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Abstract. We study the cup product on the Hochschild cohomology of the stack quotient [X/G] of a
smooth quasi-projective variety X by a finite group G. More specifically, we construct a G-equivariant sheaf

of graded algebras on X whose G-invariant global sections recover the associated graded algebra of the
Hochschild cohomology of [X/G], under a natural filtration. This sheaf is an algebra over the polyvector

fields T poly
X on X, and is generated as a T poly

X -algebra by the sum of the determinants det(NXg ) of the normal

bundles of the fixed loci in X. We employ our understanding of Hochschild cohomology to conclude that the
analog of Kontsevich’s formality theorem, for the cup product, does not hold for Deligne–Mumford stacks in

general. We discuss, in the case of a symplectic group action on a symplectic variety X, relationships with

orbifold cohomology and Ruan’s cohomological conjectures. In describing the Hochschild cohomology in the
symplectic situation, we employ compatible trivializations of the determinants det(NXg ), which requires

(for the cup product) a nontrivial normalization missing in previous literature.

1. Introduction

Fix a base field k of characteristic 0 (or of a prime characteristic p which is larger than the dimension of
the variety X and does not divide the size of the group G). All varieties will be quasi-projective over k. We
often take X2 = X ×X for X a variety, or stack.

In this paper we describe the multiplicative structure on the Hochschild cohomology HH•([X/G]) of
the quotient stack of a smooth quasi-projective variety X by a finite group G, which is assumed to act
by automorphisms over Spec k. We show first that the multiplication on Hochschild cohomology can be
understood in terms of the geometry of X as a G-variety, then proceed to discuss a number of applications
to formality questions and orbifold cohomology. Such an object [X/G] is also known as a global quotient
orbifold.

Our description of the cup product can be seen as a version of the Hochschild-Kostant-Rosenberg theorem
for such quotient stacks, taking into account the multiplicative structure. In its simplest form, for smooth
affine varieties X, this result states that HH•(X) ∼= ∧•O(X)T (X), called polyvector fields on X [35] (as alge-

bras), and it has been generalized for example to the global setting in [63, 13]. There are many applications
of understanding this together with its algebraic structure, such as to deformation theory. In the case at
hand of a global quotient orbifold [X/G], the Hochschild cohomology controls the deformation theory of the
G-equivariant geometry of X (see Section 1.3 below).

As a consequence of our description of the cup product we find that the multiplicative form of Kontsevich’s
formality theorem does not hold for smooth Deligne-Mumford stacks in general. We also observe a vector
space identification between a variant of the Hochschild cohomology and the orbifold cohomology of [X/G],
in the particular instance in which X is symplectic and G acts by symplectic automorphisms. When X is
projective, in addition to being symplectic, we conjecture that there is furthermore an algebra isomorphism
HH•([X/G]) ∼= H•orb([X/G]). When the quotient varietyX/G admits a crepant resolution obtained via theG-
Hilbert scheme of X as studied in [10], this conjectural algebra isomorphism reduces to Ruan’s Cohomological
Hyperkähler Resolution Conjecture, and hence provides a resolution free variant of Ruan’s conjecture.

We elaborate on our description of Hochschild cohomology, and subsequent applications, below. For the
remainder of the introduction take X = [X/G], for X a smooth quasi-projective variety and G a finite
group.
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1.1. The structure of Hochschild cohomology. For us, the Hochschild cohomology of X will be the
algebra of self-extensions

HH•(X ) = Ext•X 2(∆∗OX ,∆∗OX ).

Motivated by methods from noncommutative algebra, we show that the cohomology can be given as an
algebra of extensions between the pushforward ∆∗OX on X2 and a certain smash product construction
∆∗OX oG. Specifically, we explain below that the graded group of extensions Ext•X2(∆∗OX ,∆∗OX oG) is
naturally a graded algebra with an action of G by algebra automorphisms. We provide further an algebra
identification HH•(X ) = Ext•X2(∆∗OX ,∆∗OX oG)G (see Section 4.1).

Our Hochschild cohomology with coefficients in the smash product has an obvious sheaf analog. For
π : X2 → X the first projection, we take

HH•(X ) = π∗E xt
•
X2(∆∗OX ,∆∗OX oG), (1.1)

which we will refer to as the local equivariant Hochschild cohomology of X . We will explain that the “sheaf-
valued” cohomology HH•(X ) is naturally a G-equivariant sheaf of graded algebras on X, i.e. a sheaf of
algebras on X (see Remark 4.1), and that the usual local-to-global spectral sequence

E2 = H•(X,HH•(X ))G ⇒ HH•(X ) (1.2)

is multiplicative. By [4], this spectral sequence degenerates at the E2-page (see Section 4.2). In this sense,
the hypercohomology of HH•(X ) provides an approximation of the Hochschild cohomology ring of the stack
quotient.

Our first main result can be summarized as follows. For every scheme Y , let T polyY :=
∧

OY
TY be the

sheaf of polyvector fields on Y .

Theorem 1.1. Let G be a finite group acting on a smooth quasi-projective variety X, and consider the
quotient orbifold X = [X/G]. Then there is a canonical identification of equivariant sheaves

HH•(X ) =
⊕
g∈G

T polyXg ⊗OX det(NXg ). (1.3)

The induced algebra structure on the sum ⊕g∈GT polyXg ⊗OX det(NXg ) can be understood as follows:

(i) The identity component T polyX is in the center of HH•(X ).

(ii) As a T polyX -algebra, HH•(X ) is generated by the determinants of the normal bundles ⊕g∈G det(NXg ).
(iii) The sum of the determinants themselves form a G-graded, equivariant subalgebra in HH•(X ).
(iv) Each multiplication

m : det(NXg )⊗OX det(NXh)→ det(NXgh)

is nonvanishing exactly on those components Y of the intersection Xg∩Xh which are also components
of Xgh, and along which Xg and Xh intersect transversely.

Furthermore, there is a filtration on the global cohomology HH•(X ) under which we have an identification
of algebras

grHH•(X ) = H•
(
X,⊕g∈G T polyXg ⊗OX det(NXg )

)G
. (1.4)

In equation (1.4) we view the polyvector fields T polyXg ⊗OX det(NXg ) as a complex of sheaves with vanishing
differential, so that the hypercohomology is identified with the usual cohomology. In the unpublished manu-
script [2], a version of the theorem above appears in the affine setting (in terms of the obvious explicit formula
for cup product, rather than (i)–(iv); see Section 7.5). We note that the vector space identification (1.4) is
due to Ginzburg-Kaledin in the affine case, and Arinkin–Căldăraru–Hablicsek in general [4].

The subalgebra of (iii) is denoted SA(X ) := ⊕g∈G det(NXg ) throughout. We see from (ii), or more
precisely Theorem 7.2 below, that this subalgebra provides all of the novel features of the Hochschild coho-
mology of the orbifold X , as compared with that of a smooth variety. Furthermore, as the points of the
fixed spaces Xg account for the points of X which admit automorphisms, this algebra also represents a
direct contribution of the stacky points of X to the Hochschild cohomology.

An explicit description of the multiplicative structure on the subalgebra SA(X ) is given in Theorem 7.5,
and the multiplicative structure on the entire cohomology HH•(X ) is subsequently obtained from Theo-
rem 7.2. The algebra identification (1.4) appears in Corollary 7.8.
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Remark 1.2. Since SA(X ) is an equivariant sheaf of algebras on X, we may view it as a sheaf of algebras
on the quotient X . However, the reader should be aware that the algebra SA(X ) is not known to be an
invariant of X at the moment. So a notation SA(X →X ) may be more appropriate here.

Of course, in the affine case the derived global sections vanish in positive degree. As a result, ΓHH•(X ) =
HH•(X ), and we do not need a spectral sequence. Hence Theorem 1.1, in conjunction with the description
of the algebra SA(X ) below, provides a complete description of the Hochschild cohomology in this case.

Corollary. Let G be a finite group acting on a smooth affine variety X, and take X = [X/G]. There is an
algebra identification

HH•(X ) = Γ
(
X,⊕g∈G T polyXg ⊗OX det(NXg )

)G
(1.5)

where the multiplication on the right hand side is as described above.

Note that there is no “gr” appearing in the corollary since the filtration is now trivial (it matches the
cohomological grading).

The above corollary was established in work of Shepler and Witherspoon [52] in the specific instance of
a finite group acting linearly on affine space (cf. [2]). We note that the description of cohomology given in
the Corollary, as the global sections of our algebra of polyvector fields, is not exclusive to affine varieties.
Indeed, we provide some projective examples in Section 2 for which we have a similar equality (1.5).

1.2. Formality, symplectic quotients, and orbifold cohomology. We say that the Hochschild coho-
mology of a Deligne–Mumford stack X is formal if the algebra of sheaf-extensions E xt•X 2(∆∗OX ,∆∗OX )
and the differential graded algebra of derived endomorphisms RH omX 2(∆∗OX ,∆∗OX ) are connected by a
sequence of A∞ quasi-isomorphisms (see Section 8) in the category of sheaves of vector spaces, viewing both
as equipped with zero higher A∞-structures (see Section 8 for a more precise statement). In characteristic

zero, there is a highly nontrivial isomorphism between T polyX and the derived endomorphisms of ∆∗OX , for
smooth X, using the composition of the Hochschild–Kostant–Rosenberg isomorphism with exterior multipli-
cation by the square-root of the Todd class of TX (claimed on the level of global sections by Kontsevich [39,
Claim, Section 8.4], see also [17, Claim 5.1], and proved also by Calaque-Van den Bergh [13, Corollary 1.5];
the local statement is a consequence of [12, Theorem 1.1]). We show that the analog of this result does not
hold for projective Calabi–Yau quotient orbifolds with singular coarse space.

Theorem (8.4). Suppose X is projective and that G is a finite subgroup in Aut(X). Suppose additionally
that the action of G is not free, and that the quotient X = [X/G] is Calabi–Yau. Then the Hochschild
cohomology of the orbifold X is not formal.

One can construct such Calabi–Yau quotients via symplectic varieties equipped with symplectic group ac-
tions. Symplectic orbifolds feature prominently in the literature, particularly in studies of crepant resolutions
and quantization.

Corollary (8.5). Let X be a projective symplectic variety and G ⊂ Sp(X) be a finite subgroup for which the
action is not free. Then the Hochschild cohomology of the corresponding orbifold quotient X is not formal.

Kummer varieties, i.e. quotients of abelian surfaces by the Z/2Z-inversion action, provide explicit examples
of X as in the corollary, and hence explicit examples of smooth Deligne–Mumford stacks with non-formal
Hochschild cohomology.

We continue our analysis of symplectic quotients in Section 9, where we provide a simplification of The-
orem 1.1 in the symplectic setting over C. In this case one can produce simultaneous trivializions of the
determinants of the normal bundles det(NXg ) which provide the following algebra identification.

Theorem (9.6). Suppose X is a symplectic variety over C, and that G acts on X by symplectic automor-
phisms. Then there is an algebra isomorphism

HH•(X ) ∼=
⊕
g∈G

Σ−codim(Xg)T polyXg , (1.6)

where the (shifted) polyvector fields multiply in the expected manner.
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By the “expected manner” we mean, vaguely, the multiplication one would expect given the vanishing
result of Theorem 1.1 (iv) and the standard multiplication of polyvector fields. A precise description of this
multiplication is given in the discussion following Theorem 9.6.

We note one cannot achieve the above isomorphism by simply employing the trivializations det(NXg ) ∼=
OXg provided by the symplectic form on X. One has to instead rescale these trivializations by the square
roots of the determinants of the elements (1 − g), which we interpret as invertible operators on their re-
spective normal bundles NXg . In Appendix C, with Pavel Etingof, we show in the particular case of a
finite group acting linearly on a symplectic vector space that the rescaled trivializations produce the desired
isomorphism (1.6). For arbitrary X we reduce to the linear case to obtain the isomorphism (1.6). We note
that the introduction of these scaling factors corrects a persistent error in the literature (see Section 9.4).

For a symplectic quotient X , we also propose a number of relations between Hochschild cohomology and
orbifold cohomology H•orb(X ) for X . In particular, we provide a linear identification between the Hochschild
cohomology and the orbifold cohomology of a projective symplectic quotient orbifold at Corollary 10.3. We
conjecture that there is furthermore an algebra identification between these two cohomologies.

Conjecture (10.7). For any projective, symplectic, quotient orbifold X over C there is an algebra isomor-
phism HH•(X ) ∼= H•orb(X ).

If the (generally singular) quotient variety X/G admits a crepant resolution of the type considered in [10],
then our conjecture reduces to Ruan’s Cohomological Hyperkähler Resolution Conjecture. (See Section 10.3.)
As Ruan’s conjecture relies on the existence of a crepant resolution, Conjecture 10.7 represents a resolution
free variant of the Cohomological Hyperkähler Resolution Conjecture.

Remark 1.3. Note that projective complex symplectic varieties (which pertain to the last two sections) are,
from the differential geometric perspective, compact hyperkähler manifolds. This is due to Yau’s solution to
the Calabi conjecture [62]. The converse also holds under our quasi-projectivity assumption.

1.3. Generalities for the Hochschild cohomology of algebraic stacks. In principle, for a general
algebraic stack X , the Hochschild cohomology HH•(X ) defined via self-extensions of the pushforward
∆∗OX need not be identified with the Hochschild cohomology HH•ab(Qcoh(X )) of the category of quasi-
coherent sheaves on X , as defined in [42]. However, such an identification is desirable as the cohomology
HH•ab(Qcoh(X )) has the correct theoretical interpretation, namely as the cohomology of the dg Lie algebra
controlling the deformation theory of the category of sheaves on X , while the self-extension algebra HH•(X )
is more accessible to computation.

In an appendix by Pieter Belmans, Appendix A, it is shown that for many reasonable stacks the algebra of
self-extensions HH•(X ) does in fact agree with the Hochschild cohomology HH•ab(Qcoh(X )) of the abelian
category Qcoh(X ), as desired.

Proposition (A.2). Let X be a perfect algebraic stack over Spec k. Then there exists an isomorphism of
graded algebras HH•(X ) ∼= HH•ab(Qcoh(X )). In particular, we have such an isomorphism for any global
quotient orbifold X .

The above result implies that there is a natural graded Lie structure on the self-extension algebra
HH•(X ). Although we do not pursue the topic here, one can attempt to construct a sufficiently natural Lie
algebra structure on the local Hochschild cohomology HH•(X ) and ask whether Kontsevich formality for
the Lie structure on the Hochschild cohomology of X is similarly obstructed, as in Theorem 8.4. However,
we expect that one has to at least push this sheaf HH•(X ) forward to the coarse space X/G in order to
construct such an appropriate Lie structure. (Here, X/G is the categorical quotient scheme; in the case that
X is affine, X/G = Spec O(X)G.)

Remark 1.4. If instead of considering the Hochschild cohomology of the abelian category, one works in the
setting of derived algebraic geometry and takes the Hochschild cohomology of the DG category QC(X ) of
quasi-coherent sheaves on X , then the fact that one recovers self-extensions of ∆∗OX is a direct consequence
of [8, Theorem 1.2.(2)], which identifies endofunctors of QC(X ) with quasi-coherent sheaves on X 2, sending
the identity to ∆∗OX . For more details, see the last two paragraphs of the proof of Proposition A.2.
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1.4. References to related literature. In the case of a finite group G acting linearly on a vector space
V (considered here as an affine space) the Gerstenhaber structure on Hochschild cohomology HH•([V/G])
is understood. A concise algebraic description of the Gerstenhaber bracket can be found in work of the first
author and Witherspoon [47] (see also [53, 31]). For more general orbifolds, even affine quotient orbifolds,
an analogous description of the bracket has yet to appear.

A general analysis of Hochschild homology and cohomology for orbifolds, from the perspective of the
derived category, can be found in a sequence of papers by Căldăraru and Willerton [16, 17, 19].

A C∞-analog of Theorem 1.1 appears in work of Pflaum, Posthuma, Tang, and Tseng [49]. In [49] the
authors consider arbitrary (C∞-)orbifolds. Such objects may not be given as global quotients in general.

1.5. Organization of the paper. In Section 2 we discuss some projective examples. Section 3 is dedicated
to background material. In Section 4 we introduce the smash product ∆∗OXoG and establish the necessary
relationships between the local Hochschild cohomology HH•(X ) and the cohomology of the stack quotient
X . In Section 5 we establish some generic relations between normal bundles and tangent bundles for the
fixed spaces, and in Sections 6 and 7 we use these relations to give a geometric description the Hochschild
cohomology HH•(X ) as a sheaf of algebras on X .

We discuss formality and Calabi–Yau orbifolds in Section 8. In Section 9 we describe the Hochschild coho-
mology of the quotient orbifold of a symplectic variety by symplectic automorphisms. Finally, in Section 10
we establish some linear identifications between Hochschild cohomology and orbifold cohomology, and pro-
vide a number of conjectures regarding the relationship between the cup product on Hochschild cohomology
and the orbifold product on orbifold cohomology.

In Appendix A, by Pieter Belmans, the Hochschild cohomology of the category Qcoh(X ) is identified
with the derived endomorphisms of the pushforward ∆∗OX . In Appendix B we cover some basic facts
regarding linear representations of finite groups. In Appendix C, with Pavel Etingof, we show that a certain
group cocycle which appears in the Hochschild cohomology of a symplectic quotient orbifolds is canonically
bounded. This corrects a recurring error in the literature.

1.6. Acknowledgements. Thanks to the participants and administrators of the Hochschild Cohomology
in Algebra, Geometry, and Topology Workshop held at the Oberwolfach Research Institute for Mathematics
in February 2016, where this project began in earnest. Thanks especially to Dmitry Kaledin and Damien
Calaque for many helpful conversations, and to Pieter Belmans for helpful comments on a draft and pointing
out references. We would like to thank Andrei Căldăraru for many correspondences and useful clarifications,
and Wendy Lowen and Michel Van den Bergh for explaining some aspects of categorical Hochschild coho-
mology. Thanks also to Heather Macbeth for offering many useful insights regarding symplectic geometry, to
Allen Knutson for writing programs relevant to Remark 2.2, to Haiping Yang for comments on this remark,
and to Lie Fu for offering a number of helpful comments and corrections to the materials of Section 10.3.

Thanks to the Hausdorff Institute for Mathematics in Bonn, Germany, where this project was continued
during the Fall 2017 Junior Trimester Program on Symplectic Geometry and Representation Theory. The
second author would also like to thank the Max Planck Institute for Mathematics for its hospitality on two
research visits. Thanks finally to the referee for their consideration of the text, and useful comments.

2. Remarks on degeneration

Before we begin our main endeavor of computing Hochschild cohomology, let us make a few specific remarks
on degeneration of the spectral sequence (1.2) and subsequent identification of the associated graded algebra
of Hochschild cohomology.

2.1. Examples of degeneration. As mentioned in the introduction, for affine X, derived global sections

vanish and we have HH•(X ) = Γ(X,⊕g∈G T polyXg ⊗OX det(NXg ))G. Of course, such vanishing holds in many
non-affine examples:

Corollary 2.1. Suppose that G is a finite group acting on a smooth quasi-projective variety X such that
Hi(Xg,∧jTX ⊗ det(NXg )) = 0 for i > 0 and all j ≥ 0 and g ∈ G. Then there is an algebra isomorphism
(1.5). For instance, these conditions hold when X = Pn.
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The first assertion of this corollary is immediate; we sketch the proof of the second assertion. We can
assume that G acts faithfully on X = Pn, so that G < PGLn+1. Every element g ∈ G has finite order, so is
represented by a semisimple element of GLn+1. Then Xg is a disjoint union of the projectivizations of the
eigenspaces of g in kn+1. Therefore Xg is smooth and each connected component is Pm ⊆ Pn. There is an
isomorphism TPm⊕OPm(1)n−m → TPn |Pm , where the first component maps via the inclusion, and the second
maps by restricting the Euler surjection OPn(1)n+1 � TPn to the last n−m components and then restricting
from Pn to Pm. Thus det(NXg ) = OPm(n −m). We therefore have to show that all higher cohomology of
∧jTPm(n − m) vanishes. This is well-known (see, e.g., [9]). We give an elementary proof using the Euler
exact sequence 0 → OPm → OPm(1)m+1 → TPm → 0: Replace TPm by the complex OPm → OPm(1)m+1,
placing in degrees −1 and 0, and take its j-th exterior power. We get a complex in nonpositive degrees
quasi-isomorphic to ∧jTPm . All terms of this complex are sums of line bundles OPm(`) for ` ≥ 0. The same
is true after twisting by OPm(n−m) with n−m ≥ 0. Therefore taking derived global sections of the complex
results in a complex of vector spaces concentrated in nonpositive degrees. So Hi(Pm,∧jTPm(n−m)) = 0 for
i ≥ 1.

Remark 2.2. It seems likely that the conditions of the corollary hold for some other homogeneous spaces.
Let G be a connected reductive group, P < G a parabolic subgroup, and X = G/P . Then any finite
subgroup Γ < G acts by automorphisms on G/P . Now let g ∈ G. In the case g = 1 ∈ Γ, so Xg = X, then
the relevant cohomology Hi(X,∧jTX) is described in [9] (although making it explicit runs into the difficulty
that ∧jTX is not, in general, induced by a semisimple representation of P ; see also [61, Exercise 4, Chapter
4] for the vanishing for i > 0 in the Grassmannian case). Next consider an element g ∈ Γ. Since it has
finite order, it is semisimple, so its centralizer L := ZG(g) is reductive and contains a maximal torus T of G.
Replacing P by a conjugate parabolic we may assume that T < P . We have Xg = {hP ∈ X | ghP = hP}.
The connected components of this are all isomorphic to L◦/(L◦ ∩P ), where L◦ is the connected component
of the identity of L. This is itself a homogeneous space of the same form, since L◦∩P is a parabolic subgroup
of L◦. Thus, one can again try to apply [9] to each of these spaces.

We note, however, that the higher cohomology appearing in Corollary 2.1 does not vanish for all homo-
geneous spaces (possibly not even for most). Indeed, already for g = 1 and X the complete flag variety
(G = GLn and P = B a Borel subgroup), the higher cohomology fails to vanish in general. For example,
A. Knutson provided Macaulay2 code which demonstrates that for n = 6, the Euler characteristic of an
isotypic component of H∗(G/B,∧4TG/B) under the action of G is negative, and hence there exists a non-
vanishing cohomology group in odd degree. We have been informed that P. Belmans extended this using
SageMath to flag varieties for several other groups: in type D5, Hodd(G/B,∧kTG/B) does not vanish for

k ∈ {4, 5, 6}, and in type F4, Hodd(G/B,∧kTG/B) does not vanish for k ∈ {3, 4, 5, 6}. Moreover, Belmans

and Smirnov investigate the case where P is a maximal parabolic, and find that H>0(G/P,∧kTG/P ) does

not always vanish there: in [7, Proposition D] it is shown that H1(G/P,∧2TG/P ) 6= 0 where G/P is the
Grassmannian of isotropic three-spaces in a symplectic vector space of dimension at least eight.

2.2. grHH•(X ) versus HH•(X ) in general. For general X there does not exist an algebra isomorphism
HH•(X ) ∼= grHH•(X ) (as in the above projective examples). Indeed, in our proof of the non-formality of
Hochschild cohomology for projective Calabi–Yau quotient orbifolds (Theorem 8.4) we observe an explicit
obstruction to the existence of such an algebra isomorphism. So, for example, if we consider a projective
symplectic quotient X with singular coarse space X/G then we have explicitly HH•(X ) � grHH•(X ).
We refer the reader to Section 8, and in particular the proof of Theorem 8.4, for more details.

We note that in the case of a projective symplectic quotient X we expect that the Hochschild cohomology
HH•(X ) is strongly related to the orbifold cohomology of X . The associated graded ring grHH•(X ) in
this case is expected to be the associated graded ring with respect to a natural “codimension” filtration on
orbifold cohomology. We discuss this topic in depth in Section 10.

3. Preliminaries

Here we fix notations and record some basic and well-known facts about fixed loci and resolutions which
we will use throughout.
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3.1. Notations. A variety is a quasi-projective scheme over Spec k. For any variety X we let O(X) denote
the algebra of global functions. For any variety map ϕ : X → Y we let ϕ̄ : OY → ϕ∗OX denote the
underlying map of sheaves of rings. By a vector bundle we will always mean a locally free sheaf of finite
rank.

For a subvariety i : Z ⊂ X and a quasi-coherent sheaf M on X we always let M |Z denote the pullback
i∗M on Z, as opposed to i−1M . At a geometric point p : Spec k̄ → X we let OX,p denote the corresponding
local ring of the base change Xk̄.

Suppose X is a variety with the action of a finite group G, which we always assume to be an action
by automorphisms of X over Spec k. By applying the contravariant functor Γ(X, ?), the action map G →
Autsch(X) produces a map Gop → Autalg(O(X)). Hence we get an action of the opposite group Gop on the
global sections of OX , and an action of G by precomposing with the inversion operation on G. Similarly,
for any G-stable open U we will get an action of G on Γ(U,OX). For a group G and G-representation V in
general we often take gv = g · v, for g ∈ G and v ∈ V .

Throughout X will be a smooth (quasi-projective) variety equipped with the action of a finite group G.
We assume that the characteristic of the base field k does not divide G and is greater than the dimension
of X. We will often use the fact that such an X admits a covering by affines {Ui}i such that each Ui is
preserved under the action of G. See [45, Appendix A] or [29].

To ease notation we omit the bullet from Ext and Hom notation, e.g. E xtY (M,N) := E xt•Y (M,N).

3.2. Fixed locus under group actions. We recall that a given variety Y is smooth (over k) if and only if
for any open affine subset U ⊂ Y and any closed embedding U → Ank with ideal of definition I , the sequence

0→ I /I 2 → ΩAn |U → ΩU → 0

is split exact. A closed subvariety Z → Y in a smooth variety Y is smooth if and only if the analogous
sequence

0→ IZ/I
2
Z → ΩY |Z → ΩZ → 0

is exact with ΩZ locally free.
For any g ∈ G we take Xg to be the subvariety in X fixed by g. This is the preimage of the graph of

g along ∆, Xg = ∆−1(graph(g)). Alternatively, it is the fiber product of X with itself over X2 along the
two maps ∆ : X → X2 and (1 × g)∆ : X → X2. For an arbitrary subset S ⊂ G we let XS denote the
intersection ∩g∈SXg in X.

Lemma 3.1. (i) Suppose U is any open in X with g(U) = U for some g ∈ G. Then Ug = Xg ∩ U .
(ii) Any point p fixed by a subgroup G′ ⊂ G has an affine neighborhood U with g(U) = U for all g ∈ G′.
(iii) When U is affine we have O(Ug) = O(U)/(f − gf)f∈O(U).
(iv) The points of Xg are all the points p : Spec k → X with g(p) = p.

Proof. (i) One simply shows that Xg ∩ U , along with its inclusion into U , has the universal property of the
fiber product. (ii) For an arbitrary affine neighborhood W of p we can take U = ∩g∈G′g(W ). (iii) First
note that Ug will be affine, so we need only check that the map O(U) → O(U)/(f − gf)f∈O(U) has the
appropriate universal property among maps to rings.

For any algebra map φ : O(U)→ B such that the two morphisms

O(U)⊗ O(U)
1⊗1
⇒
1⊗ḡ

O(U)⊗ O(U)
mult→ O(U)

φ→ B (3.1)

agree we will have φ(a(f − ḡ(f))) = 0 for all a, f ∈ O(U). Replace f with −gf = −ḡ−1(f) to see that
φ factors uniquely through O(U)/(f − gf). Conversely, for any map φ : O(U) → B factoring through the
quotient we will have that the two maps (3.1) agree. So O(U)/(f−gf) has the appropriate universal property,
Ug = Spec(O(U)/(f − gf)), and O(Ug) = O(U)/(f − gf). Claim (iv) follows by definition (alternatively,
one can reduce to the affine case by (ii) and (i) and apply (iii)). �

Lemma 3.2. For any subset S ⊂ G the fixed locus XS is smooth. In particular, at any geometric point p of

the fixed space XS there is an isomorphism between the completed symmetric algebra Ŝym((T ∗p )S) generated

by the 〈S〉-coinvariants of the tangent space at p and the complete local ring ÔXS ,p.
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Proof. By changing base we may assume k is algebraically closed. Note that XS = XH , where H is the
subgroup of G generated by S. So we may also assume S = G. For smoothness, it suffices to show now that

the complete local rings ÔXG,p at closed points p on the fixed locus are power series rings [44].
We may assume X is affine. For any such point p, with corresponding maximal ideal mp ⊂ O(X),

we have the exact sequence 0 → m2
p → mp → mp/m

2
p → 0 which admits a splitting over G, as k[G]

is semisimple. Any such splitting T ∗p = mp/m
2
p → mp gives compatible G-module algebra isomorphisms

Sym(T ∗p )/(T ∗p )n → OX,p/mnp for each n > 0, where G acts linearly on the domain.

Take Rn = Sym(T ∗p )/(T ∗p )n and let I = (f − gf)f∈O(X),g∈G to be the ideal of definition for XG. Let m̄p
be the maximal ideal for the point p in XG. Then we have

Sym((T ∗p )G)

((T ∗p )G)n
=

Rn
(v − gv)v∈T∗p ,g

=
Rn

(f − gf)f∈R,g

∼=→ O(X)

(I + mnp )
=

O(XG)

m̄np

and

Ŝym((T ∗p )G) ∼= lim←−
n

O(XG)/m̄np = ÔXG,p.

Thus XG is smooth, and the complete local rings are as described. �

3.3. Resolution property for stacks and the diagonal. For a stack Y we say Y has the resolution
property if any coherent sheaf M on Y admits a surjection E0 → M from a vector bundle on Y . The
following lemma is well-known. One can see for example the comments of the introduction to [57].

Lemma 3.3. Let Y be a quasi-projective variety equipped with the action of a finite group H. Then the
quotient stack [Y/H] has the resolution property.

Proof. As in the proof of [38, Proposition IV.1.5], one can show that Y admits a locally closed H-equivariant
embedding Y → Pn where H acts linearly on projective space. Linearity of the H-action implies that the
twist O(1) is an equivariant ample line bundle on Pn, and the pullback OY (1) is therefore an equivariant
ample line bundle on Y . Then by a slight variant of the usual argument (see e.g. [34, Corollary 5.18]) one
concludes that any equivariant coherent sheaf M on Y admits a equivariant surjection E0 → M from an
equivariant vector bundle E0 on Y . �

The resolution property allows us to derive the sheaf hom functor H om[Y/H] via resolutions by vector
bundles. Furthermore, when Y is smooth, as will be the case for us, these resolutions can be taken to be
bounded and the derived functor RH om[Y/H] takes values in the derived category of coherent sheaves on
[Y/H]. We will be applying this in the case Y = X ×X and H = G×G, so that [Y/H] ∼= X ×X . We also
include the following well-known result for the convenience of the reader.

Lemma 3.4. Let Y = [Y/H] be the quotient stack of a quasi-projective variety by a finite group action.
Then the diagonal ∆ : Y → Y × Y is finite, affine, and separated.

Proof. By [56, tag 04XD] it suffices to show that the second projection Y ×Y ×Y (Y × Y ) → Y × Y is
finite, affine, and separated. But one calculates directly that the pullback Y ×Y ×Y (Y × Y ) is isomorphic
to the product Y ×H, and that the projection Y ×H → Y × Y in this case is the coproduct of the graphs
(1× h)∆ : Y → Y × Y . This map is indeed finite, affine, and separated. �

4. The spectral sequence relating HH•(X ) to HH•(X )

In this section we introduce the smash product sheaf ∆∗OX o G on X2 and an equivariant dg algebra
E (X ) (defined up to quasi-isomorphism) for which the cohomology H•(E (X )) recovers the sheaf valued
Hochschild cohomology HH•(X ), as defined in (1.1). We apply results of [4] to find that E (X ) is formal, as
a complex of sheaves, and subsequently deduce degeneration of the local-to-global spectral sequence (1.2).

8
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4.1. The local algebras E (X ) and HH•(X ) on X. Using descent, the local equivariant Hochschild
cohomology and its relations to the Hochschild cohomology of X are explained as follows. Observe first that
sheaves F on X are the same as G-equivariant sheaves p∗F on X via the étale covering map p : X →X .
We have the following cartesian diagram:

X ×G

��

∆̃ // X ×X

��
X

∆ // X ×X ,

(4.1)

where ∆̃(x, g) = (x, gx), i.e., ∆g := ∆̃|X×{g} is the graph of g : X → X. Therefore, applying base change,
we have

(p∗ × p∗)RE ndX 2(∆∗OX ) = RE ndX2(∆̃∗(OX ⊗ OG)). (4.2)

We can identify ∆̃∗(OX ⊗OG) with the sheaf ∆∗OX oG (with OX2 action given by the usual OX -bimodule
structure).

We can therefore study the Hochschild cohomology of X via theG×G-equivariant algebra RE ndX2(∆∗OXo
G) in the derived category of quasi-coherent sheaves on X2 (by our assumptions, it is in fact in the
bounded derived category of coherent sheaves). In particular, HH•(X ) = RΓ(X 2,RE ndX 2(OX )) =
RΓ(X2,RE ndX2(∆∗OX oG))G×G = ExtX2(∆∗OX oG,∆∗OX oG)G×G. Note that we can rewrite this as
ExtX2(∆∗OX ,∆∗OX oG)G, where the G acts via the diagonal action.

On the derived level, we also have RE ndX2(∆∗OX o G) ∼= RH omX2(∆∗OX ,∆∗OX o G) o G in the
derived category of quasi-coherent sheaves on X2. Pushing forward under the projection π̃ : X2 → X×X/G
and taking invariants under {1} ×G yields the G-equivariant algebra

E (X ) := π̃∗RE ndX2(∆∗OX oG)G ∼= π̃∗RH omX2(∆∗OX ,∆∗OX oG) (4.3)

in the derived category of quasi-coherent sheaves on X ×X/G. Note that the map X → X/G is finite, and
hence the pushforward π̃∗ is underived.

Observe that the cohomology sheaves H•(E (X )) are scheme-theoretically supported on the image of the
diagonal map ∆ : X → X ×X/G. Moreover their restriction to the diagonal is ∆∗HH

•(X ). We obtain the
multiplicative spectral sequence (1.2).

Explicitly, the multiplication on E (X ) can be described as the sum over g, h ∈ G of the bilinear maps

π̃∗RH omX2(∆∗OX , (∆g)∗OX)× π̃∗RH omX2(∆∗OX , (∆h)∗OX)

→ π̃∗RH omX2(∆∗OX , (∆gh)∗OX) (4.4)

given by the identification π̃∗RH omX2(∆∗OX ,∆∗OX og) ∼= π̃∗RH omX2(∆∗OX oh,∆∗OX ogh) from the
diagonal action of g followed by composition. Taking cohomology sheaves and restricting to the diagonal
yields the same statements for HH•(X ).

Remark 4.1. We remark that the dg algebra E (X ) is intrinsic to X , as is the cohomology HH•(X ). As
noted above, sheaves on X ×X/G are equivalent to equivariant sheaves on X ×X/G, under the G-action
on the first factor. Hence E (X ) can be viewed as a sheaf of algebras on X ×X/G. Indeed, E (X ) is the
pushforward of the derived endomorphism ring RE ndX 2(∆∗OX ) along the finite map X 2 → X × X/G.
(Pushing forward from X to X/G in the second factor automatically takes {1}×G-invariants.) Since X/G
is the coarse space of X , this construction of E (X ) does not rely on the étale covering from X. Similarly,
HH•(X ) can be given as the pushforward of E xtX 2(∆∗OX ,∆∗OX ) to X ×X/G, or as the pushforward
to X via the first projection.

4.2. Formality and degeneration. By [4, Theorem 4.4] (see also Theorem 4.9), the object in the derived
category of quasi-coherent sheaves on X2,

(∆∗OX oG)⊗LOX2
(∆∗OX oG) (4.5)

is formal, i.e., quasi-isomorphic to the direct sum of its cohomology sheaves (there is no additional algebraic
structure that we consider here). The object in (4.5) is G×G-equivariant for the action of G×G on X2. For
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R
(2)
g : X ×X → X ×X the action map on this factor, R

(2)
g (x1, x2) = (x1, g · x2), we have the decomposition

(∆∗OX oG)⊗LOX2
(∆∗OX oG) ∼=

⊕
g∈G

(Rg)∗(∆∗OX ⊗LOX2
(∆∗OX oG)). (4.6)

Thus, the formality above is equivalent to that of the following object:

∆∗OX ⊗LOX2
(∆∗OX oG). (4.7)

Now we apply coherent duality. For every scheme Y , let prY :→ Spec k be the projection to a point. Let
D(F) := RH omY (F ,pr!

Y k). If Y is smooth, then the (shifted) dualizing complex pr!
Y k equals ωY [dimY ],

where ωY is the canonical line bundle. For f : Y → Z a proper map, Grothendieck–Serre duality provides a
quasi-isomorphism Rf∗RH omY (F , f !G) ∼= RH omZ(Rf∗F ,G). We then have

Rf∗DF := Rf∗RH om(F , f ! pr! k) ∼= RH om(Rf∗F ,pr! k) =: D(Rf∗F).

Thus Rf∗ preserves the class of self-dual objects under D.
Now let us specialize to the case Y = X,Z = X2. Let ∆g : X → X × X, the graph of g : X → X.

Then ∆∗OX o G =
⊕

g∈G(∆g)∗OX , with each term self-dual under D (note that R∆∗ = ∆∗ since ∆ is an

embedding). Therefore,

D(∆∗OX oG) ∼= ∆∗OX oG. (4.8)

Using the preceding identity in the second isomorphism, we obtain:

(∆∗OX ⊗LOX2
D(∆∗OX oG)) ∼= RH omX2(∆∗OX ,D(∆∗OX oG)) ∼= RH omX2(∆∗OX ,∆∗OX oG), (4.9)

with the first isomorphism following from adjunction, RH om(E ⊗F ,G ) ∼= RH om(E ,RH om(F ,G )).
Next, the cohomology sheaves of (4.5), which is just the sum of derived intersections of graphs of elements

g ∈ G, consists of vector bundles on the fixed loci Xg, which are smooth closed subvarieties of X. This
is well-known (see, e.g., [18, Proposition A.5]) and is also part of the statement of [4, Theorem 4.4]. Then
as above, the dual of each cohomology sheaf is also a sum of vector bundles, the duals to the ones before.
Therefore formality of (4.5) implies formality of its dual, RH omX2(∆∗OX ,∆∗OX oG), viewed as an object
in the derived category of quasi-coherent sheaves (not taking into account any algebraic structure).

Since the cohomology sheaves of E (X ) are canonically isomorphic to ∆∗HH
•(X ) (for ∆ : X → X×X/G

the diagonal map), we conclude that the spectral sequence (1.2) is quasi-isomorphic to the one computing
the hypercohomology of ∆∗HH

•(X ). The quasi-isomorphism induces an isomorphism of bigraded vector
spaces on the E2-page, and for the hypercohomology of ∆∗HH

•(X ), we have E2 = E∞. Thus the same
must be true for the spectral sequence computing the hypercohomology of E (X ).

5. Necessary relations between normal bundles and tangent sheaves

We cover some relations between the normal bundles for the fixed spaces Xg and the restrictions of the
tangent sheaf TX |Xg . These relations are required for our description of the cup product on the cohomology
HH•(X ). In particular, these relations ensure that our geometric description of the cup product is well-
defined.

5.1. Decompositions of the (co)tangent sheaf. For each g ∈ G we consider the restriction TX |Xg . Note
that g now acts by sheaf automorphisms on TX |Xg . Since Xg is a smooth embedded subvariety in X, we
have the exact sequence

0→ TXg → TX |Xg → NXg → 0.

We claim that this sequence identifies TXg with the g-invariants in TX |Xg , i.e. the kernel of the endomorphism
(1− g) : TX |Xg → TX |Xg . Hence NXg is canonically identified with the image (1− g)TX |Xg . This fact can
readily be checked complete locally, as we do below. It follows that we have canonical decompositions

TX |Xg ∼= TXg ⊕NXg and T polyX |Xg ∼= T polyXg ⊗OXg (∧•OXgNXg ).

In particular, we have a canonical sheaf projection

pg : T polyX |Xg → T polyXg ⊗OXg det(NXg ).

(Cf. [2] and [47, Sect. 1.4].) There is a similar decomposition for the cotangent sheaf ΩX |Xg ∼= ΩXg ⊕N∨Xg .
10



Since we would like to make similar complete local reductions throughout the remainder of this document,
let us provide an argument for the above claim in detail. The reader will not be harmed by skipping this on
a first reading and proceeding immediately to Section 5.2.

We have the exact sequence 0→ N∨Xg → ΩX |Xg → ΩXg → 0, which is locally split because ΩXg is locally
free. Since g has finite order, ΩX |Xg splits into eigensheaves Ω1 ⊕ Ω⊥1 , where Ω1 is the trivial eigensheaf
for the action of g and Ω⊥1 is the sum of all non-trivial eigensheaves. Since the projection ΩX |Xg → ΩXg is
g-linear, we have that Ω⊥1 is in the kernel. Hence we have the proposed splitting ΩX |Xg ∼= ΩXg ⊕ N∨Xg if
and only if ΩXg and Ω1 have the same rank. This property can be checked locally, or complete locally.

At a geometric point p of Xg we take a g-linear section T ∗p → mp, where mp ⊂ OX,p is the maximal ideal,
and let V denote the image of this section. Note that V is a subrepresentation in OX,p for the action of the
semisimple operator g. We are free to take a basis {x1, . . . , xn} of g-eigenvectors for V .

If k is already algebraically closed, the elements di = dxi provide a basis of g-eigenvectors for ΩX |Xg in
an affine neighborhood around p. In general we may work complete locally to obtain a g-linear isomorphism

ÔXg,p ⊗ V
∼=−→ ΩX̂p |X̂gp , f ⊗ xi 7→ fdi. (5.1)

Dually, we have a g-linear isomorphism

ÔXg,p ⊗ V ∗
∼=−→ TX̂p |X̂gp , f ⊗ x∗i 7→ fd∨i (5.2)

where d∨i : ΩX̂p → ÔX,p is the dual function to di.

From the above isomorphisms we see that the invariants Ω1 and T1 are both of rank dim(V g) around p.
From Lemma 3.2 we see that ΩXg is of rank dim(V g) = dim(Xg)|p around p as well. Therefore

rank(ΩXg ) = rank(Ω1), rank(Ω⊥1 ) = rank(N∨Xg ), rank(TXg ) = rank(T1), rank(T⊥1 ) = rank(NXg ).

This implies that the inclusions TXg → TX |Xg is an isomorphism onto the invariants and, since (1−g)TX |Xg =
T⊥1 , the projection TX |Xg → NXg provides an isomorphism from the perpendicular

(1− g)TX |Xg ∼= NXg . (5.3)

A similar result holds for the cotangent sheaf, and hence we have the proposed splittings.

5.2. Codimensions and components of the fixed spaces. Recall that the codimension of a smooth
subvariety Y ⊂ X is a section of the sheaf of integers on Y , i.e. a continuous function codim(Y ) : Y → Z.
For sections of the sheaf of integers over a topological space we write s1 < s2, s1 ≤ s2, etc. if the comparison
holds pointwise. For any subspace Z ⊂ Y we can restrict to get a section codim(Y )|Z : Z → Y → Z of the
sheaf of integers over Z. Note that when Z is connected codim(Y )|Z is a constant.

Lemma 5.1. For any g, h ∈ G, and component Y of Xg ∩Xh, we have

codim(Xgh)|Y ≤ codim(Xg ∩Xh)|Y ≤ codim(Xg)|Y + codim(Xh)|Y .
If, additionally, codim(Xgh)|Y = codim(Xg)|Y + codim(Xh)|Y then Y is also a component of Xgh.

Proof. The first inequality follows simply from the inclusion Xg ∩Xh ⊂ Xgh. The second inequality follows
from the fact that we have the surjective map of vector bundles

N∨Xg |(Xg∩Xh) ⊕N∨Xh |(Xg∩Xh) → N∨Xg∩Xh .

Let Z be a component of Xgh containing Y . If we have an equality codim(Xgh)|Y = codim(Xg ∩Xh)|Y
then, Y is a codimension 0 smooth embedded subvariety in Z. Since any component of smooth variety is
irreducible this implies Y = Z. That is to say Y is also a component of the intersection. Since we have the
implication

codim(Xgh)|Y = codim(Xg)|Y + codim(Xh)|Y
⇒ codim(Xgh)|Y = codim(Xg ∩Xh)|Y

the first inequality also implies that Y is a component of Xgh. �

Below we describe the vanishing of the cup product on cohomology in terms of the inequality

codim(Xgh)|Y ≤ codim(Xg)|Y + codim(Xh)|Y .
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5.3. Relations between the normal bundles. Consider g, h ∈ G and fix a component Y of the intersec-
tion Xg ∩Xh. We then have the canonical map

κ := κ(g, h, Y ) : NXg |Y ⊕NXh |Y → NXgh |Y (5.4)

whose restriction to each NXτ |Y , for τ = g, h, is the inclusion NXτ |Y → TX |Y determined by the splitting
of Section 5.1 composed with the standard projection TX |Y → NXgh |Y .

Lemma 5.2. Suppose Y is a component of the intersection Xg ∩Xh. The following are equivalent:

(i) Y is a shared component with Xgh and the intersection of Xg and Xh is transverse along Y .
(ii) codim(Xgh)|Y = codim(Xg)|Y + codim(Xh)|Y .
(iii) The map κ : NXg |Y ⊕NXh |Y → NXgh of (5.4) is an isomorphism.
(iv) NXg |Y and NXh |Y have trivial intersection in TX |Y .

This is a geometric analog of [52, Lemma 2.1]. We prove [52, Lemma 2.1] in finite characteristic in the
appendix, Lemma B.2.

Proof. (i)⇔(ii): If either (i) or (ii) holds Y is a shared component with Xgh. We consider the map of vector
bundles TXg |Y ⊕TXh |Y → TX |Y . The kernel of this map is T(Xg∩Xh)|Y = TXgh |Y , and one can check locally
that the cokernel is a vector bundle on Y . By counting ranks, we see that transversality holds if and only if
we have an equality

rank(TXgh)|Y = rank(TXg )|Y + rank(TXh)|Y − rank(TX)|Y .

This, in turn, occurs if and only if

codim(Xgh)|Y = rank(TX)|Y − rank(TXgh)|Y
= rank(TX)|Y − (rank(TXg )|Y + rank(TXh)− rank(TX)|Y )
= rank(TX)|Y − rank(TXg )|Y + rank(TX)|Y − rank(TXh)|Y
= codim(Xg)|Y + codim(Xh)|Y .

Hence we have the desired equivalence between (i) and (ii).
(ii)⇔(iv): For (iv), the vanishing of the intersection in TX |Y is equivalent to the vanishing of the kernel

K in the sequence

0→ K → NXg |Y ⊕NXh |Y → TX |Y .

This property can be checked complete locally at geometric points p of Y , and hence can be reduced to the
condition Lemma B.2 (iii). The equivalent condition of Lemma B.2 (ii) then assures as that at each such
p the proposed relation of codimensions holds. So we see that (iv) implies (ii), and we similarly find the
converse implication.

(iii)⇔(iv): The fact that (iii) implies (iv) is obvious, as the map κ factors through TX |Y . Suppose now
that (iv) holds, i.e. that the images of the normal bundles NXg |Y and NXh |Y intersect trivially in the tangent
sheaf. Note that the image of NXg |Y ⊕NXh |Y in TX |Y lies in (1− gh)TX |Y if and only if the composition
NXg |Y ⊕ NXh |Y → TX |Y → TXgh |Y vanishes. Vanishing of this composition can be checked complete
locally, and hence the inclusion NXg |Y + NXh ⊂ (1 − gh)TX |Y can be checked complete locally. Vanishing
of the intersection is therefore reduced to the condition of Lemma B.2 (iii), and the equivalent condition of
Lemma B.2 (ii) implies that NXg |Y +NXh |Y = (1− gh)TX |Y . Since these normal bundles intersect trivially
in TX |Y the sum NXg |Y +NXh remains direct. Finally, since (1− gh)TX |Y is sent isomorphically to NXgh |Y
under the projection from TX |Y , we see that κ is an isomorphism. �

6. The Hochschild cohomology HH•(X ) as an equivariant sheaf: Following [2]

We recall an argument of Anno [2], which produces a canonical isomorphism of equivariant sheaves

HH•(X ) ∼= ⊕g∈GT polyXg ⊗OX det(NXg ).
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Note that the equivariant structure on the sum ⊕gT polyXg ⊗OX det(NXg ) is induced by the isomorphisms

h : Xg → Xhgh−1

. To be precise, these isomorphisms fit into diagrams

X
h // X

Xg

incl

OO

h // Xhgh−1

,

incl

OO

and we have induced isomorphisms h∗TXg ∼= TXhgh−1 and h∗NXg ∼= NXhgh−1 via conjugation by h, which
produce the equivariant structure maps

h∗(T
poly
Xg ⊗OX det(NXg )) ∼= T poly

Xhgh−1 ⊗OX det(NXhgh−1 ).

6.1. The Hochschild cohomology HH•(X ) as an equivariant sheaf. For any g ∈ G we have the graph
∆g : X → X × X of g and extensions E xtX2(∆∗OX , (∆g)∗OX). We consider the projection (∆g)∗OX →
∆∗OXg , which is induced by the projection OX → OXg over X and the equality (∆g)∗OXg = ∆∗OXg . This
provides a map on cohomology

E xtX2(∆∗OX , (∆g)∗OX)→ E xtX2(∆∗OX ,∆∗OXg ) = E xtX2(∆∗OX ,∆∗OX)|Xg = T polyX |Xg .
The identification E xtX2(∆∗OX ,∆∗OXg ) = E xtX2(∆∗OX ,∆∗OX)|Xg employed above is induced by the

affine local, natural, maps

ExtO(U2)(O(U),O(U))⊗O(U) O(Ug)→ H•
(
REndO(U2)(O(U))⊗O(U) O(Ug)

)
= H•

(
RHomO(U2)(O(U),O(Ug)

)
= ExtO(U2)(O(U),O(Ug)).

These local maps are isomorphisms since the cohomology ExtO(U2)(O(U),O(U)) is flat over O(U). Indeed,

we have the classical HKR algebra isomorphism HH•(X) = ExtX2(∆∗OX ,∆∗OX) = T polyX induced by the

identification HH1(X) = TX .
We now have the composite map

Ag : E xtX2(∆∗OX , (∆g)∗OX)→ T polyX |Xg
pg−→ T polyXg ⊗OX det(NXg ),

where pg is as in Section 5.1. We recall that the determinant of the normal bundle det(NXg ) here lies in
cohomological degree codim(Xg). It is shown in [2] that each Ag is an isomorphism.

Proposition 6.1 ([2, Proposition 5]). For each g ∈ G, the map Ag is an isomorphism of sheaves (supported)
on Xg. Hence we have a canonical isomorphism

A : HH•(X )
∼=→
⊕
g∈G

T polyXg ⊗OX det(NXg ).

of G-equivariant sheaves (supported) on X.

We provide the proof for the reader’s convenience.

Proof. As noted in [2], the fact that Ag is an isomorphism can be checked complete locally at geometric
points of Xg = SuppE xtX2(∆∗OX , (∆g)∗OX).

At any g-invariant geometric point p of X, with corresponding maximal ideal mp ⊂ OX,p, we choose a

g-linear section mp/m
2
p → mp to deduce an isomorphism ÔX,p ∼= Sym(mp/m

2
p) of g-algebras. Hence by

considering the complete localization (̂Ag)p we reduce to the affine case, where Ag is well-known to be an

isomorphism (see [2] or [47, Section 4.3]).
The fact that the total isomorphism A is G-equivariant follows from the fact that the two constituent

maps

E xtX2(∆∗OX ,⊕g(∆g)∗OX)→ E xtX2(∆∗OX ,⊕g∆∗OXg ) = ⊕gT polyX |Xg
and ∐

g

pg : ⊕gT polyX |Xg → ⊕gT polyXg ⊗OX det(NXg )

are both G-equivariant (cf. [47, Lemma 4.3.2]). �
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As we proceed we will simply write an equality HH•(X ) =
⊕

g∈G T
poly
Xg ⊗OX det(NXg ), by abuse of nota-

tion. Via degeneration of the local-to-global spectral sequence of Section 4 we recover the linear identification
of Arinkin, Căldăraru, and Hablicsek.

Corollary 6.2 ([4]). For X a smooth quasi-projective variety, G a finite group acting on X, and X = [X/G],
there is an isomorphism of vector spaces

grHH•(X ) = H•
(
X,⊕g∈G T polyXg ⊗OX det(NXg )

)G
.

7. The cup product on HH•(X )

We employ the identification A : HH•(X ) ∼= ⊕gT polyXg ⊗OX det(NXg ) of Proposition 6.1, in conjunction
with work of [52], in order to give a complete description of the cup product on local Hochschild cohomology.

We prove below that the equivariant subsheaf SA(X ) := ⊕g∈G det(NXg ) in HH•(X ) is an equivariant
subalgebra. As argued in the introduction, this subalgebra accounts for the points of X which admit
automorphisms. It is also shown that the Hochschild cohomology of X is generated by the polyvector fields

T polyX ⊂ HH•(X ) and this distinguished subalgebra SA(X ).

7.1. Technical points regarding complete localization and shrinking G. We first recall some techni-
cal information which will be useful in our analysis. Let us consider a subgroupG′ inG, and the corresponding
Hochschild cohomologies π̃∗E xtX2(∆∗OX ,∆∗OXoG′) and π̃∗E xtX2(∆∗OX ,∆∗OXoG) as in Section 4. The
split inclusion i : ∆∗OX oG′ → ∆∗OX oG induces an inclusion

i∗ : π̃∗E xtX2(∆∗OX ,∆∗OX oG′)→ π̃∗E xtX2(∆∗OX ,∆∗OX oG),

which we claim is an algebra map.
In the ring theoretic setting, the fact that for anyG-algebra R the inclusionHH•(R,RoG′)→ HH•(R,Ro

G) is an algebra map is clear. Indeed, this is already clear at the level of the dg algebras of Hochschild cochains
C•(R,R o G′) → C•(R,R o G). Hence we see that i∗ is an algebra map by restricting to G-stable affines,
as desired.

We also recall that for coherent sheaves M and N on a smooth variety Y , and any geometric point p of Y ,
the complete localization of the sheaf-extensions is canonically identified with the extensions of the complete

localizations M̂p and N̂p,

E xtY (M,N)∧p
∼=

canon
ExtÔY,p

(M̂p, N̂p).

(See e.g. [34].) To be clear, our completion at p here is the completion of the pullback to Yk̄. This canonical

isomorphism is one of algebras when M = N , and one of ExtÔY,p
(N̂p, N̂p)− ExtÔY,p

(M̂p, M̂p)-bimodules in

general.
Below, when we analyze the product on Hochschild cohomology complete locally at geometric points p on

the fixed spaces, we must first replace G with the stabilizer Gp of that point. This step is necessary so that

G actually acts on the completion ÔX,p. The above argument assures us that there is no harm in making
such local replacements.

7.2. The action of T polyX = HH•(X )e and generation. For the moment, let us view the Hochschild
cohomology HH•(X ) as a sheaf on X × X/G which is supported on the diagonal, allowing us to iden-
tify it with the cohomology of the dg algebra E (X ) of (4.4). We recall that the self-extension algebra
E xtX2(∆∗OXoG,∆∗OXoG) is an OX2-algebra which is supported on the union

⋃
g∈G graph(g), and hence

the pushforward to X×X/G is supported on the diagonal X ⊂ X×X/G. In particular, the algebra structure
map

OX×X/G → HH•(X )

factors through the projection OX×X/G → OX , where we abuse notation to identify OX with its pushforward
to X ×X/G. So we see that HH•(X ) is naturally an OX -algebra. This is also clear from the description of
the multiplication on HH•(X ) given at (4.4). (The point here is that OX is in the center of HH•(X ).)

By checking locally on G-stable affines, one readily verifies that the algebra

HH•(X ) =
⊕

g∈G
T polyXg ⊗OX det(NXg )
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is graded by G in the obvious way. That is to say, the multiplication on cohomology restricts to a map

HH•(X )h ⊗OX HH
•(X )g → HH•(X )hg

for each g, h ∈ G, where HH•(X )τ is the summand T polyXτ ⊗OX det(NXτ ). In particular, HH•(X )e is a
subalgebra in the local Hochschild cohomology. The following lemma is easily seen by checking over G-stable
affines.

Lemma 7.1. The identification T polyX = HH•(X )e, from Proposition 6.1, is one of equivariant sheaves of
algebras.

Let us consider the case where h, or g, is the identity. Here we have the inclusion det(NXg ) ⊂ HH•(X )g
and the identification T polyX = HH•(X )e, from which we restrict the multiplication to get a map

T polyX ⊗OX det(NXg )→ T polyXg ⊗OX det(NXg ).

Note that for any g ∈ G we have an algebra projection

T polyX → T polyX |Xg → T polyXg (7.1)

given by the counit of the pullback functor with the algebra map T polyX |Xg → T polyXg induced by the spitting
TX |Xg ∼= TXg ⊕NXg of Section 5.1.

Theorem 7.2. The polyvector fields T polyX are a (graded) central subalgebra in local Hochschild cohomology,

so that HH•(X ) is a T polyX -algebra. Furthermore, for each g ∈ G, the restriction of the multiplication

HH•(X )e ⊗OX det(NXg ) = T polyX ⊗OX det(NXg )→ T polyXg ⊗OX det(NXg ) = HH•(X )g

is the tensor product of the surjection (7.1) with the identity on det(NXg ).

Proof. The fact that the multiplication factors through the reduction T polyX → T polyX |Xg , in the first coordi-
nate, simply follows from the fact that the target sheaf is supported on Xg. Recall that the kernel of the

projection T polyX |Xg → T polyXg is the ideal I generated by NXg = (1− g)TX |Xg . So we seek to show first that

the multiplication map T polyX |Xg ⊗OX det(NXg )→ T polyXg ⊗OX det(NXg ) vanishes on I ⊗det(NXg ), and that
the restriction of the multiplication

T polyXg ⊗OX det(NXg )
incl−→ T polyX |Xg ⊗OX det(NXg )

mult−→ T polyXg ⊗OX det(NXg )

is the identity map. Both of these properties can be checked complete locally at points on Xg. Hence we
may reduce to the affine case, as in the proof of Proposition 6.1. Both the vanishing of the product on
I ⊗OX det(NXg ) and the fact that the above composite is the identity are understood completely in the

affine case [2, 52]. Centrality of T polyX in HH•(X ) also follows by a complete local reduction to the linear
setting. �

Remark 7.3. Theorem 7.2 can also be deduced from the fact that the cohomology HH•(X ) is a braided
commutative algebra in the category of Yetter-Drinfeld modules for G. See [46].

As an immediate corollary to Theorem 7.2 one finds

Corollary 7.4. As a T polyX -algebra, the Hochschild cohomology HH•(X ) is generated by the determinants
of the normal bundles det(NXg ).

7.3. The equivariant subalgebra SA(X ). Recall that, since Xg is sent isomorphically to Xhgh−1

via the

action of h on X, the codimensions of Xg and Xhgh−1

agree. Rather, codim(Xg)|p = codim(Xhgh−1

)|h(p) at
each point p ∈ Xg. Hence we see that the sum

SA(X ) :=
⊕
g∈G

det(NXg )

forms an equivariant subsheaf in HH•(X ). Since each product det(NXg )⊗OX det(NXh) is supported on the
intersection Xg ∩Xh, one can describe the multiplication

det(NXg )⊗OX det(NXh)→ HH•(X )gh

by considering its restriction to the components of the intersection.
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Theorem 7.5. The equivariant subsheaf SA(X ) is a subalgebra in HH•(X ). The multiplication

mSA : det(NXg )⊗OX det(NXh)→ det(NXgh)

is non-vanishing only on those components Y of the intersection Xg ∩Xh which are shared components with
Xgh, and along which Xg and Xh intersect transversely. On any such components Y , the multiplication
mSA is the isomorphism induced by the canonical splitting κ : NXg |Y ⊕ NXh |Y ∼= NXgh |Y of Lemma 5.2
(iii), i.e. mSA = det(κ).

Proof. Consider a geometric point p in the intersection. By Lemma 5.1 we have

codim(Xgh)|p ≤ codim(Xg)|p + codim(Xh)|p (7.2)

with equality holding if and only if the component Y containing p is shared with Xgh and the intersection
is transverse along Y . So we are claiming, first, that multiplication vanishes at each point p at which (7.2)

is a strict inequality. At any such point p we consider the complete localization ̂(m|det(NXg )⊗OX
det(N

Xh
))p

to reduce to the affine case, where the result is known to hold [52, Proposition 2.5].
We note that the equality codim(Xgh)|p = codim(Xg)|p + codim(Xh)|p implies an equality of cohomo-

logical degrees

deg
(

det(NXgh)
)
|p + deg

(
det(NXh)

)
|p = deg

(
det(NXgh)

)
|p

in Hochschild cohomology. Since the cup product on HH•(X ) is graded with respect to the cohomological
degree, the vanishing result we have just established implies that the product on the Hochschild cohomology
restricts to a product mSA on the equivariant subsheaf SA(X ). Hence we see that SA(X ) is an equivariant
subalgebra in HH•(X ).

Now, at any point p at which the inequality (7.2) is an equality, we again reduce to the affine case

via a localization (̂mSA)
p

to see that the multiplication is in fact induced by the canonical decomposition

NXg |Y ⊕NXh |Y ∼= NXgh |Y of Lemma 5.2 (see the proof of [52, Proposition 2.5]). �

Remark 7.6. Our algebra SA(X ) is a sheaf-theoretic variant of the “volume subalgebra” Avol of [52].

As remarked in the introduction, we can view SA(X ) as a sheaf on X , or X ×X/G. However, we are
not certain that SA(X ) is an invariant of X as an orbifold. In particular, it is not immediately obvious
how one should define this sheaf of algebras for orbifolds which are not global quotients.

Question 7.7. Does the algebra SA(X ), viewed as a sheaf of algebras on X , have a natural interpretation
as an orbifold invariant?

7.4. Global descriptions. One can readily combine Theorems 7.2 and 7.5 to obtain a complete description
of the algebra structure for HH•(X ), as in Theorem 1.1 of the introduction. We observe what degeneration
of the spectral sequence of Section 4.2 gives us, when paired with Theorems 7.2 and 7.5.

Corollary 7.8. The linear identification

grHH•(X ) = H•
(
X,⊕g∈G T polyXg ⊗OX det(NXg )

)G
.

of Corollary 6.2 is an identification of graded algebras, where ⊕g∈G T polyXg ⊗OX det(NXg ) has the equivariant
algebra structure described in Theorems 7.2 and 7.5.

One can also see from Theorems 7.2/7.5 that the only obstruction to the Hochschild cohomology being
commutative is the non-commutativity of G. Namely, there is an inequality of components HH•(X )gh
and HH•(X )hg for non-abelian G. When G is abelian, these two components agree and also det(NXgh) =
det(NXhg ). Hence the generating subalgebra SA(X ) is commutative in this case, and it follows that entire
cohomology HH•(X ) is commutative as well. We record this observation.

Corollary 7.9. When G is abelian, the cohomology HH•(X ) is (graded) commutative.
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7.5. An alternate expression of the cup product. One can alternatively introduce a “product” on local
Hochschild cohomology via the composite

HH•(X )g ⊗OX HH
•(X )h // (T polyX |Xg )⊗OX (T polyX |Xh) = T polyX ⊗OX T

poly
X |(Xg∩Xh)

mult

rr
T polyX |(Xg∩Xh) Pgh

// T poly
Xgh
⊗OX det(NXgh) = HH•(X )gh,

(7.3)

where the first map is as in Section 6.1 and Pgh is the projection pgh on those components Y of Xg∩Xh which
are shared components with Xgh, and vanishes elsewhere. One can in fact argue that the above sequence does
provide a well-defined, associative, algebra structure which agrees with the cup product. Indeed, one can
make a direct comparison between the two products via the equivalent conditions (iii) and (iv) of Lemma 5.2.
The expression of the cup product via (7.3) provides a certain (re)reading of the last sentence of [2], and an
alternate expression of [2, Theorem 3].

8. Formality and projective Calabi–Yau quotients

We say the Hochschild cohomology of a Deligne–Mumford stack X is formal, as an algebra, if there is a
sequence of A∞-quasi-isomorphisms

E xtX 2(∆∗OX ,∆∗OX )
∼−→M1 ← · · · →Mr

∼←− RH omX 2(∆∗OX ,∆∗OX ),

where the Mi are A∞-algebras in the category of sheaves of vector spaces (not quasi-coherent sheaves!)1 on
(the small étale site of) X , with the tensor product over the base field. Note that the first term E xtX 2 is
assigned zero higher A∞-structures, by definition (it is an ordinary algebra).

Formality for a smooth variety in characteristic zero was essentially claimed by Kontsevich [39, Claim
8.4], and proved by Tamarkin for an affine space [55]. Tamarkin’s proof was extended to the global al-
gebraic setting by Calaque and Van den Bergh [12]. Note that in the preceding references, instead of
RH omX 2(∆∗OX ,∆∗OX ), one uses the polydifferential version of the Hochschild cochain complex, called
Dpoly, but this was shown to be equivalent in [63], [11, Proposition 11.1]. We show here that this formality
result does not extend to Deligne–Mumford stacks in general. Namely, we prove that certain Calabi–Yau
orbifolds are not formal. Here symplectic varieties feature prominently, in examples and more in depth
discussions, and we continue an analysis of symplectic quotient orbifolds in subsequent sections.

Remark 8.1. One can adopt a weaker version of formality, which proposes that a sheaf of dg algebras R
on X is formal if there is an isomorphism of algebras H•(R) ∼= R in the derived category of sheaves of
vector spaces on X (cf. [13]). Our method of proof shows that this weaker form of formality for Hochschild
cohomology is also obstructed in general.

Remark 8.2. The formality results of [39, 55, 13, 12] are much stronger than what is stated here. In
particular, the authors establish formality of Hochschild cohomology as a G∞-algebra.

8.1. Failure of formality for projective Calabi–Yau quotients. Let us consider a Calabi–Yau trian-
gulated category D over k of dimension d [37]. So, D is a Hom-finite triangulated category for which the
shift Σd provides a Serre functor. Serre duality in this case can be expressed via a global, non-degenerate,
degree −d, functorial pairing

tra,b : ExtD(a, b)× ExtD(b, a)→ k,

for arbitrary objects a, b in D , and ExtD(a, b) = ⊕n∈ZHomD(a,Σnb). In particular, each self-extension
algebra ExtD(a, a) is a graded Frobenius algebra.

For Z a proper Calabi–Yau Deligne–Mumford stack, the derived category Db(Coh(Z )) is a Calabi–
Yau category of dimension d = dim(Z ). We can construct examples of such projective Calabi–Yau Z as
quotient stacks as follows: Consider a projective Calabi–Yau variety Z equipped with an action of a finite
group Π such that ωZ ∼= OZ as a Π-equivariant sheaf. In this case the Grothendieck-Serre duality maps
ExtiZ(M,N) → Extd−iZ (N,M)∗, for Π-equivariant M and N , are Π-linear, by functoriality. Since taking

1As observed by Căldăraru, RH omX 2 (∆∗OX ,∆∗OX ) is not commutative in the derived category of quasi-coherent

sheaves, whereas Ext algebras are, so it can only be formal in the category of sheaves of vector spaces [13, Remark 1.7].
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Π-invariants gives equivariant maps ExtiZ(M,N)Π = Exti[Z/Π](M,N), we may take Π-invariants of Serre

duality for Z to obtain Serre duality for Z = [Z/Π]. Hence the quotient Z = [Z/Π] is Calabi–Yau.
We may consider specifically Z a projective symplectic variety with Π acting by symplectic automorphisms.

In this case Π-invariance of the symplectic form implies that the isomorphism OZ ∼= ωZ provided by the
corresponding symplectic volume form is an equivariant isomorphism.

Since the product Z = X ×X of a Calabi–Yau Deligne–Mumford stack X with itself is again Calabi–
Yau, we find the following result.

Lemma 8.3. If X is a Deligne–Mumford stack which is proper and Calabi–Yau, then the Hochschild coho-
mology HH•(X ) is a graded Frobenius algebra.

We can now present the desired result.

Theorem 8.4. Suppose X is a projective variety and that G is a finite subgroup in Aut(X). Suppose
additionally that the action of G is not free, and that the quotient X = [X/G] is Calabi–Yau. Then the
Hochschild cohomology of X is not formal.

Proof. In this case HH•(X ) is Frobenius, by the previous lemma. The fact that G does not act freely
implies that we have nonempty fixed spaces Xg of positive codimension. Take E = E xtX 2(∆∗OX ,∆∗OX )
and R = RH omX 2(∆∗OX ,∆∗OX ).

Let us suppose, by way of contradiction, that there is an isomorphism E → R of algebras in the derived
category of sheaves of vector spaces on X . Then we get an induced isomorphism on derived global sections,
and subsequent algebra isomorphisms on cohomology

H•(X ,E ) = H•(X,HH•(X ))G ∼= HH•(X ). (8.1)

(The first equality in the above equation follows from the material of Section 4.) We claim, however, that
H•(X,HH•(X))G admits no graded Frobenius structure, and hence that no such isomorphism (8.1) exists.

Indeed, such a graded Frobenius structure would be given by a linear map from top degree

ftop :
(
H•(X,HH•(X ))G

)2dim(X) → k

so that the Frobenius form is the product composed with this function, 〈a, b〉 = ftop(ab). But now, by our
explicit description of the cohomology HH•(X ) given in Theorem 7.5 (and also Theorem 7.2), we see that
H•(X,HH•(X ))G admits a natural algebra grading by codimensions, and the top degree occurs only in the
codimension 0 component (

H•(X,HH•(X ))G
)2dim(X)

= Hdim(X)(X,ω∨X)G.

It follows that any such pairing on H•(X,HH•(X ))G necessarily vanishes when restricted to any positive
codimension component, and must therefore be degenerate, which is a contradiction. So H•(X,HH•(X ))G

admits no graded Frobenius structure, no such algebra isomorphism (8.1) exists, and the Hochschild coho-
mology of X cannot be formal. �

Of course, there exist many X satisfying the hypotheses of Theorem 8.4. We can consider symplectic
quotients for example. More specifically, one can consider Kummer varieties, which are constructed as
quotients of abelian surfaces by the Z/2Z inversion action. There are 16 fixed points in this instance, and
the quotient scheme has 16 corresponding isolated singularities.

Corollary 8.5. Let X be a projective symplectic variety, and let G ⊂ Sp(X) be a finite subgroup for which
the corresponding action is not free. Then the Hochschild cohomology of the orbifold quotient X is not
formal.

Remark 8.6. It seems likely that the conclusion of Theorem 8.4 holds for arbitrary proper, Calabi-Yau,
Deligne-Mumford stacks Z with singular coarse space Z.

One observes that we have actually proved the following.

Corollary 8.7. There exist smooth Deligne–Mumford stacks for which the Hochschild cohomology is not
formal.
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8.2. Alternate notions of formality and derived equivalence. Let us say that the Hochschild cohomol-
ogy for X is β-formal if the higher A∞-structure on the vector space valued cohomology HH•(X ) vanishes.
This is equivalent to the statement that there exists a homotopy isomorphism, or A∞ quasi-isomorphism,
HH•(X )

∼→ RHomX 2(∆∗OX ,∆∗OX ).
It is apparent from our above examples that the usual formality property for a stack X is not a derived

invariant. Indeed, in cases where the coarse space X/G of a projective symplectic global quotient X admits
a crepant resolution Y → X/G of the kind studied by Bridgeland–King–Reid [10], they construct a derived
equivalence Db(X ) ∼= Db(Y ) via an explicit integral transform. In this case, X is as in Corollary 8.5, and
hence the Hochschild cohomology is not formal. However, formality of Hochschild cohomology for smooth
varieties tells us that the Hochschild cohomology of Y is formal.

On the other hand, β-formality is a derived invariant (see [16, 48, 8]). This β-formality is implied by
usual formality for affine varieties, but the relationship between the two notions of formality is unclear in
general. Indeed, by [12] the Hochschild cohomology of a smooth variety Y is the A∞-algebra given as the

cohomology of the derived global sections RΓ•(Y, T polyY ), which is not a priori formal as a dg algebra in the
category of vector spaces. So, for example, we do not know at this moment if an affine symplectic quotient
X is β-formal even though any crepant resolution Y of the coarse space is formal in the usual sense. This
is because such a crepant resolution will be non-affine in general, and hence β-formality is not known for Y .

9. Hochschild cohomology for Symplectic quotients

We fix k = C in this section. Here we consider a symplectic variety X (over C) on which a finite group
G acts by symplectic automorphisms. We explain how the local Hochschild cohomology of the quotient
X = [X/G] simplifies in this case. Our presentation involves a correction to an oft-repeated error in the
literature (see Section 9.4 and Appendix C). In Section 10 we use our description of Hochschild cohomology to
propose explicit relations between Hochschild cohomology and orbifold cohomology for symplectic quotients.

9.1. Generalities for symplectic quotients. Let X be symplectic and G be a finite group acting on X
via symplectic automorphisms. We let ω ∈ Γ(X,Ω2

X) be the symplectic form and π = ω−1 ∈ Γ(X,T 2
X)

be the corresponding Poisson structure. We note that the fixed spaces for the G action are symplectic
subvarieties in X, and we denote the corresponding symplectic form on Xg by ωg for each g ∈ G. We fix
dg = 1

2codim(Xg) and d = 1
2 dim(X).

Via the decomposition ΩX |Xg = ΩXg ⊕ Ω⊥Xg , where Ω⊥Xg is the sum of all nontrivial g-eigensheaves, we
decompose the form as ω|Xg = ωg +ω⊥g with ωg a section of Ω2

Xg and ω⊥g a section of Ω⊥Xg ∧Ω⊥Xg . Note that

the mixed term ωmixedg over Γ(Xg,ΩXg ∧ Ω⊥Xg ) vanishes by g-invariance of the restriction ω|Xg . Hence the

volume form is the product (ω|Xg )d =
(
d
dg

)
ω
d−dg
g (ω⊥g )dg , and we have an isomorphism

Ω
2(d−dg)
Xg ⊗OX det(N∨Xg )→ Ω2d

X |Xg , ω(d−dg)
g ⊗ (ω⊥g )dg 7→

(
d

dg

)−1

(ω|Xg )d (9.1)

given by the multiplication on ΩpolyX |Xg . Since the respective volume forms trivialize Ω
2(d−dg)
Xg and Ω2d

X |Xg ,
the isomorphism (9.1) implies that det(N∨Xg ) is globally trivial and generated by the relative volume form
(ω⊥g )dg . A similar analysis holds for the tangent sheaf, with det(NXg ) trivialized by the relative dual volume

form (π⊥g )dg . We normalize and take

ψg :=
1

dg!
(π⊥g )dg .

We have just established

Lemma 9.1. Let X be a symplectic variety and G be a finite group acting by symplectic automorphisms on
X. Then the determinants of the normal bundles det(NXg ), for each g ∈ G, are globally trivial and generated
by the global polyvector field ψg.

Recall that the subalgebra SA(X ) is generated by the determinants det(NXg ) as an OX -algebra, and
each determinant is generated by the global polyvectors ψg. Hence SA(X ) is generated as an OX -algebra
by the sections ψg, for g not the identity. By the G-grading on SA(X ) we have

ψg · ψh|Y = a(g, h)ψgh|Y , (9.2)
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where the Y range over shared components of Xgh and Xg ∩Xh and a(g, h) is a section of the sheaf of units
(
∏
Y OY )×.
By checking complete locally at closed points, to reduce to the affine case, one finds that the coefficients

a(g, h) are in the constant sheaf of units C on
∐

shared cmpts Y . Hence we see that the multiplication on

SA(X ), and the Hochschild cohomology in its entirely HH•(X ), is determined by the coefficients a(g, h).
We will show that the function a is, essentially, a coboundary. (We use the word essentially here because a
is not actually a 2-cocycle for G.)

9.2. Hochschild cohomology for symplectic quotients. Consider the product Cπ0(Xg) as the global
sections of the constant sheaf C on Xg. We seek invertible scalars λg ∈ Cπ0(Xg) for each g ∈ G such that

(λgλh)−1|Y (λgh|Y ) = a(g, h)|Y on shared components Y between Xgh and Xg ∩Xh, (9.3)

which satisfy the G-equivariance condition:

For every component Z ⊆ Xg and every h ∈ G, λg|Z = λhgh−1 |h(Z). (9.4)

In this case the scaled generators µg = λgψg satisfy µgµh|Y = µgh|Y , and under the OX -linear isomorphism

⊕g∈GOXg
∼−→ SA(X ), 1g 7→ λgψg,

the induced algebra structure on the sum ⊕gOXg is simply given by

fg · fh|Y =

{
(fg|Y )(fh|Y ) if Y is a shared component with Xg ∩Xh

0 otherwise,
(9.5)

where the fσ are sections of their respective structure sheaves and Y is an arbitrary component of Xgh in
the above formula. We call the multiplication (9.5) the transparent multiplication on the sum ⊕g∈GOXg .

We note that the transparent multiplication on the sum ⊕gOXg is related to the multiplication on the
group ring OX [G], although there is some nuance to consider here. For X = V a symplectic vector space, for
example, and G ⊂ Sp(V ), the fiber of the transparent algebra ⊕gOXg at 0 is the associated graded algebra
grF C[G] of the group algebra under the codimension filtration F−iC[G] = C{g ∈ G : codim(V g) ≥ i} (see
e.g. [22]).

We will see below that the determinants of the operators (1 − g|NXg ) on the normal bundles NXg , for
each g, provide the desired bounding function as in (9.3).

Lemma 9.2. For each g ∈ G, the determinant of the operator (1− g|NXg ) is a real, positive, global section
of the constant sheaf of complex numbers over Xg.

Proof. Consider a component Z of Xg. The space TX |Z decomposes into eigensheaves ⊕χTχ, where χ runs
over the characters of the group 〈g|TX 〉, and we have NZ = ⊕χ 6=idTχ. Invariance of the non-degenerate form
ω : TX |Z∧TX |Z → OZ under g implies that the pairing restricts to non-degenerate pairings Tχ×Tχ−1 → OZ .
In particular, the eigensheaves come in pairs of the same rank, and if we take ζi = χi(g) we have

det(1− g|NZ ) = 2l
N∏
i=1

(1− ζi)(1− ζ̄i) = 2l
N∏
i=1

|1− ζi|2,

where {χ1, . . . , χN} is an enumeration of the characters for which ζi = χi(g) is in the upper half plane in C,
and l is the rank of the eigensheaf with eigenvalue −1 for g. �

We provide a detailed proof of the following proposition in the case in which X is a symplectic vector
space in Appendix C, as there are some inaccuracies in the literature which need to be corrected. We discuss
the proof for general X in Section 9.3.

Proposition 9.3. The global sections det(1−g|NXg )1/2 ∈ Cπ0(Xg) collectively solve equation (9.3) and (9.4),

where det(1− g|NXg )1/2 denotes the positive square root.

Note that this solution is indeed invariant under conjugation by G, as desired.
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Remark 9.4. If G is abelian, then it is easy to check that the cocycle a(g, h) = 1 for all g and h, in spite
of the fact that the determinants det(1− g|NXg ) are not equal to one. Thus in this case one could also use
the trivial solution to (9.3). However, when G is nonabelian, in general a(g, h) 6= 1. For example, if G = Sn
and X = T ∗Cn, it follows from Proposition 9.3 (and one can verify directly) that a((1 . . . k), (k . . .m)) =

m
k(m−k+1) .

From Proposition 9.3 we obtain a simple description of the multiplication of SA(X ) for arbitrary sym-
plectic quotients.

Theorem 9.5. Suppose X is a symplectic variety and that G acts on X by symplectic automorphisms. Then
there is a canonical isomorphism of OX-algebras SA(X ) ∼= ⊕g∈GOXg , where ⊕gOXg is given the transparent
multiplication (9.5).

This theorem extends to the “sheaf-valued” cohomology HH•(X ) = ⊕g∈GT polyXg in the symplectic case as
well, where X = [X/G], as usual.

Theorem 9.6. There is an isomorphism of equivariant sheaves of algebras

⊕g∈GT polyXg
∼−→ HH•(X ), 1g 7→ det(1− g|NXg )1/2ψg

where the sum ⊕gT polyXg is given the transparent multiplication.

Note that to include the grading we need to shift the polyvector fields as ⊕gT •−codim(Xg)
Xg . We ignore this

degree shift for the sake of notation.
Let us state explicitly what we mean by the transparent multiplication here. Let Y be a shared component

for Xgh and Xg ∩ Xh along which the fixed spaces intersect transversely. For τ = g, h, gh, we have the
projections

pτ : T polyX |Y → T polyXτ |Y
with kernel generated by the normal bundle NXτ . The containments NXg |Y , NXh |Y ⊂ NXgh |Y provided

by (the proof of) Lemma 5.2 (iii) imply that the projection pgh factors through T polyXg |Y and T poly
Xh
|Y , and

we have induced projections T polyXg |Y → T poly
Xgh
|Y and T poly

Xh
|Y → T poly

Xgh
|Y . We let pgh denote these induced

projections, by an abuse of notation. Hence we can define an obvious product by restricting to components
Y of Xgh,

(ξg · ξh)|Y =

{
pgh(ξg|Y )pgh(ξh|Y ) if Y is a shared component
0 otherwise.

(9.6)

This is what we have referred to as the transparent multiplication in Theorem 9.6.

9.3. The proof of Proposition 9.3.

Proof of Proposition 9.3. The identity (9.4) is clear from the definition λg = det(1 − g|NXg )1/2. To prove
(9.3), it suffices to work complete locally at closed points on shared components Y of Xgh and Xg ∩Xh. At
such a point p on a shared component Y we take V = TX |Ŷp . We have V g = NXg |Ŷp , (V g)⊥ = (1− g)V =

TXg |Ŷp , and similar equalities for h and gh. We consider these objects as modules over the complete local

C-algebra K = ÔY,p.
One replaces C with K and argues just as in the appendix to arrive at Proposition 9.3. Namely, the proofs

of Lemma C.2 and Proposition C.4 are equally valid over K. This gives

a(g, h) =

(
det(1− gh|N

Xgh
)

det(1− g|NXg ) det(1− h|N
Xh

)

)1/2

.

We have seen at Lemma 9.2 that all of the determinants in the above formula are positive real, and hence
a(g, h) is either the positive or negative square root on each component Y . One can check the sign of a(g, h)
on the fiber V ⊗K C, which reduces us to an analysis of a symplectic vector space equipped with a finite
symplectic group action. So we apply Proposition C.5 directly to find that a(g, h) is in fact the positive
square root. �
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9.4. A remark on the literature. It is stated in multiple references that the coefficients a(g, h) are
identically 1, in the specific case of a vector space X = V and G a finite subgroup in Sp(V ) (e.g. [22, proof
of Theorem 1.8], [1, §3.10], [2, Theorem 4]). However, this is not the case, as explained in Remark 9.4. The
best that one could hope for is that the coefficients a(g, h) form a G-equivariant “coboundary”, in the sense
of (9.3),(9.4), which is what is shown in Proposition 9.3.

10. Symplectic quotients and orbifold cohomology

As in Section 9, we suppose X is a symplectic variety over C equipped with an action of a finite group G by
symplectic automorphisms. We present relations between Hochschild cohomology and orbifold cohomology,
motivated by findings of [28, 21, 23]. Indeed, many of the results here can be seen as globalized variants of
results from [28], and some materials intersect non-trivially with work of Ruan [50, 51].

10.1. A dg structure on polyvector fields. Let Fω : TX → ΩX be the isomorphism provided by the
symplectic structure, and let {−,−} denote the Schouten–Nijenhuis bracket on polyvector fields.

We have

Fω{π, f} = 2Fω (π(−, df )) = 2π(F∨ω−, df ) = 2〈−, df 〉 : TX → OX .

This final element is simply 2df ∈ ΩX . Furthermore, one can checking complete locally to find that the
sheaf isomorphism F polyω provides an isomorphism of complexes

F polyω : (T polyX ,
1

2
{π,−})→ (ΩpolyX , ddR). (10.1)

We define the operation

{π,−} : ⊕g∈GT polyXg → ⊕g∈GT
poly
Xg

formally as the sum ⊕g∈G{πg,−}.
We consider ⊕g∈GT polyXg as a sheaf of algebras on X under the transparent multiplication (9.6). By a

nontrivial, but straightforward, computation one sees that the operator 1
2{π,−} is a degree one square zero

derivation on the sheaf of algebras ⊕gT polyXg , with the transparent multiplication. Rather, (⊕gT polyXg , 1
2{π,−})

is a dg algebra.

10.2. Linear identifications with orbifold cohomology. We have the isomorphism of sheaves of com-
plexes

(HH•(X ),
1

2
{π,−}) ∼=

⊕
g∈G

(Ω•Xg , ddR) (10.2)

given by F polyω , up to shifting by the codimensions. This induces a non-trivial dg algebra structure on the
sum of the de Rham complexes. We discuss this dg structure in Section 10.3, but let us first record a number
of observations and linear identifications. We define the dg algebra

HH•π(X ) := (HH•(X ),
1

2
{π,−})

(cf. [28, Sect. 6]).

Lemma 10.1 (cf. [28]). There is an isomorphism of graded G-representations

H•(X,HH•π(X ))
∼=→
⊕
g∈G

H•+codim(Xg)(Xg
an,C),

where H•(Zan,C) denotes the singular cohomology of the analytic space associated to a variety Z over C.

Proof. This follows from the isomorphism (10.2), Grothendieck’s isomorphism between the algebraic de Rham
cohomology and analytic de Rham cohomology [30], and the general isomorphism H•dR(Zan) ∼= H•(Zan,C).
Each isomorphism here is sufficiently natural to account for the action of G. �

We take invariants to arrive at an identification with the orbifold cohomology.

Theorem 10.2. There is an isomorphism of graded vector spaces between the hypercohomology of HH•π(X )
on X and the orbifold cohomology of X , H•(X , HH•π(X )) ∼= H•orb(X ,C).
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Proof. In the symplectic setting the “age shift” a(g) of [24, Definition 1.5] is half the codimension of Xg.
Hence the orbifold cohomology is given as the invariants

H•orb(X ,C) =
(
⊕gH•+codim(Xg)(Xg

an,C)
)G

[24, Definition 1.7]. Now the desired isomorphism is immediate from the equality H•(X , HH•π(X )) =
H•(X,HH•π(X ))G and Lemma 10.1. �

In the particular case of projective symplectic variety X, we have a direct comparison between Hochschild
cohomology and orbifold cohomology.

Corollary 10.3. If X is projective over C, then there is an isomorphism of graded vector spaces HH•(X ) ∼=
H•orb(X ).

Proof. By the Hodge decomposition we have

H•orb(X ) =
(⊕

g

H•(Xg
an,C)

)G
=
(⊕

g

H•(Xg,Ω•Xg )
)G
.

Hence the identification follows from the isomorphisms TXg ∼= ΩXg given by the symplectic form(s) and the

vector space identification HH•(X ) =
(
⊕g H•(Xg, T polyXg )

)G
of Corollary 6.2 (or rather [4]). �

Remark 10.4. (1) The isomorphism of Theorem 10.2 was obtained by Ginzburg and Kaladin in the
case of a quotient X = [X/G] with X affine [28].

(2) A variant of Theorem 10.2 should hold, without the appearance of the differential 1
2{π,−}, when one

replaces (X ,OX ) with a quantization of the symplectic structure, i.e. an equivariant quantization
of (X,OX). Specifically, if one takes A /C[[~]] a quantization of the symplectic orbifold X , then one
expects HH•(A [~−1]) ∼= H•orb(X )⊗C((~)). (Here we view A as a sheaf of rings on the étale site of
X , so that the Hochschild cohomology should implicitly involve a smash product construction for
A .) This relation was proved by Dolgushev and Etingof in the affine case. See also [28, 23].

(3) The isomorphism of Corollary 10.3 can already be obtained from the formality result of [4].

10.3. Conjectural, stronger, relations with Fantechi-Göttsche cohomology and orbifold coho-
mology. We consider here the work of Fantechi and Göttsche [24], in the special case of a symplectic variety
X and a finite group G acting via symplectic automorphisms. In [24], the authors define a noncommutative
algebra structure on the sum

H•FG(X,G) =
⊕
g∈G

H•−codim(Xg)(Xg
an,C),

such that the natural action of G is by algebra automorphisms. The orbifold cohomology is then recovered
as the invariants

H•orb(X ) = H•FG(X,G)G.

Of course, this resembles our situation for Hochschild cohomology, where we have produced an algebra
structure on the hypercohomology H•(X,HH•(X )) such that the G-invariants approximately recovers the
Hochschild cohomology algebra HH•(X ). However, for compact Xan both the Fantechi-Göttsche coho-
mology and orbifold cohomology admit canonical Frobenius structures [24, 15]. As is argued in the proof
of Theorem 8.4, this Frobenius structure obstructs the existence of an algebra identification between the
aforementioned hypercohomology and Fantechi-Göttsche, or orbifold, cohomology.

Let us define the codimension filtration on the Fantechi-Göttsche cohomology in the obvious way:

Fi H
•
FG(X,G) =

⊕
codim(Xσ)≤i

H•−codim(Xσ)(Xσ
an,C).

This filtration restricts to a filtration on the invariant subalgebra H•orb(X ). In the following conjecture, we
denote the associated graded algebra for Hochschild cohomology appearing in the local-to-global spectral
sequence simply by grHH•(X ), as in the introduction.

Conjecture 10.5. Let X be symplectic and X be the quotient stack of X by a finite symplectic group action.
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(i) The vector space isomorphism of Lemma 10.1 induces algebra isomorphisms

H•(X,HH•π(X )) ∼= grF H
•
FG(X,G) and H•(X , HH•π(X )) ∼= grF H

•
orb(X ).

(ii) When X is projective, there is an algebra isomorphism grHH•(X ) ∼= grF H
•
orb(X ).

When the quotient X is projective and X/G has isolated singularities the identification of grF H
•
orb(X )

with grHH•(X ) follows from the fact that the Hodge decomposition respects the product on cohomol-
ogy [60, Corollary 6.15]. When X has fixed spaces of positive dimension an identification between the two
cohomologies would already require some consideration.

We note that Ginzburg and Kaledin make a related conjecture involving quantizations, as in Remark 10.4.
They propose that when one employs a quantization one should be able to avoid this associated graded
procedure [28, Conjecture 1.6/1.3]. We repeat their conjecture here.

Conjecture 10.6 (Ginzburg-Kaledin). For an appropriate quantization A of a symplectic quotient orbifold
X , one has an algebra isomorphism HH•(A [~−1]) ∼= H•orb(X )⊗ C((~)).

Of course, point (ii) of Conjecture 10.5 suggests that the Hochschild cohomology may be identified with
the orbifold cohomology, before taking associated graded rings in both cases. The following is strongly
related to a conjecture of Ruan, as explained below.

Conjecture 10.7 (cf. [50, 51]). For X a projective symplectic quotient orbifold, there is an algebra identi-
fication between the Hochschild cohomology HH•(X ) and the orbifold cohomology H•orb(X ).

When X/G admits a crepant resolution Y → X/G with Y equal to the irreducible component of the
G-Hilbert scheme of X containing the free G-orbits,2 Conjecture 10.7 reduces to Ruan’s Cohomological
Hyperkähler Resolution Conjecture [50, 51]. The argument is as follows: In the presence of such a resolution Y ,
we have that Y is a smooth symplectic projective variety. There is then an equivalence of categories Db(Y ) ∼=
Db(X ) by a result of Bridgeland-King-Reid [10, Corollary 1.3], and subsequent algebra identification of
Hochschild cohomologies HH•(X ) = HH•(Y ) [16] (see also [19, 8]). Now by the Hodge decomposition,
formality for Hochschild cohomology [13], and the isomorphism ΩY ∼= TY given by the symplectic form, we
obtain further algebra identifications HH•(Y ) = H•dR(Y ) = H•(Yan,C). This gives, in total, HH•(X ) =
H•(Yan,C). Ruan’s conjecture proposes that for any symplectic resolution Y ′ → X/G we have H•orb(X ) ∼=
H•(Y ′an,C) as algebras. Since any two resolutions for X/G are diffeomorphic [36, Corollary 4.7], any choice
of resolution Y ′ → X/G admits an algebra isomorphism H•(Y ′an,C) ∼= H•(Yan,C). Hence Ruan’s conjecture,
in this instance, is equivalent to the conjectured identification HH•(X ) ∼= H•orb(X ).

We note that, in general, there may not exist a crepant resolution of X/G (a local obstruction to its
existence is discussed in [5, 6], among other places). For select verifications of Ruan’s conjecture(s) one can
see [41, 59, 25, 26], for example.

Remark 10.8. Ruan’s cohomological hyperkäler conjecture is presented in a general setting, where X is
allowed to be an arbitrary projective symplectic orbifold, which needn’t be a global quotient in general. The
statement of Conjecture 10.7 also makes sense for an arbitrary projective symplectic orbifold X . It seems
reasonable to propose a version of Conjecture 10.7 in this greater generality, although the statement should
certainly undergo some additional scrutiny here. Note that our reduction of Conjecture 10.7 to Ruan’s
conjecture does not immediately apply to more general X , as the results of Bridgeland-King-Reid are only
given for global quotients which admit the prescribed resolution.

Remark 10.9. It is proposed in [28, Proposition 6.2] that Conjecture 10.5 (i) holds for affine X, in which
case there are no derived global sections and the orbifold cohomology is already graded by codimension.
This would imply that we have, in the affine case, a direct algebra isomorphism HH•π(X ) ∼= H•orb(X ).

Appendix A. Comparing definitions of Hochschild cohomology for algebraic stacks

by Pieter Belmans

2Note that although such a map Y → X/G always exists, and it is always projective and birational, Y need not be smooth,
and the map need not be a crepant resolution.
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In [42] the Hochschild cohomology of an abelian category was introduced, and in [43] it was explained how
this relates to the deformation theory of abelian categories. In this appendix we explain how one can relate
the Hochschild cohomology of the abelian category Qcoh(X ) to the definition of Hochschild cohomology as
self-extensions of the structure sheaf of the diagonal. This agreement, under the appropriate conditions, is
not unsurprising, but one step of the proof depends on a not widely known result. The condition we will
impose on X is that it is perfect, we recall the definition of this notion from [33].

Definition A.1. Let X be an algebraic stack. We say X is perfect if it has affine diagonal, Dqc(X ) is
compactly generated and the structure sheaf is a compact object.

The orbifolds considered in the present work are perfect by [33, Corollary 9.2], or more immediately by
Lemma 3.4, [33, Theorem A], and [33, Lemma 4.5]. Because Dqc(X ) is compactly generated, we know by
[32, Theorem 1.2] that Dqc(X ) ∼= D(Qcoh(X )). Moreover, as the diagonal is an affine morphism we see
that ∆∗OX

∼= R∆∗OX . Using the projection formula [33, Corollary 4.12] we see that this object indeed
corresponds to the Fourier–Mukai transform associated to the identity functor. The main result of this
appendix is the following proposition.

Proposition A.2. Let X be an algebraic stack over Spec k, which is moreover perfect. There exists an
isomorphism of graded k-algebras

HH•(X ) ∼= HH•ab(Qcoh(X )).

Proof. Recall that the Hochschild cohomology of an abelian category is defined in terms of the injective
objects in its Ind-completion. For a Grothendieck abelian category we can ignore this last step, as it already
has enough injectives, so on the level of Hochschild cochain complexes we have

C•ab(Qcoh(X )) = C•(Inj Qcoh(X )),

as Qcoh(X ) is Grothendieck abelian by [56, tag 0781].
Let Ddg(Qcoh(X )) be the dg enhancement for D(Qcoh(X )) given by the dg category of homotopy-

injective complexes of quasicoherent sheaves. By [14, Theorem A] this dg enhancement is unique up to
quasi-equivalence, and in particular agrees with the definition of the derived category in derived algebraic
geometry via the discussion in [33, §1.4]. The first step is to compare the Hochschild cohomology of Qcoh(X )
with that of Ddg(Qcoh(X )). By [20, Proposition A.5] we have an isomorphism

C•(Inj Qcoh(X )) ∼= C•(Ddg(Qcoh(X )))

of B∞-algebras, and in particular of graded algebras when considering their cohomology.
Now by [58, Corollary 8.1] we have an isomorphism

C•(Ddg(Qcoh(X ))) ∼= RHom(Ddg(Qcoh(X )),Ddg(Qcoh(X )))(idDdg(Qcoh(X )), idDdg(Qcoh(X )))

which preserves the graded algebra structure on both sides when taking cohomology by [58, Theorem 6.1].
Recall that RHom is the internal Hom in the homotopy category of dg categories for the model structure
whose weak equivalences are the quasi-equivalences.

By [8, Theorem 1.2(2)] we have an equivalence

RHomcont(Ddg(Qcoh(X )),Ddg(Qcoh(X ))) ∼= Ddg(Qcoh(X ×k X )),

where the subscript in the left-hand side indicates we are considering the full subcategory of continuous
dg functors. As the identity functor is colimit-preserving, and is presented by the kernel ∆∗OX on the
right-hand side, we obtain the desired isomorphism in cohomology. �

Remark A.3. There are some alternatives to considering the Hochschild cohomology of the abelian cate-
gory Qcoh(X ) or the dg category Ddg(Qcoh(X )). First, if X is moreover assumed to be noetherian, then
by [40, Proposition 15.4] we have that Ind coh(X ) ∼= Qcoh(X ) (as abelian categories), so HH•ab(coh(X )) ∼=
HH•ab(Qcoh(X )).

We also have an identification HH•dg(Ddg(Qcoh(X ))) ∼= HH•dg(Perfdg(X )). This follows from the similar

observation that Ddg(Qcoh(X )) ∼= Ind Perfdg(X ), and the equivalence from [8, §3.1, §4.1].
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It would be interesting to extend other definitions of Hochschild cohomology for schemes to the setting
of algebraic stacks, and understand when they agree with each other. This in particular applies to the
sheafification of the Hochschild complex, as in [54], or a Gerstenhaber–Schack approach (e.g. using simplicial
schemes), generalising that of [27].

Remark A.4. For Hochschild homology it has been pointed out in [3, Warning 2.9] that two possible
definitions (one using the dg category of perfect complexes, the other using syntomic descent) of Hochschild
homology for algebraic stacks do not necessarily agree.

Appendix B. Some basic facts about finite group representations

We fix G a finite group whose order is not a divisible by the characteristic of k. For any subgroup H < G,
since the order of H is not a multiple of the characteristic of k, we can consider the symmetrizer element∫
H

:= |H|−1
∑
γ∈H γ in the group algebra k[H]. If g ∈ G, we also let

∫
g

:=
∫
〈g〉 for 〈g〉 the cyclic subgroup

generated by g.

Lemma B.1. For any 〈g〉-representation V , g ∈ G, the two subspaces V g → V and (1− g)V → V provide
a canonical splitting V = V g ⊕ (1− g)V .

Proof. Suppose V is finite dimensional. We have the endomorphism (1 − g) : V → V with kernel V g and
image (1 − g)V . So the sum of the dimensions of these subspaces is equal to the dimension of V . We
know that for any v ∈ V g ∩ (1 − g)V invariance implies v =

∫
g
v and any expression v = v′ − gv′ gives∫

g
v =

∫
g
v′ −

∫
g
gv′ = 0. So v = 0. Hence the intersection is trivial, and we have V = V g ⊕ (1− g)V . The

result for infinite dimensional representations follows from the fact that any such representation is the union
of its finite dimensional subrepresentations. �

In [52, Lemma 2.1] the following result is proved over C. Since we would like to be able to work over a
more general base field we provide a generalization.

Lemma B.2. For any finite dimensional H := 〈g, h〉-representation V the following conditions are all
equivalent:

(i) (1− g)V ⊂ (1− gh)V ; (i’) (1− g)V ∗ ⊂ (1− gh)V ∗;
(ii) (1− g)V + (1− h)V = (1− gh)V ; (ii’) (1− g)V ∗ + (1− h)V ∗ = (1− gh)V ∗;
(iii) (1− g)V ∩ (1− h)V = 0 ; (iii’) (1− g)V ∗ ∩ (1− h)V ∗ = 0;
(iv) V H = V gh; (iv’) (V ∗)H = (V ∗)gh.

These are also equivalent to (a) (1 − gh)V = (1 − g)V ⊕ (1 − h)V , (b) V gh = V g ∩ V h, (c) V = V g + V h,
and the same with V replaced by V ∗.

Proof. Note that (1 − γ)V ∗ = (V γ)⊥, the annihilator of V γ in V ∗. Let ρ : k[H] → End(V ) be the
representation, with contragredient ρ∗(γ) := ρ(γ−1)∗. Then dimV g is the dimension of the eigenspace of
one of ρ(g) and dim(V ∗)g is the dimension of the eigenspace of one of ρ∗(g) = ρ(g−1)∗, which are the same.
It follows that dimV H = rk(ρ(

∫
H

)) = rk(ρ∗(
∫
H

)) = dim(V ∗)H (said differently, by Maschke’s theorem,

V H → V → VH is an isomorphism and (V ∗)H = V ∗H in this case).
Now, consider condition (iv). Since V H ⊆ V gh, the condition is equivalent to dimV H = dimV gh. By the

preceding paragraph, this is equivalent to dim(V ∗)H = dim(V ∗)gh, i.e., to (iv’).
To prove these are equivalent to (i), (i’), (ii), and (ii’), by the symmetry of replacing V by V ∗, it is enough

to show that (iv) is equivalent to (i’) and also to (ii’).
We claim that (i’) is equivalent to (iv). Indeed, (i’) states that (V g)⊥ ⊂ (V gh)⊥, i.e., that V gh ⊃ V g.

Since H is generated by g and gh, this is equivalent to saying that V gh = V H , as desired.
Next consider (ii’). This states that (V g)⊥+ (V h)⊥ = (V gh)⊥. Equivalently, (V g ∩V h)⊥ = (V gh)⊥. But,

since H is generated by g and h, this states that (V H)⊥ = (V gh)⊥. This is equivalent to V H = V gh, as
desired.

Now we prove (iii) and (iii’) are equivalent to each other. Condition (iii’) states that the common annihila-
tor of V g and V h is zero, i.e., V = V g +V h. This is equivalent to dimV = dimV g +dimV h−dim(V g ∩V h).
Since H is generated by g and h, this is again equivalent to dimV = dimV g + dimV h − dimV H . By our
dimension equalities, this is equivalent to dimV ∗ = dim(V ∗)g + dim(V ∗)h − dim(V ∗)H , i.e., to (iii).
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Next we prove that (iii) and (iii’) together imply (iv), via the Shepler-Witherspoon trick. Suppose (iii) and
(iii’) hold. By (iii’), we have V = V g+V h, and by (iii), we have (1−g)V ∩(1−h)V = 0. Suppose that v ∈ V gh.
Then write v = v1 + v2 for v1 ∈ V g and v2 ∈ V h. Then gv = v1 + gv2 but also gv = h−1v = h−1v1 + v2,
so (1 − h−1)v1 = −(1 − g)v2. By assumption, this must be zero. Thus v ∈ V g ∩ V h = V H . Therefore
V gh = V H .

Finally, we prove that (ii) and (iv) imply (iii’). Suppose (ii) and (iv). By (ii), we have (1 − g)V + (1 −
h)V = (1 − gh)V , so dimV − dimV g + dimV − dimV h = dimV − dimV gh. By (iv), the RHS equals
dimV − dimV H = dimV − (dimV g ∩ dimV h). We obtain dimV g + dimV h = dimV − dim(V g ∩ V h), i.e.,
V = V g + V h. As we saw already, this is equivalent to (iii’).

For the final statement, it is clear that (ii) and (iii) together are equivalent to (a), and that (iv) is
equivalent to (b). We already saw in the proof that (iii) is equivalent to (c). �

Appendix C. Actions on symplectic vector spaces

by Pavel Etingof, Cris Negron, and Travis Schedler

C.1. The main theorem. Let V be a finite dimensional symplectic vector space over C with a nondegener-
ate element π ∈ ∧2V (defining a symplectic form on V ). Let g ∈ Sp(V ) be an element contained in a compact
(e.g., finite) subgroup. To ease notation, we adopt a subscript notation Vg for the subspace of g-invariants
in V , and let V ⊥g ⊂ V ∗ be its orthogonal complement. Note that under the isomorphism π : V ∗ ∼= V , the

space V ⊥g gets identified with Im(1− g). Take dg = dim(V ⊥g )/2.

Let π⊥g be the restriction of π to V ⊥g (a symplectic form), and let ψg = (dg!)
−1(π⊥g )dg be the top exterior

power of π⊥g (a volume form on V ⊥g ). Let

µg := det(1− g|V ⊥g )1/2ψg.

Note that det(1 − g|V ⊥g ) > 0, since the eigenvalues of g have absolute value 1 and for each eigenvalue λ we

have an eigenvalue λ−1. Thus, the square root is well defined.
Now let g, h ∈ Sp(V ) be contained in a compact subgroup. It is clear that Vgh ⊇ Vg∩Vh, so V ⊥gh ⊆ V ⊥g +V ⊥h .

Assume that Vg + Vh = V . By Lemma B.2, in this case Vgh = Vg ∩ Vh, hence V ⊥gh = V ⊥g ⊕ V ⊥h . Our main
result is the following theorem.

Theorem C.1. If Vg + Vh = V then
µgh = µg ∧ µh

(where we interpret µg, µh as exterior forms on V ⊥gh using its direct sum decomposition).

This corrects an error in the proof of Theorem 1.8(i) in [22], where it is erroneously claimed in formula
(2.11) that ψg ∧ ψh = ψgh (i.e., the necessary normalization of ψg by det(1 − g|V ⊥g )1/2 is missing). This

omission already seems to occur in a previous paper of Alvarez, [1], where this result is proved for c = 0, i.e.,
for the semidirect product of a finite group with a Weyl algebra, see [1], 3.9. Namely, the proof of Theorem
1.8(i) of [22] becomes valid if ψg is replaced with µg (and the same applies to the proof of the main result of
[1]).

C.2. Proof of Theorem C.1. Let V be a finite dimensional complex vector space with a symplectic
structure defined by a nondegenerate element π ∈ ∧2V (i.e., the symplectic form is ω = π−1). Let W,U
be nondegenerate subspaces of V of dimensions 2r, 2s, and suppose that V = W ⊕ U . Let ψW , ψU , ψV =

1
(r+s)!π

r+s be the canonical elements in ∧2rW,∧2sU,∧2r+2sV defined by π. Then we may naturally regard

ψW , ψU as elements of ∧V , and
ψW ∧ ψU = a(W,U)ψV ,

where a(W,U) ∈ C.

Let us compute a(W,U). To this end, choose a symplectic basis vi of V (i.e., π =
∑r+s
p=1 v2p−1 ∧ v2p),

and assume that v2r+1, ..., v2r+2s is a symplectic basis of U . Let bij , 1 ≤ i ≤ 2r, 1 ≤ j ≤ 2s be the unique
numbers such that the vectors

wi := vi +

2s∑
j=1

bijvr+j
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belong to W . Let ω(wi, wk) = cik and (cik) = C. This is clearly an invertible skew-symmetric matrix. We
have

w1 ∧ ... ∧ w2r = v1 ∧ ... ∧ v2r + ...,

where ... means terms containing v2r+j , j = 1, ..., 2s. Hence

w1 ∧ ... ∧ w2r ∧ ψU = ψV .

At the same time, it is clear that Pf(C−1)w1 ∧ ... ∧ w2r = ψW , where Pf is the Pfaffian. Hence, we get

Lemma C.2.
a(W,U) = Pf(C−1).

Now let PW , PU : V → V be the orthogonal projectors onto W,U (with respect to the symplectic form).

Lemma C.3. (i) We have

det(PW − PU ) = det(C−1).

(ii) Let X : W →W and Y : U → U be invertible linear operators. Then

det(XPW − Y PU )

det(X) det(Y )
= det(C−1).

Proof. (i) Let Jn be the 2n by 2n matrix of the standard symplectic form (so J−1
n = −Jn), and B = (bij).

Then it is easy to see that C = Jr +BJsB
T .

Since the projectors PW , PU are self-adjoint with respect to the symplectic form, we have

ω((PW − PU )x, y) = ω(PWx, y)− ω(x, PUy).

Hence for i ≤ 2r we have

ω((PW − PU )wi, vk) = ω(wi, vk)− ω(wi, PUvk) = ω(wi, vk) = ω(vi, vk)

if k ≤ 2r, and
ω((PW − PU )wi, vk) = ω(wi, vk) + ω(wi, PUvk) = 0

if k > 2r. Also for j, l = 1, ..., 2s we have

ω((PW − PU )vj+2r, vl+2r) = ω(PW vj+2r, vl+2r)− ω(vj+2r, vl+2r) = djl,

where (djl) = D = −BTC−1B − Js. Thus,

det(PW − PU ) = det(D) = det(1−BTC−1BJs) = det(1− C−1BJsB
T ) =

det(1− C−1(C − Jr)) = det(C−1Jr) = det(C−1),

as desired.
(ii) follows from (i), since XPW − Y PU = diag(X,Y )(PW − PU ). �

Now let g, h : V → V be semisimple symplectic transformations such that W = Im(1 − g) and U =
Im(1− h). We can pick X = 1− g|W and Y = 1− h−1|U , then part (ii) of Lemma C.3 gives:

det(C−1) =
det(h−1 − g)

det(1− g|V ) det(1− h−1|U )
=

detV (1− gh)

detW (1− g) detU (1− h)
.

Combining the above results, we obtain

Proposition C.4. We have

a(W,U) =

(
detV (1− gh)

detW (1− g) detU (1− h)

)1/2

.

In particular, the branch of the square root on the right hand side is well defined by the condition that
a(W,U) = 1 when gh = hg (i.e., W and U are orthogonal).

We will also need

Proposition C.5. Let g, h be contained in a compact subgroup of Sp(V ). Then a(W,U) > 0 (i.e., we need
to choose the positive value of the square root).
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Proof. Our job is to show that Pf(C−1) > 0. Let K ⊂ Sp(V ) be a maximal compact subgroup containing
g, h. Recall that all maximal compact subgroups of Sp(V ) are conjugate to U(n,H), the unitary group over
the quaternions, where n = r+ s = dim(V )/2 and V = Hn. If g, h ∈ U(n,H), then Im(1− g) and Im(1− h)
are quaternionic subspaces of V .

To prove the positivity of Pf(C−1), it suffices to show that the space T of pairs g, h ∈ U(n,H) with
Im(1 − g), Im(1 − h) complementary of dimensions r, s is connected, since when g and h commute, the
Pfaffian is equal to 1.

To this end, first note that any quaternionic subspace U of V of dimension r is automatically nondegener-
ate, as it is conjugate under U(n,H) to the standard subspaceHr ⊂ Hn. Consider the space of pairs of comple-
mentary quaternionic subspaces W,U with dimH(W ) = r. This is an open subset Y of Gr(r,Hn)×Gr(s,Hn)
(where Gr(r,Hn) is the Grassmannian of quaternionic subspaces in Hn of dimension r) with complement
of real codimension 4 (codimension 1 over H). Indeed, we have a fibration f : Y → Gr(r,Hn), such that
f−1(P ) for P ∈ Gr(r,Hn) is (a translate of) the big (quaternionic) Schubert cell in Gr(s,Hn), hence the
complement is the union of lower dimensional cells, which are affine spaces over H. Hence Y is connected.

Now, for each (W,U) ∈ Y , the set of possible (g, h) giving this pair is U∗(r,H)×U∗(s,H), where U∗(r,H)
is the set of elements of U(r,H) without eigenvalue 1. So it suffices to show that U∗(r,H) is connected.
But it is well known that for simple compact Lie group, the set of non-regular elements has codimension
3. In particular, since U(r,H) is simple, the complement of U∗(r,H) in U(r,H) has codimension 3, which
implies that U∗(r,H) is connected. Since T fibers over Y with fibers U∗(r,H)×U∗(s,H), it is connected, as
desired. �

Now, Theorem C.1 follows from Propositions C.4, C.5 in the case Vgh = 0, and the general case easily
follows from this case by replacing V by the orthogonal complement of Vgh.
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