → L is called a categorical equivalence if, for each
∞-category C , the induced map of ∞-categories Fun(L,C ) → Fun(K,C ) is an
equivalence.

Definition 15.8. An simplicial set K is called essentially small if there K admits
a categorical equvialence K → K to a small ∞-category.

It is in fact the case that any small simplicial set is essentially small.

prop:small_essmall Proposition 15.9 ([5, 03SN]). Any small simplicial set K admits an inner an-
odyne morphism K → K to a small ∞-category K . In particular, any small
simplicial set is essentially small.

We omit the proof. As in the case of ∞-categories, one can show that expo-
nentials of locally small ∞-categories by essentially small simplicial sets are again
locally small.

Lemma 15.10. If K is an essentially small simplicial set, and C be a locally small
∞-category, then the functor category Fun(K,C ) is locally small.

Proof. Similar to the proof of Lemma 15.7. □

One also sees that completeness and cocompleteness for ∞-categories can be
rephrased in terms of essentially small diagrams.

prop:ess_completeness Proposition 15.11. For any ∞-category C , the following are equivalent:

(a) C admits all limits (resp. colimits) indexed by small simplicial sets.
(b) C admits all limits (resp. colimits) indexed by essentially small simplicial

set.

Proof. The implication (b) ⇒ (a) follows from essential smallness of any small
simplicial set, by Proposition 15.9. Suppose now that (a) holds, and consider a
diagram p : K → C from an essentially small simplicial set. By definition we can
find a categorical equivalence i : K → K to a small ∞-category, and can therefore
find a functor P : K → C whose restriction P |K is isomorphic to p. By Proposition
13.17, p admits a limit (resp. colimit) in C if and only if Pi admits a limit (resp.
colimit) in C . Furthermore, by Proposition 13.14 P admits a limit (resp. colimit)
in C if and only if Pi admits a limit (resp. colimit) in C . Since P admits a limit
(resp. colimit) in C by assumption, it follows that p admits a limit (resp. colimit)
in C as well. Hence C admits all limits (resp. colimits) indixed by essentially small
simplicial sets. □

We also have a notion of smallness for inner fibrations.

Definition 15.12. An inner fibration of simplicial sets X → S is called essentially
small if, for each n-simplex ∆n → S, the fiber product ∆n ×S X is an essentially
small ∞-category. Similarly, X → S is called locally small if each fiber ∆n×S X is
a locally small ∞-category.

We have the following fiberwise, and global characterizations of essentially small
and locally small fibrations.

https://kerodon.net/tag/03SN
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prop:essmall_fib Proposition 15.13 ([5, 047P, 047Q]). For an cartensian or cocartesian fibration
q : X → S, the following are equivalent:

(a) q is essentially small.
(b) For each vertex s : ∗ → S, the fiber Xs is essentially small.

Furthermore, if the base S is an essentially small ∞-category, then these conditions
are also equivalent to the following:

(c) The ∞-category X is essentially small.

The analogous results hold when one replaces essentially small with locally small in
all of the above statements as well.

One can see [5] for a proof of Proposition 15.13.

Example 15.14. An ∞-category C is locally small if and only if the left fibration
Cx/ → C is essentially small at all x in C , or equivalently if and only if the right
fibration C/x → C is essentially small at all x in C .

Example 15.15. A cocartesian fibration X → S is essentially small if and only
if the classifying functor S → Cat∞ has image in the locally small subcategory of
essentially small ∞-categories Catsm∞ . Conversely, for any functor F : S → Catsm∞ ⊆
Cat∞ the corresponding cocartesian fibration

∫
S
F → S is essentially small. A

similar analysis holds for left fibrations and functors in Kansm ⊆ Kan.

Let us record a supporting lemma which will aid in our analysis of smallness for
fibrations.

lem:025H Lemma 15.16 ([5, 025H]). Let C → D be a cartesian or cocartesian fibration, and
consider a diagram of maps of simplicial sets

E

��

F // E′

��

// E

��
K

f // K ′ // C

in which each of the squares is a pullback square. If the map f is a categorical
equivalence then the map F is a categorical equivalence as well.

Now, it is obvious, simply from the definition, that essential smallness of inner
fibrations is stable under pullback. We prove a stronger version of such stability
for cocartesian fibrations.

lem:4756 Lemma 15.17. Let E → C be an essentially small cartesian or cocartesian fi-
bration over a locally small ∞-category, and F : K → C be a map of simplicial
sets. Suppose that K is an essentially small simplicial set. Then the simplicial set
K ×C E is essentially small.

Sketch proof. Take a categorical equivalence i : K → K to a small ∞-category and
let F ′ : K → C be a functor with F ′i ∼= F . It follows, by Proposition ??, that
the two pullbacks for F ′i and F are categorically equivalent. So we can assume
F ′i = F . Take now C ′ the full ∞-subcategory whose vertices are those in the
image of F ′[0] : K [0] → C [0]. Since K is small the set π0(C ′) is small, and hence
C ′ is essentially small by Proposition 15.6. By Proposition 15.13 there is a small
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∞-category E ′ with an equivalence of fibrations E ×C C ′ ∼→ E ′ over C ′. We then
have an equivalence of fibrations

K ×C E = K ×C ′ (E ×C C ′)
∼→ K ×C ′ E ′. (36) eq:4712

Note that the simplicial set K ×C ′ E ′ is a subset of the small simplicial set K ×E ′,
and hence is small. By Proposition ?? he equivalence (36) now pulls back to an
equivalence of fibrations

K ×C E
∼→ K ×C ′ E ′,

and the induced map K×C ′ E ′ → K ×C ′ E ′ is a categorical equivalence by Lemma
15.16. Hence we obtain a categorical equivalence to a small ∞-category K×C E →
K ×C ′ E ′. □

cor:small_int Corollary 15.18. If K is an essentially small simplicial set and p : K → Cat∞
is a functor with image in Catsm∞ , then the corresponding simplicial set

∫
K
p is

essentially small.

Proof. Take

P.Catsm∞ := Catsm∞ ×Cat∞ P.Catsm∞ .

This ∞-category is, equivalently, the pith over the undercategory (Catsm∞ )∗/ where
Catsm∞ is the homotopy coherent nerve of the simplicial category Catsm∞ of essentially
small ∞-categories. By the fiber calculation of Proposition 6.7 and Proposition
15.13 we see that the cocartesian fibration P.Catsm∞ → Catsm∞ is essentially small.
Hence the pullback

∫
K
p→ K is an essentially small cocartesian fibration, and the

simplicial set
∫
K
p is essentially small by Lemma 15.17. □

15.3. Existence of Kan extensions.

prop:pre_kan_exists Proposition 15.19 ([5, 0300]). Consider a simplicial set K and a pair of maps to
∞-categories i : K → C and F̄ : K → D . The following hold:

(1) F̄ admits a left Kan extension along i if and only if, at each x in C , the
diagram F̄ |K/x

: K/x → D admits a colimit in D .

(2) F̄ admits a right Kan extension along i if and only if, at each y in C , the
diagram F̄ |Ky/

: Ky/ → D admits a limit in D .

For details the reader should consult the original text [5, 02ZZ]. We simply take
this result for granted. We are most interested in the following corollary.

cor:kan_exists Corollary 15.20. Let i : K → C be a map from an essentially small simplicial set
into a locally small ∞-category C .

(1) If D is cocomplete, then any map F̄ : K → D admits a left Kan extension
along i, F : C → D .

(2) If D is complete, then any map F̄ : K → D admits a right Kan extension
along i, F ′ : C → D .

Proof. We prove (a), the proof of (b) being similar. Since C is locally small the
left fibration C/x → C is essentially small at all x in C , and hence the simplicial
set K/x is essentially small at all x by Lemma 15.17. By completeness of D , and
Proposition 15.11, we see that D admits all K/x-colimits at all x in C . It follows
by Proposition 15.19 that a left Kan extension F : C → D exists. □

https://kerodon.net/tag/0300
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15.4. Uniqueness of Kan extensions.

prop:kan_univ Proposition 15.21 (Universal property for LKE, [5, 0309]). Suppose i : K → C
is a map from a simplicial set to an ∞-category, and let F̄ : K → D be another
map into an ∞-category. Suppose that we have a functor F : C → D and a
transformation ζ : F̄ → Fi which exhibits F as a left Kan extension of F̄ . Then
for every functor G : C → D the composite

HomFun(C ,D)(F,G) → HomFun(K,D)(Fi,Gi)
ζ∗→ HomFun(K,D)(F̄ , Gi)

is an isomorphism in hKan.

As with existence, we omit the proof and direct the interested reader to [5] for
any details. We note that the identifications

HomsSet((∆
n)op ×K,D) = HomsSet(∆

n ×Kop,Dop)

provide an identification of ∞-categories Fun(K,D)op = Fun(Kop,Dop). So by
applying opposities we obtain the apparent analog of Proposition 15.21 for right
Kan extensions.

Proposition 15.22 (Universal property for RKE). Let i : K → C and F̄ : K → D
be as in Proposition 15.21. Suppose that we have a functor F ′ : C → D and a
transformation ζ ′ : F ′i→ F̄ which exhibits F ′ as a right Kan extension of F̄ . Then
for every functor G : C → D the composite

HomFun(C ,D)(G,F
′) → HomFun(K,D)(Gi, F

′i)
ζ′∗→ HomFun(K,D)(Gi, F̄ )

is an isomorphism in hKan.

Corollary 15.23. Take i : K → C and F̄ : K → D as in the statement of
Proposition 15.21. If ζ : F̄ → Fi and ζ ′ : F̄ → F ′i realize functors F, F ′ : C → D
as left Kan extensions of F̄ , then there is an isomorphism α : F

∼→ F ′ which fits
into a diagram

F̄
ζ

~~

ζ′

  
Fi

i∗(α)
// F ′i

in the functor category Fun(K,D).

The analogous uniqueness result holds for right Kan extensions as well, though
we won’t record it explicitly.

Proof. We have the map of hKan-enriched categories

i∗ : π Fun(C ,D) → π Fun(K,D)

and we lift the transformations ζ : F̄ → Fi and ζ ′ : F̄ → F ′i which exhibit F and
F ′ as left Kan extensions to unique morphisms α : F → F ′ and α′ : F → F ′ which
recover ζ and ζ ′ under the compositions F̄ → F ′i → Fi and F̄ → Fi → F ′i. The
composites F → F ′ → F and F ′ → F → F ′ then restrict to ζ and ζ ′ respectively,
so that they are the respective identity morphisms in π Fun(C ,D) by Proposition
15.21. □

https://kerodon.net/tag/0309
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We observe in Section ?? below a kind of global uniqueness for Kan extensions.
Namely, if D is cocomplete then the collection of all left Kan extensions to D , along
some map i : K → C with K essentially small and C locally small, assemble into
a left adjoint

Lani : Fun(K,D) → Fun(C ,D)

to the restriction functor Fun(C ,D) → Fun(K,D). Indeed, one can view the
universal property for left Kan extensions as a type of local claim for adjunction.
Similarly, we find below that completeness of D implies the existence of a right
adjoint

Rani : Fun(K,D) → Fun(C ,D)

to restriction which is realized, on objects, via right Kan extension.

15.5. Kan extension under base change. We only record the following results
for left Kan extensions. The interested reader might translate immediately to their
rightward facing analogs.

lem:4912 Lemma 15.24. Let i : K → C be an arbitrary map from a simplicial set to an
∞-category, and F̄ , F̄ ′ : K → D be isomorphic functors to another ∞-category.
Then for any isomorphism α : F̄ ′ → F̄ , and any transformation ζ : F̄ → Fi
which exhibits a functor F : C → D as a left Kan extension of F̄ , the composite
ζα : F̄ ′ → Fi exhibits F as a left Kan extension of F̄ ′.

Proof. Follows from stability of colimits under isomorphisms of diagrams, as ex-
pressed specifically in Proposition 13.17. □

lem:4920 Lemma 15.25. Let i′ : K ′ → C be a map to an ∞-category, t : K → K ′ be
a categorical equivalence, and i = i′t : K → C be the corresponding composite.
Let F̄ ′ : K ′ → D be an arbitrary functor and F̄ : K → D be the corresponding
composite. A transformation ζ ′ : F̄ ′ → Fi exhibits a functor F : C → D as a left
Kan extension of F̄ ′ if and only if the composite ζ ′t : F̄ → Fi exhibits F as a left
Kan extension of F̄ .

Proof. By Lemma 15.16 the induced map K/x → K ′
/x is a categorical equivalence

at each x in C . So the result follows by Proposition 13.14. □

15.6. Kan extensions along embeddings.

Proposition 15.26 ([5, 02YV]). Let i : K → C be a fully faithful functor between
∞-categories, and F̄ : K → D be arbitrary. If a transformation ζ : F̄ → Fi exhibits
a functor F : C → D as a Kan extension of F̄ then ζ is a natural isomorphism.

Proof. By Lemmas 15.24 and 15.25 it suffices to prove the result in the case where
K is a full ∞-subcategory in C . In this instance our claim is implied by [5,
02YV]. □

In the case of a fully faithful functor i : K → C , and a Kan extension F : C → D
of a given functor F̄ : K → D , we now understand that composition function

HomFun(K ,D)(Ḡ, F i)
ζ∗→ HomFun(K ,D)(Ḡ, F̄ )

is an isomorphism in hKan. It follows by the universal property from Proposition
15.21 that the restriction functor

HomFun(C ,D)(G,F ) → HomFun(K ,D)(Gi, F i)

https://kerodon.net/tag/02YV
https://kerodon.net/tag/02YV
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is an equivalence whenever a functor F : C → D is a left Kan extension for some
functor F̄ : K → D .

Corollary 15.27. Suppose K → C is a fully faithful functor, and that F : C → D
is a left Kan extension of some functor K → D . Then at each functor G in
Fun(C ,D) the restriction map

HomFun(C ,D)(G,F ) → HomFun(K ,D)(Gi, F i)

is an equivalence.

16. Yoneda embedding

We recall that, for any ∞-category C , a Hom functor H : C op × C → Kan is a
classifying functor for the twisted arrow fibration Tw(C ) → C op × C .

thm:yoneda_embed Theorem 16.1 (Yoneda embedding). Let C be any ∞-category. For any Hom
functor H : C op × C → Kan the associated functor

h : C → Fun(C op,Kan), h(x) := H(−, x),
is fully faithful.

Via the identification of cocartesian fibrations Tw(C ) ∼= Tw(C op) we under-
stand that Hom functors for C are Hom functors for C op, and vide versa. So the
Yoneda embedding is symmetric in the two factors. In particular, Theorem 16.1
has its opposite expression.

Theorem 16.2 (Yoneda embedding v.2). Let C be any ∞-category. For any Hom
functor H : C op × C → Kan the associated functor

h′ : C op → Fun(C ,Kan), h′(x) := H(x,−),

is fully faithful.

16.1. Colimits over constant diagrams.

def:tensored Definition 16.3. For objects x and y in an ∞-category, a morphism of simplicial
sets β : K → HomC (x, y) is said to exhibit y as a tensor product of x by K if, for
any z in C , the composition

HomC (y, z)×K → HomC (y, z)×HomC (x, y)
◦→ HomC (x, z)

induces an isomorphism HomC (y, z) → Fun(K,HomC (x, z)) in hKan.

Now, the above definition unfortunately does not strictly make sense as stated,
since the composition function for the mapping spaces is only explicitly defined
in hKan, while K does not exist as an object in Kan. However, composition is
defined up to natural isomorphism in Kan, so that the map

HomC (y, z)×K → HomC (x, z)

is defined up to a natural isomorphism. Subsequently, the induced map HomC (y, z) →
Fun(K,HomC (x, z)) is defined uniquely as a morphism in hKan, and we see that
evaluating this condition is independent of the choice of representative for the com-
position function.

For an example [5, 03F4], we can consider the case where K is a discrete set,
so that a map K → HomC (x, y) is defined by a K[0]-collection of maps ik : x →
y. These maps then define an object in the undercategory Cx/, where x : K →

https://kerodon.net/tag/03F4
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C is the constant functor. We expect in this case that the original map K →
HomC (x, y) exhibits y as a tensor product of x by K if and only if y is initial in
this undercategory, i.e. if and only if y is a coproduct ⨿k∈K[0]x. We show that this
colimit interpretation of tensoring is valid in complete generalization.

Let us first, however, do some bookkeeping. A map β : K → HomC (x, y) defines,
and is equivalent to, a map β : ∆1 → Fun(K,C ) which sends 0 to the constant
diagram x : K → C and sends 1 to the constant diagram y. In this way β can be
understood equivalently as a transformation between constant diagram β : x→ y.

prop:tensor_colim Proposition 16.4 ([5, 03F3]). A map β : K → HomC (x, y) exhibits y as a tensor
product of x by K if and only if the corresponding transformation β : x→ y between
constant functors on K exhibit y as a colimit of x in C .

Proof. Consider objects a, b : ∗ → C . We the inclusion

HomFun(K,C )(a, b) ⊆ Fun(∆1,Fun(K,C )) ∼= Fun(K,Fun(∆1,C ))

which naturally identifies the morphisms HomFun(K,C )(a, b) with the Kan com-
plex Fun(K,HomC (x, y)). This just follows from naturality of the adjunction
Fun(−,Fun(L,M)) ∼= Fun(L,Fun(−,M)).

Under this identification the composition

HomC (y, z) → HomFun(K,C )(y, z)
β∗

→ HomFun(K,C )(x, z) (37) eq:5044

appearing in Definition 13.1 is identified with the composition

HomC (y, z) → Fun(K,HomC (y, z)) → Fun(K,HomC (x, z)), (38) eq:5048

where the first map is dual to the terminal function K → ∗ and the second map is
induced by β. One checks directly that this map induced by β takes an n-simplex
s : ∆n ×K → HomC (y, z) to the composite simplex

∆n ×K
[σ,β]T−→ HomC (y, z)×HomC (x, y)

◦→ HomC (x, z),

where here we abuse notation to let β denote the composite of the projection
∆1 × K → K with β. Hence the composite (38) sends an n-simplex s : ∆n →
HomC (y, z) to the n-simplex

∆n ×K
s×β−→ HomC (y, z)×HomC (x, y)

◦→ HomC (x, z).

So the map (38) is adjoint to the composite

HomC (y, z)×K
1×β−→ HomC (y, z)×HomC (x, y)

◦→ HomC (x, z),

We now conclude that the composition (37) is an isomorphism in hKan if and
only if the map HomC (y, z) → Fun(K,HomC (x, z)) appearing in Definition 16.3 is
an isomorphism in hKan. Rather, the transformation β : x → y exhibits y as a
colimit of the constant functor x : K → C if and only if the corresponding map
β : K → HomC (x, y) exhibits y as a tensor product of x by K. □

We cover some quality of life results before closing out the subsection.

Lemma 16.5. (a) Let β, β′ : K → HomC (x, y) be isomorphic morphisms. Then
β exhibits y as a tensor product of x by K if and only if β′ exhibits y as a tensor
product of x by K.

(b) Let K → K ′ be a categorical equivalence, β′ : K → HomC (x, y) be an arbitrary

https://kerodon.net/tag/03F3
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map and β : K → HomC (x, y) be the corresponding composition. Then β′ exhibits
y as a tensor product of x by K ′ if and only if β exhibits y as a tensor product of
x by K.

Given a Kan-enriched category A, the following is a consequence of the identifi-
cation of hKan-enriched categories πA ∼= πNhc(A) from Proposition 7.6.

lem:simplicial_tensor Lemma 16.6. Suppose A is a simplicial category which is enriched in Kan and take
A = Nhc(A). Let θ : HomA(x, y) → HomA (x, y) be the equivalence of Theorems

5.27 and I-10.17. For a morphism β : K → HomA(x, y), the composite map θβ :

K → HomA (x, y) exhibits y as a tensor product of x over K if and only if, at all
z in A, the composite

HomA(y, z)×K → HomA(y, z)×HomA(x, y)
◦→ HomA(x, z)

induces a homotopy equivalence HomA(y, z) → Fun(K,HomA(x, z)).

We consider an example.

ex:space_tensors Example 16.7 ([5, 03F8]). We consider the case of the category of spaces C =
Kan. Let Y be an arbitrary Kan complex and consider a morphism β : K →
HomKan(∗,Y ). Up to equivalence we can assume that β factors through the equiv-
alence Y ∼= Fun(∗,Y ) → HomKan(∗,Y ), and take β̄ : K → Y the corresponding
map to Y . We claim that β exhibits Y as a tensor product of the point ∗ by K if
and only if β̄ : K → Y is a weak homotopy equivalence.

To see this it suffices to show, according to Lemma 16.6, that at each Kan
complex Z the map

β̄∗ : Fun(Y ,Z ) → Fun(K,Z )

is an equivalence if and only if β̄ is a weak homotopy equivalence. However, this is
simply the definition of a categorical equivalence [5, 03PJ, 03PJ]. We conclude now
that an arbitrary map β : K → HomKan(∗,Y ) exhibits Y as a tensor product of
∗ by K if and only if β is a categorical equivalence.

16.2. Yoneda’s lemma and proof of Yoneda embedding.

lem:5100 Lemma 16.8. Let C be an ∞-category and F : C → Kan be any functor. A map
1x : ∗ → F (x) exhibits F as corepresented by an object x in C if and only if the
map 1x exhibits F as a left Kan extension of the constant functor ∆0 : ∗ → Kan
along the inclusion x : ∗ → C .

Proof. The functor F is corepresented by x, via the map 1x, if and only if the
composite

HomC (x, y)
F→ HomKan(F (x), F (y))

1∗x→ HomKan(∗, F (y))

is an isomorphism in hKan. This follows by Proposition 11.4.
On the other hand, we have

∗/y = HomR
C (x, y)

∼→ HomC (x, y)

at each y in C , and 1x exhibits F as a left Kan extension of ∆0 if and only if the
transformation

∆0|HomC (x,y)
1x→ F (x)|HomC (x,y)

F (γ)→ F (y)|HomC (x,y) (39) eq:5117

https://c-negron.github.io/infty_partI.pdf
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realizes F (x) as a colimit of the constant diagram ∆0 : HomC (x, y) → Kan. Here

γ : ∆1 ×Hom(x, y) → C

is adjoint to the inclusion Hom(x, y) → Fun(∆1,C ), i.e. the evaluation map, and
F (γ) is the composite of evaluation with F . So F (γ) is adjoint to the map F :
HomC (x, y) → HomKan(F (x), F (y)), and the above composite (39) is adjoint to
the composition of F with 1∗x : HomKan(F (x), F (y)) → HomKan(∗, F (y)).

By Proposition 16.4 the above transformation (39) realizes F (y) as a colimit
of the constant diagram at ∆0 if and only if the map 1∗xF : HomC (x, y) →
HomKan(∗, F (y)) exhibits F (y) as a tensor product of ∗ by HomC (x, y). As we
saw in Example 16.7 this occurs if and only if the map 1∗xF : HomC (x, y) →
HomKan(∗, F (y)) is an equivalence, i.e. if and only if 1x exhibits F as corepre-
sented by x. □

thm:yoneda_lem Theorem 16.9 (Yoneda’s lemma). Let F : C → Kan be a corepresented by an
object x : ∗ → C , with corresponding initial vertex 1x : ∗ → F (x). For any other
functor G : C → Kan the composition

HomFun(C ,Kan)(F,G)
−|x→ HomKan(F (x), G(x))

1∗x→ HomKan(∗, G(x))
θ−1

→ G(x)

is an isomorphism in hKan.

Proof. By Lemma 16.8 the map 1x : ∗ → F (x), which we interpret as a tranfor-
mation in Fun(∗,Kan), exhibits h : C → Kan as a left Kan extension of the
constant functor of value ∗ in Kan. Hence the composition under consideration
is an isomorphism in hKan by the universal property of the left Kan extension,
Proposition 15.21. □

Applying this result to C op yields the following.

thm:yoneda_lem_v2 Theorem 16.10 (Yoneda’s lemma v.2). Let F ′ : C op → Kan be a represented by
an object x : ∗ → C , with corresponding initial vertex 1x : ∗ → F ′(x). For any
other functor G : C op → Kan the composition

HomFun(C op,Kan)(F
′, G)

−|x→ HomKan(F
′(x), G(x))

1∗x→ HomKan(∗, G(x))
θ−1

→ G(x)

is an isomorphism in hKan.

We now prove that the Yoneda embedding, Theorem 16.1.

Proof of Theorem 16.1. Let H : C op × C → Kan be a Hom functor for C , i.e.
a transport functor for the twisted arrow fibration. By Lemma 12.5 the identity
morphism idx : ∗ → Tw(C ) is initial in both of the fibers

{x} ×C op Tw(C ) and Tw(C )×C {x}.
This implies that the corresponding vertex 1x : ∗ → H(x, x) is initial for both of
the functors H(x,−) : C → Kan and H(−, x) : C op → Kan, i.e. simultaneously
exhibits H(x,−) as corepresented by x and H(−, x) as represented by x.

Take h : C → Fun(C opKan) proposed embedding, h(x) = H(−, x). By Theo-
rem 16.10 the map

h : HomC (x, y) → HomFun(C op,Kan)(h(x), h(y))

is an equivalence if and only if the composite

HomC (x, y)
h→ HomFun(C op,Kan)(h(x), h(y))

ψ→ h(y)(x) = H(x, y) (40) eq:5168
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is an isomorphism in hKan, where the map ψ is the composite of Theorem 16.10.
By Proposition 7.6 the composite ψ is equal to the composite

HomFun(C op,Kan)(h(x), h(y))
−|x→ HomKan(H(x, x), H(x, y))

θ−1

→ Fun(H(x, x), H(x, y))
1∗x→ H(x, y),

as a morphism in hKan. Thus, for Hx : C → Kan given by Hx = H(x,−) the
composite condences to the sequence

HomC (x, y)
Hx→ HomKan(Hx(x), Hx(y)) ∼= Fun(Hx(x), Hx(y))

1∗x→ Hx(y).

This sequence is in fact an isomorphism in hKan, since Hx is corepresented by x,
and we see now that the map

h : HomC (x, y) → HomFun(C op,Kan)(h(x), h(y))

is an isomorphism at all pairs of objects x, y : ∗ → C . It follows, by the definition,
that the functor h : C → Fun(C op,Kan) is fully faithful. □

16.3. A useful characterization of limit diagrams.

Lemma 16.11. Any map of simplicial sets A → B admits a factorization A →
A′ → B in which the first map A → A′ is a monomorphism and the second map
A′ → B is a trivial Kan fibration.

We have the following ∞-analog of Proposition I-4.8 which charactarizes those
equivalences which are trivial Kan fibrations.

prop:isokan_equiv Proposition 16.12. A functor between ∞-categories F : C → D is a trivial Kan
fibration if and only if it is both an isofibration and an equivalence.

Proof. If F is a trivial Kan fibration then it is conservative, and hence any lift of
an isomorphism in D is an isomorphism in C . In particular F is an isofibration.
Consider now any simplicial set K and the equivalent lifting problems

A

i

��

g0 // Fun(K,C )Kan

F∗

��

A×K

i×K
��

// C

��
B

g1
//

99

Fun(K,D)Kan B ×K //

<<

D

(41) eq:5204

in which i is injective.
Since F is a trivial Kan fibration the second lifting problem admits a solution, and

so there exists a map g : B → Fun(K,C ) which restricts fo g0 on A and has F∗g =
g1. We need only show that g has image in the subcomplex Fun(K,C )Kan. However,
since F is conservative, the characterization of natural isomorphisms provided in
Proposition I-7.9 tells us that the induced map F∗ : Fun(K,C ) → Fun(K,D) is
conservative. Hence the diagram

Fun(K,C )Kan //

��

Fun(K,C )

��
Fun(K,D)Kan // Fun(K,D)

https://c-negron.github.io/infty_partI.pdf
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is a pullback diagram. It follows that our splitting map g : B → Fun(K,C )
necessarily has image in Fun(K,C ), and so we solve the first lifting problem in
(41).

We have now established that the induced map F∗ : Fun(K,C )Kan → Fun(K,D)Kan

is a trivial Kan fibration at each simplicial set K, and hence an equivalence at each
K by Proposition I-4.8. By Theorem I-5.43 we conclude that the original map
F : C → D is an equivalence.

For the converse, suppose that F is both an equivalence and an isofibration.

Factor F as a composition of an inclusion C
i→ C ′ and a trivial Kan fibration

F ′ : C ′ → D . In this case C ′ is an ∞-category, F ′ is an equivalence by the above
findings, and thus i is an equivalence as well.

The functor

Fun(C ′,C ) → Fun(C ′,D)×Fun(C ,D) Fun(C ,C )

is now a isofibration by Proposition I-6.13 and an equivalence by Corollary I-6.24.
In this case all objects in the fiber product lift to objects in Fun(C ′,C ), and we
can lift the pairing (F ′, idC in particular to a map π : C ′ → C which splits the
diagram

C
id //

i
��

C

F
��

C ′
F ′
//

π

==

D .

The above diagram, and the fact that F ′ is a trivial Kan fibration, implies that F
is also a trivial Kan fibration. □

cor:5245 Corollary 16.13. Let p : K → C be a diagram in an ∞-category and p̃ : {0}⋆K →
C be an arbitrary extension of p. Then p̃ is a limit diagram for p if and only if the
forgetful functor C/p̃ → C/p is an equivalence.

Proof. Note that p̃ specifies an object in C/p, by the defintion of the overcategory.
The claim now follows by Proposition 16.12 and the fact that the forgetful functor

(C/p)/p̃

is a right fibration, and in particular an isofibration. □

prop:lim_funcat Proposition 16.14. Let p : K → C be a diagram in an ∞-category and p̃ :
{0} ⋆K → C be an arbitrary extension of p. Then p̃ is a limit diagram for p if and
only if, at every object x in C , the forgetful functor

HomFun(K<,C )(x, p̃) → HomFun(K,C )(x, p) (42) eq:5259

is an equivalence.

Proof. We have the diagram

C/p̃ //

��

C/p

��
C ×or

Fun(K<,C ) {p̃} // C ×or
Fun(K,C ) {p}

in which the vertical maps are equivalences. Here the vertical maps are, in par-
ticular, the slice diagonals from Section I-10.5. Hence the map C/p̃ → C/p is an

https://c-negron.github.io/infty_partI.pdf
https://c-negron.github.io/infty_partI.pdf
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equivalence if and only if the map C ×or
Fun(K<,C ) {p̃} → C ×or

Fun(K,C ) {p} is an

equivalence. Therefore, by Corollary 16.13, the latter map is an equivalence if and
only if p̃ is a limit diagram for p.

Since this latter map, let’s call it f , fits into a diagram of right fibrations

C ×or
Fun(K<,C ) {p̃}

f //

&&

C ×or
Fun(K,C ) {p}

xx
C

we see that f is an equivalence if and only if all of its fibers over C are equivalences
(Theorem 3.8). However, the fiber of f at a given point x : ∗ → C simply recovers
the original morphisms of interest (42). So we see that p̃ is a limit diagram if and
only if, at each x in C , the maps (42) is an equivalence. □

16.4. Yoneda embedding and limits.

thm:yoneda_lim Theorem 16.15. Let h : C → Fun(C op,Kan) be a Yoneda embedding for an ∞-
category C , and p : K → C be a diagram in C . For any extension p̃ : {0} ⋆K → C
of p the following are equivalent:

(a) p̃ is a limit diagram in C .
(b) hp̃ is a limit diagram in Fun(C op,Kan).

Proof. By Proposition 16.14 p̃ is a limit diagram if and only if, at each x in C , the
map

HomFun(K<,C )(x, p̃) → HomFun(K,C )(x, p)

is an equivalence. For E = {x}×or
C C the above map is identified with the restriction

functor FunC (K<,E ) → FunC (K,E ).
For E′ = E ×C K< and E = E ×C K we have the pullback diagram of left

fibrations

E //

��

E′

��
K // K<

and identifications

FunC (K<,E ) ∼= FunK<(K<, E′), FunC (K,E ) ∼= FunK(K,E)

under which the above restriction functor becomes the restriction functor

FunK<(K<, E′) → FunK(K,E).

This final map is an equivalence if and only if the composite

Fun(C op,Kan)

x∗

''
K< // C //

h
88

Kan

is a limit diagram for the restricted map K → Kan, by the diffraction criterion of
Theorem 14.8 and Theorem 14.25.
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We now understand that the extension p̃ is a limit diagram in C if and only if,
at each x in C , the composite

K< → Fun(C op,Kan)
x∗

→ Kan

is a limit diagram in Kan. However this occurs if and only if the map K< →
Fun(C op,Kan) is a limit diagram, by Proposition 13.28. □

As we saw in the above proof, the characterization of limits in Fun(C ,Kan)
provided in Proposition 16.14 implies the following alternate expression of Theorem
16.15.

cor:lim_coreps Corollary 16.16. Let p : K → C be a diagram in an ∞-category. An extension
p̃ : {0} ⋆ K → C of p is a limit diagram in C if and only if, for each object x in C
and functor hx : C → Kan which is corepresented by x, the composite

{0} ⋆ K p̃→ C
hx

→ Kan

is a limit diagram in Kan.

We apply this result in the simplicial setting, in conjunction with Proposition
11.6, to obtain the following

cor:simp_lim_coreps Corollary 16.17. Let A be a Kan-enriched simplicial category, A = Nhc(A), and
p : K → A be an arbitrary diagram. An extension p̃ : {0} ⋆ K → A of p is a limit
diagram in A if and only if, for each object x in A , the composite

HomA (x,−) ◦ p : {0} ⋆ K → Kan

is a limit diagram in Kan.

We note that, since the Yoneda embedding is fully faithful and hence conser-
vative, Theorem 16.15 is equivalent to the statement that the Yoneda embedding
commutes with all limits in C . Applying the above theorem to C op provides a
corresponding characterization of colimit diagrams in C .

thm:yoneda_colim Theorem 16.18. Let h′ : C op → Fun(C ,Kan) be a contravariant Yoneda embed-
ding for an ∞-category C , and q : K → C be a diagram in C . For any extension
q̃ : K ⋆ {1} → C of q the following are equivalent:

(a) q̃ is a colimit diagram in C .
(b) h′(q̃)op is a limit diagram in Fun(C op,Kan).

16.5. Aside: limits and colimits of essentially small spaces.

lem:smallkan_lim Lemma 16.19. The full subcategory Kansm ⊆ Kan of essentially small Kan com-
plexes is closed under the formation of all limits and colimits in Kan.

Proof. Given a small diagram p̄ : K → Kansm ⊆ Kan we have an inner anodyne
map K → K to a small ∞-category by Proposition 15.9. We can lift the given
diagram to a diagram p : K → KansmKan and find that the limits over K and
K agree, by Proposition 13.14. For E =

∫
K p we have the explicit expression

lim(p) = FunK (K ,E )

in Kan by Corollary 14.27.
Now, since p has image in Kansm the fibration E → K is essentially small and

E itself is therefore essentially small by Proposition 15.13. So after replacing E
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with an equivalent ∞-category we may assume E is small. In this case the functor
category Fun(K ,E ) is small as well, so that the limit of p is essentially small.

As for the colimit of p, we have colim(p) = E [W−1] where the localization can
be produced by fibrant replacement in the model category of marked simplicial
sets. This fibrant replacement occurs specifically in the model category sSet+ of
marked simplicial sets in our medium sized universe. However, since E is small we
can perform such a fibrant replacement E → E [W−1]sm in the subcategory of small
marked simplicial sets. By the small object argument [3, Proposition A.1.2.5] the
localization map E → E [W−1]sm can furthermore be chosen to be marked anodyne
[3, Proposition A.1.2.5] in the category of small marked simplicial sets. Since the
inclusion of small marked siplicial sets into medium sized marked simplicial sets
preserves marked anodyne morphisms we see that E → E [W−1]sm remains marked
anodyne in this larger category, and hence remains a Cartesian equivalence in the
larger category [3, Remark 3.1.3.4]. So we can take E [W−1] = E [W−1]sm and we
observe that colim(p) is essentially small. □

16.6. Yoneda embedding in the locally small setting. We consider the case of
a locally small ∞-category C . Then for any Hom functor H : C op×C → Kan the
values H(x, y) are essentially small, since they are equivalent to the corresponding
mapping spaces HomC (x, y) by Corollary 12.7. Hence the Yoneda embedding for
C factors as

h : C → Fun(C ,Kansm) → Fun(C ,Kan).

lem:full_funcat Lemma 16.20. Let D ′ be a full ∞-subcategory in an ∞-category D . Then for any
simplicial set K the inclusion Fun(K,D ′) → Fun(K,D) identifies Fun(K,D ′) with
the full ∞-subcategory of functors in Fun(K,D) which take values in D ′.

Proof. Consider a map F : ∆n×K → D whose restrictions F |{i}×K : {i}×K → D
have image in D ′. It suffices to show that F itself has image in D ′. Since D ′ is
full in D , F has image in D ′ if and only if F (z) has image in D ′ for each object
z : ∗ → ∆n ×K. However, the objects in ∆n ×K are specifically pairs of objects
(i, x) with i in ∆n[0] = [n] and x in K[0], and hence each object lies in some
subcomplex {i} ×K. By our assumption on F it follows that F sends each object
in ∆n ×K to an object in D , and therefore has image in D ′ as desired. □

Lemma 16.20, in conjunction with Theorem 16.1 and the preceding discussion,
provide a refinement for the Yoneda embedding in the locally small setting.

thm:yoneda_locsmall Theorem 16.21. Suppose C is a locally small ∞-category. Then any Hom functor
H : C op × C → Kan has image in Kansm and the associated functor

h : C → Fun(C op,Kansm), h(x) := H(−, x),

is fully faithful.

We can apply this finding specifically in the essentially small setting.

cor:yoneda_locsmall Corollary 16.22. If C is essentially small, then any Hom functor H : C op×C →
Kan has image in Kansm and the associated functor

h : C → Fun(C op,Kansm), h(x) := H(−, x),

is fully faithful.
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We note that, by Lemma 16.19, the full ∞-subcategory Fun(C ,Kansm) is both
complete and cocomplete, and the inclusion Fun(C ,Kansm) → Fun(C ,Kan) is
both continuous and cocontinuous. So Theorems 16.15 and 16.18, in conjunction
with Theorem 16.21, provide the following.

Corollary 16.23. Suppose C is a locally small ∞-category. Then the Yoneda
embedding h : C → Fun(C ,Kansm) both preserves and detects limits in C .

Though the relevance of this refinement is not immediately clear, within the
context of this text at lease, one of the primary implications is the following.

Corollary 16.24. Any essentially small ∞-category C admits a fully faithful func-
tor F : C → C ′ into an ∞-category C ′ with the following properties:

(a) C ′ is locally small, complete, and cocomplete.
(b) F commutes with all limits which exist in C .

The embedding of Corollary 16.22 forms the foundations of various cocompletion
constructions which appear in [3, §5.3.5, 5.5.8]. Local smallness of the functor
category Fun(C op,Kansm) is essential in assuring the existences of Kan extensions
from various subcategories C ′′ ⊆ Fun(C op,Kansm) along the Yoneda embedding.

Appendix A. Proof of Proposition 8.2

We now provide the details for our primary foundational result. We recall the
situation: We have a cocartesian fibration q : X → S and an injective map of
simplicial sets i : K → S. For qK : XK → K the fiber of q along i, we have the
pullback functor on the spaces of transport functors with witnessing data

i∗ : T W it(q) → T W it(qK).

We’ve claimed in Proposition 8.2 that i∗ is a trivial Kan fibration.
We decompose the proof of Proposition 8.2 into two subclaims. First, we claim

that i∗ is an inner fibration. We then argue that it is an isofibration, and hence a
Kan fibration since both spaces in question are Kan complexes. Triviality follows
since both spaces are contractible. Let us demonstrate this first claim.

A.1. Restriction is an inner fibration.

lem:tdata_res Lemma A.1. Under the hypotheses of Proposition 8.2, the restriction functor i∗ :
T W it(q) → T W it(qK) is an inner fibration.

Proof. Suppose we have a transport functor FK : ∆n × K → Cat∞ for ∆n × qK
with witnessing data

∆n ×XK
gK //

∆n×qK &&

EK

pKzz
∆n ×K ,

where EK =
∫
∆n×K FK with its associated pullback fibration pK to ∆n×K. Recall

that, by definition, gK is an equivalence of cocartesian fibrations. This data defines
an n-simplex

(FK , gK) : ∆n → T W it(qK).
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Suppose now that we have an inner horn (FΛ, gΛ) : Λnl → T W it(q) which re-
stricts to (FK , gK)|Λn

l
along i. Equivalently, we have a choice of functor FΛ :

Λnl × S → Cat∞ and a witnessing data

Λnl ×X
gΛ //

Λn
l ×q %%

EΛ

pΛ
{{

Λnl × S

where E ′ =
∫
Λn×S FΛ.

Consider the union

M = (∆n ×K)
∐

(Λn
l ×K)

(Λnl × S).

By Lemma I-5.4 the inclusionM → ∆n×S is inner anodyne, so that the restriction
functor

Fun(∆n × S,Cat∞) → Fun(M,Cat∞)

is a trivial Kan fibration by Corollary I-5.8. Hence the pair of functors

(FK , FΛ) : ∗ → Fun(M,Cat∞)

extend uniquely to a functor F : ∆n × S → Cat∞. Let us take now

E =

∫
∆n×S

F,

and note the identifications Λnl ×∆n E = EΛ and K ×S E = EK .
Now, the inclusion Λn×X → ∆n×X is inner anodyne and the map ∆n×XK →

∆n ×X is injective so that the map from the union

Y = (Λn ×X)
∐

(Λn×XK)

(∆n ×Xk) → ∆n ×X

is inner anodyne as well, again by Lemma I-5.4. Hence the induced map

Fun(∆n ×X,E ) → Fun(Y,E )×Fun(Y,∆n×S) Fun(∆
n ×X,∆n × S)

is a trivial Kan fibration, by Proposition I-5.7. It follows that the compatible
collection (gK , gΛ,∆

n×S) : ∗ → Fun(Y,E ) extend uniquely to a map G : ∆n×X →
E of isofibrations over ∆n × S.

We claim that G preserves cocartesian edges, and hence is a map of cocartesian
fibrations over ∆n × S. To see this, we note that the sequence

Λnl ×X
gΛ−→ EΛ

incl−→ E

preserves cocartesian fibrations, since both of the constituent maps preserve co-
cartesian edges. Since, for any simplicial set T , T × q-cocartesian edges in T ×X
are precisely edges those edges of the form (α, β) where α is arbitrary in T and β
is q-cocartesian in X. From this we see that all cocartesian edges in ∆n × X are
realized as composites of cocartesian edges which exist in the subcomplex Λnl ×X.
Since cocartesian edges are preserved under composition it follows that the functor
G : ∆n ×X → E does in fact preserve cocartesian edges.

Finally, we claim that the functor G is an equivalence. This property can be
checked on the fibers over ∆n × S, by Theorem 3.8, and so can be checked after
pulling back to the subcomplex ∆n ×K. (Recall that all vertices in S are in the

https://c-negron.github.io/infty_partI.pdf
https://c-negron.github.io/infty_partI.pdf
https://c-negron.github.io/infty_partI.pdf
https://c-negron.github.io/infty_partI.pdf
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image of the inclusion K → S by hypothesis.) However, pulling back G along the
inclusion ∆n ×K → ∆n × S recovers the functor gK : ∆n ×K → EK , which was
already chosen to be an equivalence. So we see that G is an equivalence, and the
pair (F,G) therefore defines an n-simplex

(F,G) : ∆n → T W it(q)

which splits the given diagram

Λn
(FΛ,gΛ) //

��

T W it(q)

i∗

��
∆n

(FK ,gK)
//

(F,G)

66

T W it(qK).

We conclude that i∗ is an inner fibration. □

A.2. Proof of Proposition 8.2. We now return to the proof of Proposition 8.2.

Proof of Proposition 8.2. By Lemma A.1 the restriction functor i∗ : T W it(q) →
T W it(qK) is an inner fibration. Since the spaces T W it(q) and T W it(qK) are Kan
complexes the functor i∗ is then a Kan fibration if and only if it is an isofibration.
This follows by Corollary I-5.34, for example. Triviality is then a consequence of
contractibility of both spaces (see Proposition I-4.9).

Consider a pairing of a functor FK : ∆1 × K → Cat∞ which defines a nat-
ural isomorphism in Fun(K,Cat∞) and an equivalence gK : ∆1 × XK → EK of
cocartesian fibrations over ∆1 × K, where EK =

∫
∆1×K FK . This data defines a

map ∆1 → T W it(qK) whose image in Fun(K,Cat∞) along the forgetful functor
T W it(qK) → Fun(K,Cat∞) is an isomorphism. (All maps in T W it(qK) have this
property, as they are all isomorphisms, but whatever.)

Fix a pairing of a functor F0 : S → Cat∞ and an equivalence g0 : X → E0, where
E0 =

∫
S
F , and suppose that restricting along the inclusion i : K → S recovers the

pair (FK |{0}×K , gK |{0}×XK
). Equivalently, we consider a lifting problem

{0}

��

(F0,g0) // T W it(q)

i∗

��
∆1

(FK ,gK)
//

66

T W it(qK)

By Corollary I-6.14 the restriction map Fun(S,Cat∞) → Fun(K,Cat∞) is an
isofibration, so that FK lifts to a natural isomorphism F : ∆1 → Fun(S,Cat∞),
which we might also view as a functor F : ∆1 × S → Cat∞. We consider the
associated cocartesian fibration

p : E =

∫
∆1×S

F → ∆1 × S

and note that we have the two inclusions

j0 : E0 → E and jK : EK → E

which recover the implicit fibrations p0 : E0 → S and pK : EK → ∆1 × K upon
restriction.

https://c-negron.github.io/infty_partI.pdf
https://c-negron.github.io/infty_partI.pdf
https://c-negron.github.io/infty_partI.pdf
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By Theorem 2.7 there is a unique transformation G′ : ∆1 × X → E which fits
into a diagram

{0} ×X //

��

E

��
∆1 ×X

∆1×q
//

G′

66

∆1 × S

and which sends each edge (α, x) : ∆1 → ∆1 × X, at any given vertex x : ∗ →
E0, to a cocartesian edge in E . We note that G′ restricts to such a cocartesian
transformation on ∆1 × XK as well. Since gK : ∆1 × XK → E provides another
such transformation, the uniqueness claim of Theorem 2.7 implies the existence of
an isomorphism gK ∼= G′|∆1×K .

Take L = ({0} ×X) ∪ (∆1 ×K). Since the restriction functor

Fun(∆1 ×X,E ) → Fun(L,E )×Fun(L,∆1×S) Fun(∆
1 ×X,∆1 × S)

is an isofibration (Proposition I-6.13) we can therefore replaceG′ with an isomorphic
transformation G : ∆1 × X → E which also fits into a diagram of the form (??)
and has G|∆1×K = gK .

We claim that G is a map of cocartesian fibrations. Since cocartesian edges
are preserved under isomorphism, it suffices to prove that G′ : ∆1 × X → E
preserves cocartesian edges. However, this is clear since G′ sends each edge of the
form (α, x) : ∆1 = ∆1 × {x} → ∆1 × X to a cocartesian edge in E , and since
g0 preserves cocartesian edges we also see that G′ sends each edge of the form
(0, β) : ∆1 → ∆1 × X with β cocartesian in X to a cocartesian edge in E . Since
every cocartesian edge in ∆1×X is a composite of such basic coartesian edges, and
cocartesian edges are stable under composition, we see that G′ preserves cocartesian
edges. Hence G preserves cocartesian edges as well.

Finally, we claim that G : ∆1 × X → E is an equivalence. Since this property
can be checked after taking fibers over the base ∆1 × S, by Theorem ??, it suffices
to show that the pullback along the inclusion ∆1 ×K → ∆1 ×K is an equivalence.
(This follows from the fact that every vertex in ∆1 × S lies in the subcomplex
∆1 × K, by hypothesis.) However, this pullback is just gK , by construction, and
gK was chosen to be an equivalence. So G is in fact an equivalence of cocartesian
fibrations. We have now found the required solution

{0}
(F0,g0) //

��

T W it(q)

i∗

��
∆1

FK ,gK

//

(F,G)

66

T W it(qK)

to our lifting problem. □

Appendix B. Proof of Theorem 8.11

A foundational result from the foundational text [3] is the straightening and
unstraightening theorem, which proposes (after some translation [1]) the existence
of mutually inverse equivalences

StLur : Cocart(S) → Fun(S,Cat∞) and UnLur : Fun(S,Cat∞) → Cocart(S).

https://c-negron.github.io/infty_partI.pdf
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These equivalences are produced via some sequence relatively opaque manipula-
tions with the model categories of marked simplicial sets over S and functors into
simplicial sets. Or rather, manipulations which are relatively opaque to me.

However, the ultimate conclusion that the ∞-category of cocartesian fibrations
over a given base S is equivalent to the ∞-category of Cat∞-valued functors from
S seems unavoidable from the discussions we’ve had above. Let us explore these
higher issues from the perspective of this text.

B.1. Lifting to hKan. The functor h St from Corollary 8.10 admits a canonical
hKan-enrichment π St : πCocart(S) → π Fun(S,Cat∞) which is obtained by ap-
plying a transport construction to the mapping spaces. One similarly obtains an
enrichment πUn : π Fun(S,Cat∞) → πCocart(S) via an application of Corollary
2.8, and one can show that these enriched functors are again mutually inverse.

Having approached the topic in this manner, it is relatively clear that we should
have mutually inverse equivalences at the level of ∞-categories

St : Cocart(S) → Fun(S,Cat∞) and Un : Fun(S,Cat∞) → Cocart(S)

which lift the equivalences appearing in Corollary 8.10 and the above discussions.
Since both of the hKan-enriched functors π St and πUn are equivalences, it suffices
to demonstrate the existence of a lift for one of either π St or πUn.

B.2. Lifting to the ∞-setting. If we consider the supposed functor St, the cat-
egory Cocart(S) is obtained as the localization of the discrete category Cocart(S)
relative to the class of equivalences

Cocart(S) = Cocart(S)[Equiv−1]

[3, Proposition 3.1.3.7, Corollary 3.1.4.4] [4, Theorem 1.3.4.20]. So producing a
functor Cocart(S) → Fun(S,Cat∞) is equivalent to producing a functor Cocart(S) →
Fun(S,Cat∞) which preserves equivalences, this in turn is equivalent to producing
a functor S × Cocart(S) → Cat∞ which sends equivalences in the second factor
to equivalences in Cat∞, and this final claim is equivalent to the construction of a
cocartesian fibration

q̄St : ESt → S × Cocart(S).

On obvious choice for the fibration E is given by the weighted nerve

ESt = Nforget(Cocart(S))

of the forgetful functor Cocart(S) → Cat∞. The structure map

ESt = Nforget(Cocart(S)) → NS(Cocart(S)) = S × Cocart(S)

is provided by the natural transformation to the constant functor forget → S
induced by the structure maps on objects in Cocart(S).

Note that the fibers of ESt over each point idS × q : S → S ×Cocart(S) returns
the chosen fibration q, i.e. we observe a pullback diagram

X

q

��

// ESt

q̄St

��
S

1×q
// S × Cocart(S),
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and similarly see that pulling back along any map of cocartesian fibrations F :
∆1 → Cocart(S) returns the fibration

ESt ×Cocart(S) ∆
1 = NF (∆1) → ∆1 × S.

We take S̄t : S × Cocart(S) → Cat∞ the corresponding transport functor, observe
from Proposition 8.8 that S̄t preserves equivalences in the second factor, and take

St : S × Cocart(S) → Cat∞

the unique extension of S̄t to the localization S×Cocart(S) = S×Cocart(S)[Equiv−1].
Take qSt : ESt → S × Cocart(S) the cocartesian fibration corresponding to |opnSt.

It is clear from construction that the induced map on homotopy categories h St,
which is calculable from the restricted functor S̄t, recovers our equivalence from
Corollary 8.10. The action of the functor St on mapping spaces can be calculated
by applying transport to the pullback fibration

EX,Y

��

// ESt

��
S ×∆1 ×HomCocart(X,Y )

1×ev
// S × Cocart(S).

This fibration has EX,Y |0 = HomCocart(X,Y )×X and EX,Y |1 = HomCocart(X,Y )×
Y , and the unique cocartesian lifting

{0} ×Hom(X,Y )×X

��

// EX,Y

��
∆1 ×Hom(X,Y )×X // ∆1 ×Hom(X,Y )× S

provides maps

Hom(X,Y )×X = {1} ×Hom(X,Y )×X → Hom(X,Y )× Y

which appear as [p1 ev′], where ev′ is some map ev′ : Hom(X,Y )×X → Y . These
maps ev′ provide, via adjunctions, a unique morphism

HomCocart(X,Y ) → FunS(X,Y )

which fits into a
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