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Abstract. Consider an almost-simple algebraic group G and a choice of com-
plex root of unity q. We study the category of quasi-coherent sheaves Xq on

the half-quantum flag variety, which itself forms a sheaf of tensor categories

over the classical flag variety G/B. We prove that the category of small quan-
tum group representations for G at q embeds fully faithfully into the global

sections of Xq , and that the fibers of Xq over G/B recover the tensor cat-

egories of representations for the small quantum Borels. These relationships
hold both at an abelian and derived level. Subsequently, reduction arguments,

from the small quantum group to its Borels, appear algebrogeometrically as

“fiber checking” arguments over Xq . We conjecture that Xq also contains the
category of dg sheaves over the Springer resolution as a full monoidal sub-

category, at the derived level, and hence provides a monoidal correspondence

between the Springer resolution and the small quantum group. We relate
this conjecture to a known equivalence between dg sheaves on the Springer

resolution and the principal block in the derived category of quantum group
representations [7, 12].
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1. Introduction

Let G be an almost-simple algebraic group over the complex numbers and let
q ∈ C be a root of unity of order > 3. We consider representations RepGq of
Lusztig’s divided power quantum algebra, and the associated small quantum group
u(Gq) for G at q. As we recall in Section 3.2, at such a finite order parameter we

have an associated dual group Ǧ and central tensor functor Fr : Rep Ǧ → RepGq
provided by Lusztig’s quantum Frobenius [61, 62].1

This paper concerns a certain “sheaf of tensor categories” over the flag variety

(Xq =) QCoh(Xq) (1)

and its relationship with some of the usual quantum suspects; the small (and big)
quantum group and its quantum Borels, as well as the Springer resolution and
nilpotent cone for Ǧ. Formally, QCoh(Xq) is a monoidal category of relative Hopf
modules for the quantum function algebra. Informally, Xq is the noncommutative

quotient stack Xq = Ǧ/Bq and sheaves on Xq are Bq-equivariant sheaves on Ǧ.
Based on the latter interpretation, we refer to the category (1) as the category of
sheaves on the half-quantum flag variety Xq.

Our interest in the category QCoh(Xq) is based on the leverage it provides in
analyses of the small quantum group, via the Borels, and for the (conjectural) role
it plays in linking the tensor category of small quantum group representations to
the tensor category of sheaves on the Springer resolution. This first point is borne
out explicitly in our subsequent text [67, Part II], where we apply the geometry of
QCoh(Xq) to describe the tensor triangular geometry [9] of the derived category of
small quantum group representations.

We note that this basic reduction principle, which asserts that studies of G or Gq
can be reduced to studies of the Borels, has been present in geometric representation
theory at least since the middle of the 20th century. The idea manifests itself already
in the classical Beilinson-Bernstein localization theorem [11], for example, as well
as its versions in modular representation theory and for quantum groups (see, in
particular, [13, 7, 12] and others). The main difference between the goals of our
analysis and the established localization theorems in the literature is that we aim to
preserve the tensor structure of Repu(Gq) when restricting to our family of Borels.

Now, at this point we have alluded to the small quantum Borels for G at q a
number of times, but the reader may understand that only the positive and negative
Borels for u(Gq) have been constructed in the literature. One of the first substantive
claims of this text is that the (representations for the) positive and negative Borel
in u(Gq) expand naturally into a family of tensor categories which are parametrized
by points in the flag variety. The members of this family are our small quantum
Borels Bλ for G at q. We show that the small quantum Borel over a given point
λ in Ǧ/B̌ is recovered as the fiber of QCoh(Xq) over λ. In this way QCoh(Xq)
can alternatively be understood as a category of representations for “the universal
small quantum Borel” associated to G at q.

One should compare here with the classical situation over C or F̄p, where the flag
variety parametrizes Borel subgroups Bλ ⊂ G, or subalgebras bλ ⊂ g, and these
subgroups/subalgebras naturally vary as a family over G/B.

The remainder of the introduction is dedicated to a more detailed description
of the half-quantum flag variety, its fibers, and its connections to the Springer

1The appearance of the dual group Ǧ can be safely ignored for the purposes of this introduction
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resolution. We also provide a more precise accounting of the main results of the
text.

1.1. The half-quantum flag variety and small quantum Borels. An explicit
description of the half-quantum flag variety can be found in Section 6.1. However,
one can think as follows: quantum Frobenius provides a translation action of the
quantum Borel on the quantum group and we take

QCoh(Xq) = QCoh(Ǧ)Bq = the ⊗-category of Bq-equivariant sheaves on Ǧ.

The relationship between QCoh(Xq) and sheaves on the classical flag variety is

then provided by a tensor embedding ζ∗ : QCoh(Ǧ/B̌)→ QCoh(Xq), and we have
a similar embedding from the category of quantum group representations,

QCoh(Xq)

Repu(Gq)

κ∗
88

QCoh(Ǧ/B̌).

ζ∗
gg

(2)

Informally, Repu(Gq) is identified with the category of sheaves on the quotient

stack Ǧ/Gq [8], at which point the maps in (2) become pullback functors along the
naturally occurring projections

κ : Xq = Ǧ/Bq → Ǧ/Gq and ζ : Xq = Ǧ/Bq → Ǧ/B̌.

The above amalgamation of tensor categories forms the foundation for our analysis,
and is described in detail in Sections 6 and 7.

In Section 5 we also introduce a family of small quantum Borels parametrized
by points in the flag variety λ : Spec(K) → Ǧ/B̌. These small quantum Borels
take the forms of tensor categories Bλ which come equipped with central tensor
functors resλ : Rep(u(Gq)) → Bλ. At the identity, we have an identification
B1
∼= Rep(u(Bq)) of tensor categories over Rep(u(Gq)), and at arbitrary λ we have

a B̌K-torsor of tensor equivalences Bλ
∼= Rep(u(Bq)). In Section 11 we realize

these quantum Borels as the categorical fibers of QCoh(Xq) over the flag variety, as
formulated in Section 2.6.

Theorem (11.3/11.6/11.7). Taking the fiber of the family QCoh(Xq) at any geo-

metric point λ : Spec(K)→ Ǧ/B̌ recovers the corresponding small quantum Borel

fibλ : QCoh(Xq)|λ
∼→ Bλ.

Furthermore, the composite fibλ ◦ κ∗ : Repu(Gq) → Bλ recovers the restriction
functor resλ. The analogous calculations also hold at the level of derived categories.

The above calculation allows us to think of QCoh(Xq) as the total space for the
“smoothly varying” family of categories Bλ, and of κ∗ as a universal restriction
functor. The next theorem summarizes the fundamental properties of the functor
κ∗.

Theorem (7.1). The universal restriction functor κ∗ : Rep(u(Gq)) → QCoh(Xq)
is an exact, central, fully faithful monoidal embedding. Furthermore the induced
functor on unbounded derived categories

κ∗ : D(u(Gq))→ D(Xq)

remains fully faithful.
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Theorems 11.3 and 7.1 provide an explicit articulation of the notion that the
small quantum Borels collectively “know everything” about the small quantum
group. From this perspective it is not surprising that one can deduce results for the
small quantum group via coherent analyses of the small quantum Borels. This is
true of non-tensorial, block-by-block studies of the quantum group representations,
as well as studies which emphasize the tensor structure of Repu(Gq) (see e.g. [13,
7, 12] [67, Part II]).

1.2. The Springer resolution and the half-quantum flag variety. In the
previous subsection we discussed QCoh(Xq) and its relationship, via functors, to the
flag variety, small quantum group, and small quantum Borels. In this subsection we
focus on a related enhancement for QCoh(Xq). Specifically, the inner morphisms

for the action of QCoh(Ǧ/B̌) on QCoh(Xq) produce sheaves HomXq (M,N) on

Ǧ/B̌ which vary naturally in each factor and admit an identification on the global
sections

Γ(Ǧ/B̌,HomXq (M,N)) = HomXq (M,N).

Furthermore, the fact that ζ∗ is monoidal implies that the localized morphisms
HomXq are compatible with the monoidal structure on QCoh(Xq). So we obtain a

monoidal enhancement QCohEnh(Xq) of QCoh(Xq) over the flag variety. This inter-
nal sheafy structure naturally derives, so that we have derived sheaf-maps RHomXq

and a subsequent enhancement DEnh(Xq) of the derived category of sheaves on Xq.
Again, these derived sheaf-morphisms respect the monoidal structure on D(Xq).
Of particular interest here is the dg algebra

RHomXq (1,1) ∈ D(Ǧ/B̌).

We recall that the Springer resolution Ñ is the cotangent bundle for the flag

variety Ñ = T ∗Ǧ/B̌, and so we have the affine morphism p : Ñ → Ǧ/B̌. The
Springer resolution is also understood as a distinguished resolution of singularities

µ : Ñ → N for the nilpotent cone in Lie(Ǧ). In the following statement h denotes
the Coxeter number for G.

Theorem 1.1 (13.2). Suppose that q is of odd order ord(q) > h, or that G is of
type A1. Then there is an identification of algebras

H∗(RHomXq (1,1)) = p∗OÑ . (3)

The calculation of Theorem 13.2 can be used immediately to relate the quantum
group to the Springer resolution, at least in analyses of tensor triangular geometry
for the small quantum group [67, Part II]. However, we view this result as a reflection
of a more fundamental relationship between the Springer resolution, half-quantum
flag variety, and the (small) quantum group.

1.3. A formality conjecture. To conclude the introduction, and the paper, we
propose a deeper relationship between the half-quantum flag variety and the Springer
resolution.

Conjecture 1.2 (Strong formality conjecture 14.1). There is a QCohdg(Ǧ/B̌)-
linear, fully faithful, central tensor functor

η∗ : QCohdg(Ñ )→ IndCohdg(Xq),

and corresponding fully faithful tensor functor QCohdg(N )→ Repdg(u(Gq)).
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In the above statement QCohdg(Y ) denotes the derived ∞-category of quasi-
coherent sheaves on a given scheme Y , IndCohdg(Xq) is the formal cocompletion of
the ∞-category of coherent dg sheaves on Xq, and Repdg(u(Gq)) is the analogous
cocompletion of the ∞-category of finite-dimensional dg representations for the

small quantum group. Also Ñ should be understood here as a dg scheme over
Ǧ/B̌, with generators in cohomological degree 2 (cf. [7, 12]).

This conjecture is informed by the construction of the enhanced derived category
for Xq, provided in Sections 10.2 and 13, the calculation of Theorem 13.2, and
known formality results from Arkhipov, Bezrukavnikov, and Ginzburg [7].

We note that, from Theorem 7.1, we have a fully faithful central embedding
κ∗ : Repdg(u(Gq)) → IndCohdg(Xq), so that Conjecture 14.1 realizes a correspon-
dence between braided monoidal categories

IndCohdg(Xq)

QCohdg(Ñ )

η∗ 55

Repdg(u(Gq)).

κ∗ii
(4)

We furthermore propose the following.

Conjecture 1.3. The push-pull functor along the monoidal correspondence (4)
restricts to an equivalence

η∗κ
∗ : PrinBlockdg(u(Gq))

∼−→ QCohdg(Ñ ).

This equivalence precisely recovers that of Arkhipov-Bezrukavnikov-Ginzburg and
Bezrukavnikov-Lachowska [7, 12].

Hence the correspondence (4), conjecturally, provides a monoidal reconceptual-
ization of the non-monoidal equivalences of [7, 12].

Under appropriate centralizing hypotheses (4) can be seen as a morphism be-
tween sheaves on the Springer resolution and the derived category of quantum
group representations in the monoidal 4-category of presentable braided tensor ∞-
categories, as constructed in [51]. Although we won’t elaborate on the point here,
the latter framing is relevant when one considers the Springer resolution in relation
to topological field theories one constructs from the quantum group. Here one hopes
to employ the Springer resolution to resolve certain singularities which appear in
these TQFTs (cf. [67, §19]). For additional context we encourage the reader to
peruse the texts [21, 77, 47, 25, 22], among others.

1.4. Acknowledgements. Thanks to David Ben-Zvi, Roman Bezrukavnikov, Ken
Brown, Eric Friedlander, Sergei Gukov, David Jordan, Simon Lentner, Sunghyuk
Park, Noah Snyder, and Lukas Woike for useful discussions which influenced the
trajectory of this work. C. Negron is supported by NSF grant DMS-2001608 and
Simons Collaboration Grant no. 999367. J. Pevtsova is supported by NSF grants
DMS-1901854, 2200832, and the Brian and Tiffinie Pang faculty fellowship. This
material is based upon work supported by the National Science Foundation under
Grant No. DMS-1440140, while the first author was in residence at the Mathemat-
ical Sciences Research Institute in Berkeley, California, and the second author was
in digital residence. This research was also funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
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Strategy – EXC-2047/1 – 390685813 when the authors visited the Hausdorff In-
stitute for Mathematics in Bonn during the trimester on “Spectral methods in
Algebra, Geometry and Topology”.

2. Notation guide and categorical generalities

Throughout k is an algebraically closed field of characteristic 0, and G is an
almost-simple algebraic group over k. We let h denote the Coxeter number for G,
and B ⊂ G is a fixed choice of Borel, which we recognize as the positive Borel in
G.

• q ∈ k is a root of unity of finite order. We take l = ord(q2) and assume that
ord(q) is not extraordinarily small, as specifically articulated in [62, Section
35.1.2]. When q is of even order we assume that the character lattice for G
is strongly admissible, in the sense of [66, Definition 3.1].

• Ǧ is the dual group to G at the given parameter q, as defined in Section
3.2, with corresponding positive Borel B̌. The group Ǧ is referred to as the
metaplectic dual for G in (quantum) geometric Langlands [40].

• π : Ǧ→ Ǧ/B̌ is the quotient map.

• N is the nilpotent cone in Lie(Ǧ), and µ : Ñ → N is the Springer resolution.

Alternatively, Ñ is the cotangent bungle for the dual group Ñ = T ∗(Ǧ/B̌)

and p : Ñ → Ǧ/B̌ is the associated bundle map.

• A geometric point x : Spec(K)→ Y in a (k-)scheme Y is a map of schemes
from the spectrum of an algebraically closed field extension K/k.

• Vect denotes the category of arbitrary k-linear vector spaces and, for any
field extension k → K, Vect(K) denotes the category of arbitrary K-linear
vector spaces.

• The symbol ⊗k denotes a vector space tensor product, and the generic
symbol ⊗ denotes the product operation in a given monoidal category C .
So this product ⊗ can be a product of sheaves, or a product of group
representations, etc. We also let ⊗k denote the implicit action of Vect on
a linear category.

• 1 is the unit object in a given tensor category C .

We use the term tensor category somewhat informally, to indicate a linear
monoidal category which is of an algebraic origin (cf. [27, Definition 1.1] [32, Defi-
nition 4.1.1]). By a finite tensor category, however, we always mean a finite tensor
category in the sense of [34].

Remark 2.1. The strong admissibility condition, at even order q, is inessential.
We only avoid non-admissible even order q because appropriate treatments for the
quantum group at such parameters have not appeared in the literature.

2.1. Finite-dimensional vs. infinite-dimensional representations. For our
study it has been convenient to work with cocomplete categories, where one gen-
erally has enough injectives and can freely use representability theorems. For this
reason we employ categories of arbitrary (possibly infinite-dimensional) represen-
tations RepA for a given Hopf algebra A. This is, by definition, the category of
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locally finite representations, or equivalently representations which are the unions
of their finite-dimensional subrepresentations.

One recovers the category repA of finite-dimensional representations as the sub-
category of dualizable, or rigid, objects in RepA, i.e. objects which admit left and
right duals [32]. Since tensor functors preserve dualizable objects [32, Ex. 2.10.6],
restricting to the subcategory of dualizable objects repA ⊂ RepA is a natural op-
eration with respect to tensor functors. In this way one moves freely between the
“small” and “big” representation categories for A.

When we work with derived categories, we take

D(A) :=

{
the unbounded derived category of (generally

infinite-dimensional) A-representations

}
.

We have the distinguished subcategoriesDb(A), D+(A), etc. of appropriately bounded
complexes of (generally infinite-dimensional) representations, and a distinguished
subcategory of bounded complexes of finite-dimensional representations, which one
might write as Db(repA) or Dfin(A). In following the philosophy proposed above,
Dfin(A) appears as the subcategory of dualizable objects in D(A).

2.2. Presentable categories. As just stated, we generally work with cocomplete
categories in this text. However, at times we need to be more clear about which types
of cocomplete categories we consider. When necessary, we restrict our attention to
presentable categories.

We recall that a category C is called presentable, or locally presentable, if it
is cocomplete and sufficiently compactly generated. In particular, we assume the
existence of a regular cardinal τ so that C is generated by a set of τ -compact object
{Xi}i∈I under τ -filtered colimits. This latter condition is called τ -accessibility [1,
Definitions 1.17 & 2.1].

For example, if C is cocomplete and compactly generated by an essentially small
subcategory of compact objects, then C is presentable. Indeed, in this case C is
τ -accessible with τ = ℵ0. Every (abelian) category we come into direct contact
with satisfies such compact generation hypotheses, and is hence presentable.

2.3. Central functors. By a central monoidal functor between monoidal cate-
gories, we mean a monoidal functor F : C → D from a braided monoidal category
C to a possibly non-braided monoidal category D which comes equipped with a
natural half-braiding

γ−,X : −⊗ F (X)
∼=→ F (X)⊗−

at each object X in C . We require these half-braidings to be natural in each
coordinate, compatible with the braiding on C , and associative. Equivalently, a
central monoidal functor is a choice of a monoidal functor F : C → D and a choice
of a braided monoidal lift of F to the Drinfeld center F̃ : C → Z(D) [30, Definition
4.15].

2.4. Relative Hopf modules. For a Hopf algebra A, and an A-comodule algebra
O, we let OMA denote the category of relative (O, A)-Hopf modules, with no finite-
ness assumptions. This is the category of simultaneous (left) O-modules and (right)
A-comodules M , for which the coaction M →M ⊗k A is a map of O-modules [65,
§8.5]. Here O acts diagonally on the product M ⊗k A, a · (v ⊗ b) = a1v ⊗ a2b.

For a basic example, we consider an affine algebraic group H acting on (the
right of) an affine scheme Y . This gives the algebra of functions O = O(Y ) a
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comodule structure over A = O(H). The fact that the action map Y ×H → Y is a
scheme map says that O is an A-comodule algebra under this comodule structure.
Relative Hopf modules are then identified with equivariant sheaves on Y via the
global sections functor,

Γ(Y,−) : QCoh(Y )H
∼→ O(Y )M

O(H).

2.5. Descent along H-torsors. Suppose an algebraic group H acts on a scheme
Y , that the quotient Y/H exists, and that the quotient map π : Y → Y/H is a
(faithfully flat) H-torsor. For example, we can consider an algebraic group G and
a closed subgroup H ⊂ G acting on G by translation. In this case the quotient
G→ G/H exists, is faithfully flat, and realizes G as an H-torsor over the quotient
[64, Theorem B.37].

For Y as prescribed, pulling back along the quotient map π : Y → Y/H defines
an equivalence of categories

π∗ : QCoh(Y/H)
∼→ QCoh(Y )H (5)

from sheaves on the quotient to H-equivariant sheaves on Y . The inverse to this
equivalence if provided by faithfully flat descent, or simply “descent”

desc : QCoh(Y )H → QCoh(Y/H). (6)

For details on faithfully flat descent one can see [46, Exposé VIII] or [78, Tag 03O6].
One may understand descent simply as the inverse to the equivalence (5), which
we are claiming exists under the precise conditions outlined above.

Now, for any scheme Y with an H-action, we have a pair of adjoint functors

E− : RepH → QCoh(Y )H and − |H : QCoh(Y )H → RepH,

where for V ∈ RepH we set EV to be the vector bundle on Y corresponding to
the H-equivariant OY -module OY ⊗k V , with OY acting on the left factor and H
acting diagonally. By construction, EV is locally free; it is coherent if and only
if V is finite-dimensional. The right adjoint −|H is given by taking global section
Γ(Y,−) and then forgetting the action of O(Y ).

For an affine algebraic group Y = G and a closed subgroup H ⊂ G, the descent
of the equivariant vector bundle EV , defined as above, is the familiar bundle from
[50, I.5.8], [79, 3.3].

2.6. Flat families of tensor categories. Let X be a (quasi-compact quasi-
separated) scheme. By a flat family of tensor categories over X we mean a pre-
sentable monoidal category C equipped with an exact, cocontinuous, central monoidal
functor w : QCoh(X) → C . We suppose additionally that the product on C com-
mutes with small coloimts in each variable, and that C is generated by a subcategory
of compact dualizable objects.

The fiber of the family C along a given map f : Y → X is the categorical base
change

C |f := QCoh(Y )⊗QCoh(X) C ,

as described in Section 11.1. Our notion of a flat family of tensor categories is
related to a notion of a sheaf of tensor categories, as defined for example in [39],
in the sense that the derived (∞-)category of a flat family of categories over X has
the structure of a sheaf of categories over X.

https://stacks.math.columbia.edu/tag/03O6
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Remark 2.2. Our flatness condition, i.e. exactness of the structure map w, is
imposed to create some consistency in calculating fibers at the non-derived level,
for families of categories, and the derived level, for sheaves of categories (cf. [10]).

2.7. Enriched categories and enhancements. A flat family of tensor categories
over a scheme X, as in Subsection 2.6, gives a specific example of a category with
an enhancement in QCoh(X). We now describe this (generally weaker) structure
in detail.

By a category T enriched in a given monoidal category Q we mean a collection
of objects obj(T ) for T and morphisms HomT (M,N), which are objects in Q, for
each pair of objects M and N in T . We suppose, additionally, the existence of
associative composition morphisms

◦ : HomT (M,N)⊗HomT (L,M)→ HomT (L,N)

for each triple of objects in T . Basics on enriched categories can be found in [72,
Ch 3], though we recall some essential points here.

Given any lax monoidal functor F : Q→ S we can push forward the morphisms
in T along F to get a new category FT which is enriched in S [72, Lemma 3.4.3].
As one expects, the objects in FT are the same as those in T , and the morphisms
in FT are given as FHomT (M,N). The composition maps for FT are induced by
those of T and the lax monoidal structure on the functor F .

Of particular interest is the “global sections” functor ΓQ = HomQ(1,−) : Q →
Set, with lax monoidal structure on ΓQ provided by the monoidal and unit structure
maps for Q,

ΓQ(A)× ΓQ(B)→ ΓQ(A⊗B), (f, g) 7→ f ⊗ g.
For any enriched category T over Q the global sections ΓQT are then an ordinary
category [72, Definition 3.4.1]. Note that the category of global sections ΓQT
also acts on T , in the sense that any morphism f ∈ ΓQHomT (M,N) specifies
composition and precomposition maps

f∗ : HomT (L,M)→ HomT (L,N) and f∗ : HomT (N,L)→ HomT (M,L)

via the unit structure on Q and composition in T .
Suppose now that Q is symmetric. By a monoidal category enriched in Q we

mean an enriched category T with a product structure on objects, a unit object,
and an associator, where the unit and associator structure maps appear as global
isomorphisms for T . We require the existence of tensor maps

tensT : HomT (M,N)⊗HomT (M ′, N ′)→ HomT (M ⊗M ′, N ⊗N ′)

which are associative relative to the associators on Q and T , and appropriately com-
patible with composition. This compatibility between the tensor and composition
morphisms appears as an equality

(g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2) :

G1 ⊗F1 ⊗ G2 ⊗F2 → HomT (L1 ⊗ L2, N1 ⊗N2)

for maps fi : Fi → HomT (Li,Mi) and gi : Gi → HomT (Mi, Ni). Such a monoidal
structure on T implies a monoidal structure on its category of global sections.

Definition 2.3. An enhancement of a (monoidal) category T is a choice of a Q-
enriched (monoidal) category T and a (monoidal) equivalence T ∼= ΓQT .
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3. Quantum groups

We recall basic constructions and results for quantum groups. We also recall
a geometric (re)construction of the small quantum group via de-equivariantization
along the quantum Frobenius functor.

3.1. Lusztig’s divided power algebra. We briefly review Lusztig’s divided power
algebra, leaving the details to the original works [61, 62]. Let g be a semisimple Lie
algebra over the complex numbers, and fix some choice of simple roots for g.

To begin, one considers the generic quantum universal enveloping algebra

Ugen
v (g) =

Q(v)〈Eα, Fα,K±1
α : α is a simple root for g〉

(v-analogs of Serre relations)
,

where the v-Serre relations are as described in [61, §1.1]. These relations can be
written compactly as

adv(Eα)1−〈α,β〉(Eβ) = 0, adv(Fα)1−〈α,β〉(Fβ) = 0, KβEαK
−1
β = v(α,β)Eα,

KβFαK
−1
β = v−(α,β)Fα, [Eα, Fβ ] = δαβ(Kα −K−1

α )/(vdα − v−dα).

The algebra Ugen
v (g) admits a Hopf algebra structure over Q(v) with coproduct

∆(Eα) = Eα⊗Kα+1⊗Eα, ∆(Fα) = Fα⊗1+K−1
α ⊗Fα, ∆(Kα) = Kα⊗Kα. (7)

We consider the distinguished subalgebra of “Cartan elements”

Ugen
v (g)0 = Q(v)〈Kα,K

−1
α : α simple〉 ⊂ Ugen

v (g),

which we refer to as the toral subalgebra in Ugen
v (g).

In Ugen
v (g) one has the Z[v, v−1]-subalgebra Uv(g) generated by the divided pow-

ers

E(i)
α = Eiα/[i]dα !, F (i)

α = F iα/[i]dα !, and K±1
α .

Here dα = |α|2/|short root|2 and [v]dα ! is the vdi-factorial (see [61, §1 and Theorem
6.7]). The subalgebra Uv(g) furthermore has a Hopf structure induced by that of
Ugen
v (g), which is given by the same formulas (7). We define the toral subalgebra

as the intersection Uv(g) ∩ Ugen
v (g)0. This subalgebra not only contains powers of

the Kα, but also certain divided powers in the Kα.
For any value q ∈ C× we have the associated Z-algebra map φq : Z[v, v−1]→ C

which sends v to q, and we change base along φq to obtain Lusztig’s divided power
algebra

Uq(g) = C⊗Z[v,v−1] Uv(g)

at parameter q. When q is of finite order we take

l = ord(q2), lα = min{m ∈ Z>0 : dαm ∈ lZ}, and l′ = min{lα : α ∈ ∆}.

An important aspect of this algebra is that, at q with ord(q2) = l, we have

Elαα = [lα]dα !E(lα)
α = 0 and F lαα = [lα]dα !F (lα)

α = 0.

Hence the elements Eα and Fα become nilpotent in Uq(g). One should compare with
the distribution algebra associated to an algebraic group in finite characteristic.

In Section 4 we also consider the divided power algebra Uq(b) for the Borel.
This is the subalgebra Uq(b) ⊂ Uq(g) generated by the toral elements as well as the

divided powers E
(i)
α for the positive simple roots.
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3.2. Big quantum groups. We follow [62] [4, §3]. Fix G almost-simple with
associated character lattice X. Let q be of finite order and take ord(q2) = l. We
adopt the specific restrictions on q laid out in Section 2, which are almost nothing
if one is happy to assume ord(q) is odd.

We consider the category of representations for the “big” quantum group asso-
ciated to G,

repGq :=

{
finite-dimensional representations for Uq(g)

which are compatibly graded by the character lattice X

}
.

Here when we say a representation V is graded by the character lattice we mean that
V decomposes into eigenspaces V = ⊕λ∈XVλ for the action of the toral subalgebra
in Uq(g), with each Vλ of the expected eigenvalue. For example one requires Kα ·v =

qdα〈α,λ〉v for homogeneous v ∈ Vλ (see [4, §3.6]). The category repGq is the same as

the category of representations of Lusztig’s modified algebra U̇q(G) [62] [52, §1.2].
We let RepGq denote the category of generally infinite-dimensional, integrable,

Gq-representations. Equivalently, RepGq is the category of Uq(g)-modules which
are the unions of their finite-dimensional X-graded submodules. Note that all
objects in RepGq remain X-graded.

Let P and Q denote the weight and root lattices for G respectively, Φ denote the
roots in Q, and let (−,−) : P × P → Q denote the normalized Killing form which
takes value 2 = (α, α) on short roots α. We take r the minimal positive integer so
that the scaled form

r · (−,−) : X ×X → Q takes values in Z[1/ε], where ε =

{
2 if ord(q) is odd
1 if ord(q) is even.

We fix a choice r
√
q of a primitive r-th root of q, and define the exponentiated form

q(−,−) explicitly as ( r
√
q)r(−,−). We note that r

√
q has odd order when q has odd

order, so that the r
√
q-exponential is a well-defined group map from Z[1/ε].

We have the R-matrix for RepGq which appears as

R = (
∑
n:Φ+→Z≥0

coeff(q, n)En1
γ1
. . . Enrγr ⊗ F

n1
γ1
. . . Fnrγr )Ω−1

= Ω−1 + higher order terms.
(8)

Here Ω is the global semisimple operator

Ω =
∑
λ,µ∈X

q(λ,µ)1λ ⊗ 1µ

with each 1λ the natural projection 1λ : V → Vλ [62, Ch. 32] [74, §1]. We note that
the sum in (8) has only finitely many non-vanishing terms, since the Eγ and Fγ are
nilpotent in Uq(g). The operator R endows RepGq with its standard braiding

cV,W : V ⊗W →W ⊗ V,
cV,W (v, w) = q(deg(w),deg(v))(w ⊗ v +

∑
n>0 coeff(q, n)Fn1

γ1
. . . Fnrγr w ⊗ E

n1
γ1
. . . Enrγr v).

We consider the dual group Ǧ, which is of the same Dynkin type as G at odd
order q and of Langlands dual type when q is of even order. This dual group has
character lattice XM , where

XM :=
{
µ ∈ X : (µ, α) ∈ lZ for all simple α and (µ, λ) ∈ lZ[1/ε] for all λ ∈ X

}
,

and form (−,−)∨ = 1
l·l′ (−,−). Here again ε is 2 at odd order q and 1 otherwise.

The roots for Ǧ are given by the scalings {lγγ : γ ∈ Φ} [66, Section 5.1] [62, Section
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2.2.5]. So, for example, when G is simple, and q is of odd order which is coprime
to the determinant of the Cartan matrix, the dual group Ǧ is just another copy of
G (cf. [24, §2.3]).

Via Lusztig’s quantum Frobenius [62, Ch. 35] we have a Hopf map fr∗ : U̇q(G)→
U̇(Ǧ),

fr∗ =


Eγ , Fγ 7→ 0

E
(lγ)
γ 7→ eγ

F
(lγ)
γ 7→ fγ

1λ 7→ 1λ when λ ∈ XM and 0 otherwise

which defines a braided tensor embedding

Fr : Rep Ǧ→ RepGq

whose image is the Müger center in RepGq [66, Theorem 5.3], i.e. the full tensor
subcategory of all V in RepGq for which c−,V cV,− : V ⊗− → V ⊗− is the identity
transformation.

Remark 3.1. Our Frobenius map fr∗ : U̇q(G) → U̇(Ǧ) is induced by that of

[62], but is not precisely the map of [62]. Similarly, our dual group Ǧ is not
precisely the dual group G∗ from [62]. Specifically, Lusztig’s dual group G∗ is
defined by taking the dual lattice X∗ ⊂ X to consist of all µ with restricted pairings
(µ, α) ∈ lZ at all simple roots α. This lattice X∗ contains XM , so that we have
an inclusion Rep Ǧ → RepG∗. We then obtain our quantum Frobenius, functor
say, by restricting the more expansive quantum Frobenius RepG∗ → RepGq from

[62] along the inclusion from Rep Ǧ. Very directly, our dual group is dictated by
the R-matrix while Lusztig’s dual group is dictated by representation theoretic
considerations.

Remark 3.2. One has some flexibility in the choice of the form Ω appearing in
the R-matrix [62, §32.1.3]. Our particular choice of R-matrix, based on carefully
picking r

√
q as above, ensures that the Müger center in RepGq is well-behaved at

all odd order q (cf. [66, §3.1]).

3.3. Quantum function algebras. For us the quantum function algebra O(Gq)
is a formal device which allows us to articulate certain categorical observations in
a ring theoretic language. The Hopf algebra O(Gq) is the unique Hopf algebra so
that we have an equality

Corep O(Gq) = RepGq

of non-full monoidal subcategories in Vect. Via Tannakian reconstruction [27, 75],
one obtains O(Gq) (uniquely) as the coendomorphism algebra of the forgetful func-
tor

forget : RepGq → Vect,

and the Hopf structure on O(Gq) is derived from the monoidal structure on forget.

3.4. The small quantum group. For G and q as above the small quantum group
u(Gq) is essentially the small quantum group from Lusztig’s original work [60, 61],
but with some slight variation in the grouplikes. We provide a presentation of the
small quantum group u(Gq) at odd order q, and refer the reader to [8, 38] or [66]
for details on the even order case.
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First, let A denote the character group on the quotient X/XM , A = (X/XM )∨.
For any root γ let Kγ ∈ A denote the character Kγ : X/XM → C∗, Kγ(λ̄) = q(γ,λ).
We now define

u(Gq) :=
k〈Eα, Fα, ξ : α simple roots, ξ ∈ A〉(

q-Serre relations [61, (a3)–(a5)], relations from A,

ξ · Eα · ξ−1 = ξ(α)Eα, ξ · Fα · ξ−1 = ξ(−α)Fα

) .
So, a representation of u(Gq) is just a representations of Lusztig’s usual small
quantum group which admits an additional grading by X/XM for which the Kα

act as the appropriate semisimple endomorphisms Kα ·v = q(α,deg(v))v. The algebra
u(Gq) admits the expected Hopf structure, just as in [61], with the ξ ∈ A grouplike
and the Eα and Fα skew primitive.

Now, the simple representations for u(Gq) are labeled by highest weights L(λ̄),
for λ̄ ∈ X/XM . A given simple L(λ̄) is dimension 1, and hence invertible with
respect to the tensor product, precisely when λ̄ satisfies q(α,λ) = 1 at all simple
roots α. So if we let X∗ ⊂ X denote the sublattice of weights λ with (λ, α) ∈ lZ for
all simple α, then we have XM ⊂ X∗ and the subgroup X∗/XM ⊂ X/XM labels
all 1-dimensional simple representations. These simples form a fusion subcategory
in Repu(Gq) so that we have a tensor embedding

Vect(X∗/XM )→ Repu(Gq),

where Vect(X∗/XM ) denotes the category of X∗/XM graded vector spaces, and
we have the corresponding Hopf quotient u(Gq)→ O(X∗/XM ).

Example 3.3. When G is of adjoint type at odd order q, we have X∗ = XM so
that Vect(X∗/XM ) is trivial. When G is simply-connected at odd order q, and
2 - |Z(G)|, we have X∗/XM = lP/lQ so that Vect(X∗/XM ) is isomorphic to
representations of the center Z(G).

We note that the R-matrix for Gq provides a well-defined global operator on
products of u(Gq)-representations, so that we have a braiding on Repu(Gq) given
by the same formula

cV,W : V ⊗W →W ⊗ V, cV,W (v, w) = R21(w ⊗ v),

where our notation is as in [32, §8.3]. One can see that this braiding on Repu(Gq)
is non-degenerate, in the sense that the Müger center vanishes, since the induced
form Ω̄ on X/XM is non-degenerate [66, Theorem 5.3]. We have the restriction
functor

res : RepGq → Repu(Gq)

which is braided monoidal. The following result is essentially covered in works of
Andersen and coauthors [2, 3, 4, 5].

Proposition 3.4. (1) Any projective object in RepGq restricts to a projective
in Repu(Gq).

(2) For any projective object P in Repu(Gq), there is a projective Gq-representation
P ′ so that P is a summand of res(P ′).

Proof. Both statements follow from the fact that the Steinberg representation is
simple and projective over Gq and restricts to a simple and projective representation
over u(Gq) [3, Proposition 2.2] [5, Theorem 9.8] [2, Corollary 9.7]. �
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3.5. A remark on grouplikes. In the literature there are basically two choices of
grouplikes for the small quantum group which are of interest. In the first case, we
take the small quantum group with grouplikes given by characters on the quotient
X/X∗, where X∗ is as in Remark 3.1. This is a choice which is relevant for many
representations theoretic purposes, and which reproduces Lusztig’s original small
quantum group [60, 61] at simply-connected G and odd order q. In the second
case, one proceeds as we have here and considers grouplikes given by characters
on the quotient X/XM . This is a choice relevant for physical applications, as
one preserves the R-matrix and hence allows for the small quantum group to be
employed in constructions and analyses of both topological and conformal field
theories, see for example [26, 77, 16, 23, 36, 41].

This movement of the grouplikes for the small quantum group corresponds pre-
cisely to the choice of dual group to Gq which appears in quantum Frobenius (dis-

cussed above). One has the maximal choice G∗, or the choice Ǧ dictated by the
R-matrix.

3.6. De-equivariantization and the small quantum group. We have the
quantum Frobenius Fr : Rep Ǧ→ RepGq as above, and define the de-equivariantization
in the standard way

(RepGq)Ǧ :=

{
the category of arbitrary
O(Ǧ)-modules in RepGq

}
= O(Ǧ)M

O(Gq)

[30]. Here we abuse notation to write the image of the object O(Ǧ) in Rep Ǧ
under quantum Frobenius simply as O(Ǧ) ∈ RepGq. The category (RepGq)Ǧ is
monoidal under the product ⊗ = ⊗O(Ǧ). We have the de-equivariantization map

dé : RepGq → (RepGq)Ǧ, which is a free module functor dé(V ) := O(Ǧ) ⊗k V ,
and the category (RepGq)Ǧ admits a unique braided monoidal structure so that
the de-equivariantization map is a braided monoidal functor [55, Theorem 1.10].
This braiding is given directly by the R-matrix for RepGq,

cM,N : M ⊗N → N ⊗M, m⊗ n 7→ R21(n⊗m).

To elaborate, objects in (RepGq)Ǧ are unambiguously O(Ǧ)-bimodules via an
application of the braiding, and one employs this bimodule structure in constructing
the product on (RepGq)Ǧ. The braiding is, again, given by the R-matrix.

Remark 3.5. Note that objects in the de-equivariantization are naturally bimod-
ules, but are not necessarily symmetric bimodules when q is of even order. This
complicates the situation slightly when working with unrestricted q (cf. [66, §7.2]).

We consider for any M in (RepGq)Ǧ the associated sheaf M∼ for the right

action of O(Ǧ), and have the linear functor (−)∼ : (RepGq)Ǧ → QCoh(Ǧ). This
functor is faithful and so identifies the de-equivariantization with a certain non-full
subcategory in QCoh(Ǧ), which one might refer to as the category of Gq-equivariant

sheaves over Ǧ. We let QCoh(Ǧ)Gq denote this category of Gq-equivariant sheaves

on Ǧ, so that we have an equivalence

(−)∼ : (RepGq)Ǧ
∼→ QCoh(Ǧ)Gq . (9)

The above equivalence induces a braided monoidal structure on QCoh(Ǧ)Gq under
which the associated sheaf functor becomes a braided monoidal functor.
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The induced monoidal structure on QCoh(Ǧ)Gq is the usual one at odd order q,
i.e. the one induced by the ambient category of non-equivariant sheaves, and can
be described in purely geometric terms in the even order case as well. We describe
this monoidal structure explicitly in Section 6.2 below.

Definition 3.6. The quantum Frobenius kernel for G at q is the braided monoidal
category of Gq-equivariant quasi-coherent sheaves over Ǧ,

FKGq := QCoh(Ǧ)Gq .

The compact objects in FKGq are precisely those equivariant sheaves which are

coherent over Ǧ [66, Lemma 8.4].
We have the following result of Arkhipov and Gaitsgory [8] and [66].

Theorem 3.7 ([8] [66, Proposition 7.3]). Taking the fiber at the identity in Ǧ
provides an equivalence of braided monoidal categories

1∗ : FKGq
∼→ Repu(Gq).

Remark 3.8. At odd order q Theorem 3.7 is alternately deduced from Takeuchi
and Kreimer-Takeuchi [57, Corollary 1.10] [80, pg. 456 & Theorem 2].

The above theorem tells us that the dualizable objects in FKGq are precisely the
compact objects, i.e. coherent equivariant sheaves. This subcategory of coherent
sheaves is a finite tensor category which is equivalent to the category of finite-
dimensional u(Gq)-representations, via the above equivalence. One can also show

that all objects in FKGq are flat over Ǧ. At odd order q this follows by [80,
Theorem 5], and at even order q this can be argued from the materials of Section
6.2.

From the above geometric perspective the de-equivariantization map for (RepGq)Ǧ
becomes an equivariant vector bundle map E− : RepGq → FKGq, EV = OǦ ⊗k V ,
which we still refer to as the de-equivariantization functor. One sees directly that
the equivalence of Theorem 3.7 fits into a diagram

RepGq

res

&&

E−

zz
FKGq

∼
1∗

// Repu(Gq).

From this point on (up to Section 14, that is) we essentially forget about the Hopf
algebra u(Gq), and work strictly with its geometric incarnation FKGq.

3.7. The Ǧ-action on the quantum Frobenius kernel. As explained in [8,
30] we have a translation action of Ǧ on the category FKGq = QCoh(Ǧ)Gq of

Gq-equivariant sheaves. This gives an action of Ǧ on FKGq by braided tensor
automorphisms. This action is algebraic, in the precise sense of [66, Appendix A],

and we have the corresponding group map Ǧ → Autbr⊗ (FKGq). In terms of this

translation action of Ǧ, the de-equivariantization map from the big quantum group
restricts to an equivalence

E− : RepGq
∼−→ (FKGq)

Ǧ

onto the monoidal category of Ǧ-equivariant objects in FKGq [8, Proposition 4.4].
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One can translate much of the analysis in this text from the small quantum
group to the big quantum group by restricting to Ǧ-equivariant objects in FKGq.
One can compare, for example, with [7].

4. The quantum Borel and Kempf’s vanishing

We give a presentation of the (positive) small quantum Borel which is in line with
the presentation of Section 3 for the small quantum group. We subsequently provide
a spectral sequence relating cohomology for the big and small quantum Borels, and
recall a statement of Kempf’s vanishing theorem in the quantum context.

4.1. Quantum Frobenius for the Borel, and de-equivariantization. As with
the (big) quantum group, we let RepBq denote the category of integrable Uq(b)-
representations which are appropriately graded by the character lattice X. The
quantum Frobenius for the quantum group induces a quantum Frobenius for the
Borel, Fr : Rep B̌ → RepBq [62]. This quantum Frobenius identifies Rep B̌ with
the full subcategory of Bq-representations whose X-grading is supported on the
sublattice XM (see Section 3.2).

The functor Fr is a fully faithful tensor embedding, in the sense that its image
is closed under taking subquotients. This implies that the corresponding Hopf
algebra map fr : O(B̌) → O(Bq), which one can obtain directly by Tannakian
reconstruction, is an inclusion [75, Lemma 2.2.13].

We now consider the restriction functor RepBq → Repu(Bq), where u(Bq) is the
subalgebra in u(Gq) generated by the grouplikes and the positive root vectors. As
in the case of the full group, u(Bq) is naturally a quasi-Hopf algebra at even order
q and the restriction functor is given a tensor structure via a choice of “balancing
function”, as in [66, Proposition 4.6] [32, Theorem 5.12.7]. We restrict our attention
to the algebra structure on u(Bq) however to obtain a consistent presentation.

By [75, Lemma 2.2.13], surjectivity of the above restriction functor implies that
the associated coalgebra map O(Bq) → (u(Bq))

∗ is surjective. Furthermore, an
object in RepBq is in the image of quantum Frobenius if and only if that object
has trivial restriction to u(Bq). Since u(Bq) is normal in the big quantum Borel

[62, Proposition 35.3.1], it follows that O(B̌) is identified with the u(Bq)-invariants,

or (u(Bq))
∗-coinvariants, in the quantum function algebra O(B̌) = O(Bq)

u(Bq) via

the map fr : O(B̌)→ O(Bq).
To rephrase what we have just said; we observe an exact sequence of coalgebras

k → O(B̌)
fr→ O(Bq)→ (u(Bq))

∗ → k

which corresponds to, and is (re)constructed from, the exact sequence of tensor
categories

Vect→ Rep B̌
Fr−→ RepBq → Rep(u(Bq))→ Vect

[17, Definition 3.7] (cf. [31]).

Proposition 4.1. The quantum function algebra O(Bq) is faithfully flat over O(B̌),
and injective over u(Bq).

Proof. Faithful flatness of O(Bq) over O(B̌) follows by Masuoka [63, Theorem 1.3].
The same result [63, Theorem 1.3] tells us that O(Bq) is coflat over (u(Bq))

∗.
Equivalently, O(Bq) is injectivity over u(Bq). �

We also need the following centrality lemma.
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Lemma 4.2. The q-exponentiated, normalized Killing form Ω−1 (see Section 3.2)
provides the quantum Frobenius functor Fr : Rep B̌ → RepBq with a central struc-
ture

symmV,W : V ⊗ Fr(W )→ Fr(W )⊗ V, v ⊗ w 7→ Ω−1(w ⊗ v).

Proof. The fact that Ω is defined by a bilinear form q(−,−) implies that the oper-
ations symmV,W are associative, relative to the actions of Rep B̌ and RepBq on

the left and right. The fact that this form vanishes on the dual lattice XM ×XM

furthermore implies that symmV,W recovers the usual (trivial) symmetry on Rep B̌
whenever V is in the image of quantum Frobenius, and hence that symmV,W is

compatible with the original braiding on Rep B̌. All that is left to show is that
symmV,W is a map of Bq-representations at all V and W . Equivalently, if we con-

sider the Hopf embedding fr : O(B̌) → O(Bq) defined by quantum Frobenius, we
must show that the diagram

O(Bq)⊗ O(B̌)
AdΩ−1 //

swap
((

O(Bq)⊗ O(B̌) // O(Bq)

O(B̌)⊗ O(Bq)

88
(10)

commutes (cf. [76, Definition 2.4.4, Theorem 2.4.5]). Here swap denotes the trivial
vector space symmetry and the two maps to O(Bq) are given by multiplication.

However, we have the corresponding diagram for the quantum group

O(Gq)⊗ O(Ǧ)
AdR //

swap
((

O(Gq)⊗ O(Ǧ) // O(Gq)

O(Ǧ)⊗ O(Gq)

88
(11)

[76, Theorem 2.4.5] and note that the element R acts as Ω−1 when applied to the
product O(Gq)⊗ O(Ǧ), so that AdR reduces to AdΩ−1 in the above diagram. We

then obtain (10) from (11) by applying the Hopf surjections O(Ǧ) → O(B̌) and
O(Gq)→ O(Bq). �

Remark 4.3. When q is of odd order the form appearing in the operation symmV,W

is identically 1, and the symmetry of Lemma 4.2 collapses to the standard vector
space symmetry.

As with the quantum group, we consider the monoidal category (RepBq)B̌ =

O(B̌)M
O(Bq) of O(B̌)-modules in RepBq [71, Theorem 2.5], and define the quantum

Frobenius kernel FKBq for the quantum Borel as the corresponding (monoidal)

category of Bq-equivariant sheaves on B̌,

FKBq := QCoh(B̌)Bq ∼= (RepBq)B̌ .

The following is an application of Proposition 4.1 and [80, Theorem 1].

Corollary 4.4. Taking the fiber at the identity 1 : Spec(k) → B̌ provides an
equivalence of monoidal categories

1∗ : FKBq
∼→ Repu(Bq).
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Proof. The fact that 1∗ is a linear equivalence follows from the aforementioned
results, and the usual monoidal structure on the pullback functor endows 1∗ with
a monoidal structure when q is of odd order. At even order q monoidality of 1∗ is
established as in [66, Proposition 7.3]. �

As with the quantum Frobenius kernel, the compact/dualizable objects in FKBq
are precisely those equivariant sheaves which are coherent over B̌, and all objects
in FKBq are flat over B̌ (cf. [63, Corollary 1.5]).

4.2. A spectral sequences for Bq-extensions.

Lemma 4.5 ([28]). An object V in RepBq is injective if and only if V is a summand
of some additive power ⊕i∈IO(Bq).

Proof. Comultiplication provides an injective comodule map V → V ⊗O(Bq), where
V is the vector space associated to the representation V . Since any cofree comodule
is injective [28], this inclusion is split. �

Since the u(Bq)-invariants in O(Bq) are precisely the classical algebra O(B̌), we
observe the following.

Corollary 4.6. If W is injective over Bq, and V is a finite-dimensional, then

Homu(Bq)(V,W ) is an injective B̌-representation.

Proof. We have Homu(Bq)(V,W ) = Homu(Bq)(k,
∗V ⊗W ), and ∗V ⊗W is injective

over Bq in this case. So it suffices to assume V = k, in which case the result follows

by Lemma 4.5 and the calculation O(B̌) = O(Bq)
u(Bq). �

Proposition 4.7. Let V and W be in Rep(Bq), and assume that V is finite-
dimensional. There is a natural isomorphism

RHomB(k,RHomu(Bq)(V,W )) ∼= RHomBq (V,W ),

and subsequent spectral sequence

Ei,j2 = ExtiB(k,Extju(Bq)
(V,W )) ⇒ Exti+jBq

(V,W ).

Proof. The quantum function algebra O(Bq) is an injective u(Bq)-module, by
Proposition 4.1. It follows by Lemma 4.5 that any injective Bq-representation
restricts to an injective u(Bq)-representation. So the result follows by Corollary
4.6. �

4.3. Kempf vanishing and a transfer theorem. We recall some essential rela-
tions between quantum group representations and representations for the quantum
Borel. The following vanishing result, which first appears in works of Andersen,
Polo, and Wen [5, 3] with some restrictions on the order of q, appears in complete
generality in works of Woodock and Ryom-Hasen [81, Theorem 8.7] [73, Lemma
4.3, Theorem 5.5].

Theorem 4.8. Let I0 denote induction from the quantum Borel, I0 : RepBq →
RepGq.

(1) I0(1) = 1.
(2) The higher derived functors I>0(1) vanish.

We can now employ the information of Theorem 4.8 and follow exactly the proof
of [20, Theorem 2.1] to observe the following transfer theorem.
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Theorem 4.9 ([20]). For arbitrary V and W in RepGq, and i ≥ 0, the restriction
functor RepGq → RepBq induces an isomorphism on cohomology

ExtiGq (V,W )
∼=−→ ExtiBq (V,W ).

5. A complete family of small quantum Borels

We extend the construction of the positive small quantum Borel, as in Corollary
4.4 above, to provide a family of small quantum Borels which are parametrized by
points in the flag variety Ǧ/B̌. As far as we understand this construction, and even
the assertion that there are small quantum Borels associated to arbitrary Borel
subgroups in Ǧ, is new.

5.1. Small quantum Borels. For any k-point λ : Spec(k) → Ǧ/B̌ we have the
corresponding B̌-coset ιλ : B̌λ → Ǧ, which is the fiber of λ along the quotient
map π : Ǧ → Ǧ/B̌. This coset is a B̌-torsor under the right translation action of
B̌ and we have the associated central algebra object O(B̌λ) in Rep B̌ ⊂ RepBq.

We consider the monoidal category (RepBq)B̌λ of O(B̌λ)-modules in RepBq and
subsequent category

Bλ := QCoh(B̌λ)Bq ∼= (RepBq)B̌λ

of Bq-equivariant sheaves on B̌λ [71, Theorem 2.5].

Pulling back along the inclusion ιλ : B̌λ → Ǧ provides a central monoidal functor

resλ := ι∗λ : FKGq → Bλ

with central structure induced by the R-matrix on global sections

γM,N : M ⊗ resλ(N)→ resλ(N)⊗M, γM,N (m⊗ n) = R21(n⊗m).

Algebraically, resλ restricts from O(Ǧ)-modules in RepGq to modules in RepBq,

then applies base change O(B̌λ) ⊗O(Ǧ) −. We have B1 = FKBq and the functor
res1 : FKGq → FKBq is identified with the standard restriction functor for the
small quantum group, in the sense that the diagram

FKGq
res1 //

1∗ ∼
��

FKBq

1∗ ∼
��

Repu(Gq)
res // Repu(Bq)

(12)

commutes.
At a general closed point λ, any choice of a point x : Spec(k) → B̌λ provides a

B̌-equivariant isomorphism x · − : B̌ → B̌λ. Taking global sections then provides
an isomorphism x : O(B̌λ) → O(B̌) of algebra objects in Rep B̌. So we see that
pushing forward along x provides an equivalence of tensor categories x : B1 → Bλ

which fits into a diagram

FKGq
x
∼

//

res

��

FKGq

resλ

��
B1

x
∼

// Bλ.

(13)
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Now, let us consider an arbitrary geometric point λ : Spec(K)→ Ǧ/B̌. At λ we
again have the fiber ιλ : B̌λ → G, which now has the structure of a K-scheme, and
which is a torsor over B̌K . We consider the monoidal category

Bλ := QCoh(B̌λ)(BK)q

of equivariant sheaves relative to the base change (BK)q. Pulling back along ιλ
again provides a central monoidal functor

resλ := ι∗λ : FKGq → Bλ

which factors as a base change map composed with restriction along ιK,λ

resλ =
(

FKGq
(−)K−→ FK(GK)q

resK,λ−→ Bλ

)
.

All of this is to say that, after base change, the construction of Bλ at a geometric
point for Ǧ/B̌ is no different from the construction at a closed point.

Definition 5.1. For a given geometric point λ : Spec(K) → Ǧ/B̌, the FKGq-
central, monoidal category Bλ is called the small quantum Borel at λ.

The following Proposition is deduced from the equivalence x : (B1)K
∼→ Bλ

provided by any choice of K-point x : Spec(K)→ B̌λ.

Proposition 5.2. At each geometric point λ : Spec(K) → Ǧ/B̌ the monoidal
category Bλ has the following properties:

• Bλ has enough projectives and injectives, and an object is projective if and
only if it is injective ( [35]).
• Bλ admits a compact projective generator.
• The compact objects in Bλ are precisely those (BK)q-equivariant sheaves

which are coherent over B̌λ, and all compact objects are dualizable.
• Coherent sheaves in Bλ form a finite tensor subcategory which is of (Frobenius-

Perron) dimension dimu(Bq).

• All objects in Bλ are flat over B̌λ.
• The central tensor functor resK,λ : FK(GK)q → Bλ is surjective.
• resK,λ : FK(GK)q → Bλ sends projectives to projectives ( [34, Theorem

2.5]).

Remark 5.3. The analogous construction in finite characteristic resλ : Rep G(1)
∼=

FK G → Bλ is explicitly identified, via Tannakian reconstruction [27, Corollary
2.9, Theorem 3.2], with the closed embedding of the Frobenius kernel Bλ

(1) in G(1),

where Bλ ⊂ GK is the Borel subgroup corresponding to λ : Spec(K)→ G(1)/B(1).

Remark 5.4. For an explicit indication that the family {Bλ : λ a geom point for Ǧ/B̌}
is “complete” one can see [67, Theorem 13.1].

5.2. A notational comment. As mentioned in Section 3, the small quantum
group is almost never referenced in its linear form u(Gq) in this text. We will,
however, make extensive use of the algebra u(Bq) throughout. Furthermore, the
algebra u(Bq) will often appear as a subscript in formulas. For this reason we adopt
the notation

u := u(Bq)

globally throughout this document. An unlabeled algebra u which appears anywhere
in the text is always the small quantum enveloping algebra u(Bq) for the positive
Borel.
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6. The half-quantum flag variety

In this section we introduce the category of sheaves QCoh(Xq) on the half-
quantum flag variety. In light of the construction of the small quantum Borels as
equivariant sheaves on the cosets B̌λ, one might think of the category QCoh(Xq)
as a universal small quantum Borel for G at q (see also Section 11 below).

Just as one considers each Bλ as a K-linear monoidal category, one should
consider the category of sheaves on the half-quantum flag variety as a Ǧ/B̌-linear
monoidal category. Such linearity can be expressed via an action of the category of
sheaves over the classical flag variety on QCoh(Xq).

6.1. The half-quantum flag variety. We consider the noncommutative space
Xq := Ǧ/Bq, where the quotient here is interpreted as a stack quotient. Though
this space may not be well-defined, we have a clear presentation of its category of
sheaves.

Definition 6.1. The category of quasi-coherent sheaves for the half-quantum flag
variety is the abelian monoidal category

QCoh(Xq) := QCoh(Ǧ)Bq ∼= {Arbitrary O(Ǧ)-modules in RepBq}. (14)

We let Coh(Xq) denote the full monoidal subcategory of sheaves which are coherent

over Ǧ.

To recall, quantum Frobenius provides a sequence of central tensor functors
Rep Ǧ→ Rep B̌ → RepBq through which we view O(Ǧ) as a central algebra object

in RepBq, and consider the corresponding monoidal category of O(Ǧ)-modules
with product ⊗ = ⊗O(Ǧ) [71, Theorem 2.5] (see also [55, Theorem 1.5]). This is

the module category considered at (14).

Definition 6.2. An object M in QCoh(Xq) is called flat if both operations −⊗M
and M ⊗− are exact.

As with the usual flag variety [50, I.5.8] [79, 3.3], we have an equivariant vector
bundle functor

E− : RepBq → QCoh(Xq), EV := OǦ ⊗k V.
This functor is exact and monoidal, and has a (non-monoidal) right adjoint provided
by the forgetful functor

−|Bq : QCoh(Xq)→ RepBq,

which is defined explicitly by applying global sections M |Bq = Γ(Ǧ,M) and forget-

ting the O(Ǧ)-action (cf. Section 2.5).

Lemma 6.3. The category QCoh(Xq) is complete, in the sense that it has all set
indexed limits, and has enough injectives.

Proof. The point is that QCoh(Xq) is a Grothendieck abelian category. That is to
say, QCoh(Xq) is cocomplete, has exact filtered colimits, and admits a generator.
All Grothendieck categories are complete and have enough injectives [44, Théorème
1.10.1].

The only controversial issue here is the existence of a generator. However, since
repBq is essentially small we can choose a set of representations {Vi}i∈I so that
each object in repBq admits a non-zero map from some Vi. The object ⊕i∈IEVi
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is then a generator for QCoh(Xq), where EV is the vector bundle associated to a
given Bq-representation V . �

Remark 6.4. Consider any lift W of a projective generator for Repu(Bq) to
RepBq. The category QCoh(Xq) is more specifically generated by the orbit of
the associated vector bundle ⊕n≥0L⊗nρ ⊗ EW under the action of the ample line
bundle L−ρ for the flag variety [50, Proposition 4.4].

6.2. The monoidal structure on QCoh(Xq), in geometric terms. We take
a moment to explain how one understands QCoh(Xq) explicitly as a monoidal

category of sheaves on Ǧ.
At even order q there is a left/right distinction for O(Ǧ)-modules in RepBq, and

we explicitly realize such modules as sheaves on Ǧ via the right action. This gives
us our category QCoh(Xq) = QCoh(Ǧ)Bq . Though QCoh(Xq) is not classical, i.e.
sheaves on an actual stack, its monoidal structure is describable in purely classical
terms.

Let Tq ⊂ Bq denote the quantum torus, which just accounts for the X-gradings
on objects in RepBq. Note that Tq is an actual group scheme Tq = Spec(kX), and

that our informal translation action of Bq on Ǧ restricts to an actual translation

action of Tq on Ǧ. We furthermore have the subgroup A ⊂ Tq, O(A) = k(X/XM ),

and restrict this Tq-action to obtain an A-action on Ǧ. So we have the sequence of
forgetful functors

QCoh(Xq)→ QCoh(Ǧ)Tq → QCoh(Ǧ)A.

We note that the action of A here is actually trivial, since the X-grading on O(Ǧ)
is concentrated on the subgroup XM ⊂ X. Hence A-equivariant sheaves on Ǧ are
just sheaves with a grading by the character group A∨ = X/XM .

For any µ ∈ X we consider the algebra automorphism µ# : O(Ǧ)→ O(Ǧ) which
is defined on X-homogeneous elements as µ#(x) = q(µ,deg(x))x. These automor-
phism vanish for µ ∈ XM and hence provide a group map

σ : (A∨)op → AutSch /k(Ǧ) (15)

from the characters A∨.
Now, although the objects in QCoh(Ǧ)A are classical, we can introduce some

quantum aspects by twisting the tensor product via the automorphisms (15). In
particular, we decompose any object in QCoh(Ǧ)A into character sheaves F =
⊕µ̄Fµ̄, and we define a new product

G ⊗new F :=
⊕
µ̄∈A∨

σ(µ̄)∗G ⊗OǦ Fµ̄. (16)

So we obtain a natural monoidal structure on QCoh(Ǧ)A under which it is inter-
preted as a monoidal category of quantum equivariant sheaves. Under this quantum
tensor product the forgetful functor

F : QCoh(Xq)→ QCoh(Ǧ)A

is naturally monoidal, with structure maps F (M) ⊗new F (N) = F (M ⊗ N) given
by the identity. One checks this directly by examining how the form Ω−1 translates
right O(Ǧ)-modules to left O(Ǧ)-modules in RepBq.

Proposition 6.5. An object in QCoh(Xq) is flat whenever its image in QCoh(Ǧ),
under the forgetful functor, is flat.
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Proof. Since the product on QCoh(Xq) is given by the product (16) on QCoh(Ǧ)A,

it suffices to show that objects in QCoh(Ǧ)A are flat for the new product whenever
they are flat for the classical product ⊗OǦ . However, this is clear since a sum of

sheaves on Ǧ is flat if and only if each summand is flat, and since the automorphisms
σ(µ̄)∗ preserve flatness. �

We note that every object in QCoh(Xq) admits a surjection E →M from a sum

of equivariant vector bundles, and such bundles have flat image in QCoh(Ǧ). So
QCoh(Xq) has enough flat sheaves.

Corollary 6.6. Every object in QCoh(Xq) admits a bounded resolution by flat
sheaves.

Proof. Follows from Proposition 6.5 and the fact that Ǧ has finite flat dimension.
�

Via a completely similar analysis one sees that the quantum product on QCoh(Ǧ)A

also realizes the monoidal structure on FKGq = QCoh(Ǧ)Gq in geometric terms.

The corresponding result for the small quantum Borel Bλ = QCoh(B̌λ)Bq is ob-
tained by replacing A-equivariant sheaves on Ǧ with the category QCoh(B̌λ)A of
A-equivariant sheaves on the B̌λ, endowed with a tensor structure as in (16).

Remark 6.7. The above presentation is equally valid at odd order q. The group
map (15) just happens to be trivial in this case.

6.3. QCoh(Xq) as a flat family of categories over Ǧ/B̌. The quantum Frobe-
nius maps for Gq and Bq fit into a diagram of central tensor functors

Rep Ǧ
Fr //

res

��

RepGq

res

��
Rep B̌

Fr // RepBq.

This diagram then implies the existence of a fully faithful monoidal embedding

QCoh(Ǧ/B̌)
π∗→ QCoh(Ǧ)B̌ → QCoh(Ǧ)Bq = QCoh(Xq). (17)

We let ζ∗ denote this embedding. We note that ζ∗ : QCoh(Ǧ/B̌) → QCoh(Xq)
inherits a natural central structure which is defined on global sections by the q-
exponentiated Killing form

symmM,F : M ⊗ ζ∗(F )→ ζ∗(F )⊗M, symmM,F (m⊗ s) = Ω−1(s⊗m). (18)

In accordance with the language of Section 2.6 we have the following.

Proposition 6.8. The central tensor functor ζ∗ gives QCoh(Xq) the structure of

a flat family of tensor categories over Ǧ/B̌.

Proof. The functor ζ∗ is exact, as its a composite of exact functors, and the cen-
tral structure is given above. We must show that QCoh(Xq) is generated by a
subcategory of compact rigid objects.

We have that QCoh(Xq) is generated by the equivariant vector bundles EV ,
with V a finite-dimensional Bq-representation. Each such vector bundle EV is
dualizable as it is the image of a dualizable object under the monoidal functor E− :
RepBq → QCoh(Xq) [32, Exercise 2.10.6]. These EV are additionally compact as
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the generating representations V are compact in RepBq, and the right adjoint −|Bq
to the equivariant vector bundle functor commutes with colimits. So QCoh(Xq) is
in fact compactly-rigidly generated. �

For F in QCoh(Ǧ/B̌) we let

F ?− : Coh(Xq)→ Coh(Xq)

denote the corresponding action map, F ?− = ζ∗(F )⊗−. The operation F ?−
is exact whenever F is flat over Ǧ/B̌, and − ? M is exat whenever M is flat over
Xq.

Although ζ∗ is not precisely the pullback equivalence π∗ : QCoh(Ǧ/B̌)
∼→

QCoh(Ǧ)B̌ , due to the appearance of quantum Frobenius, we will sometimes abuse
notation and write simply π∗(F ) for the object ζ∗(F ).

6.4. Sheafy morphisms over Ǧ/B̌. We have just seen that QCoh(Xq) admits a

natural module category structure over QCoh(Ǧ/B̌), and so becomes a flat family
of tensor categories over the flag variety. Inner morphisms for this module cate-
gory/sheaf structure provide a sheaf-Hom functor for QCoh(Xq).

Lemma 6.9. For any M in QCoh(Xq), the operation − ? M : QCoh(Ǧ/B̌) →
QCoh(Xq) has a right adjoint HomXq (M,−). The functors HomXq (M,−) are
furthermore natural in M , so that we have a bifunctor

HomXq : QCoh(Xq)
op ×QCoh(Xq)→ QCoh(Xq).

Proof. The functor − ?M commutes with colimits and thus admits a right adjoint.
Naturality in M follows by Yoneda’s lemma. �

We note that the functor HomXq is left exact in both coordinates, since the
functor

HomǦ/B̌(F ,HomXq (−,−)) ∼= HomǦ/B̌(F ?−,−)

is left exact in each coordinate at arbitrary F .
In Sections 8–9 we observe that, via general nonsense with adjunctions (cf.

[70, 34]), the bifunctor HomXq admits natural composition and monoidal structure
maps. These structure maps localize the monoidal structure on QCoh(Xq), in the
sense that they recover the composition and tensor structure maps for QCoh(Xq)
after taking global sections. In the language of Section 2.7, we are claiming specif-
ically that the pairing

( obj QCoh(Xq), HomXq ) (19)

provides a monoidal enhancement of QCoh(Xq) in the category of sheaves over the
flag variety.

Before delving further into these issues, we explain a fundamental relationship
between the half-quantum flag variety and the small quantum group. This rela-
tionship motivates our consideration of the aforementioned enhancement, and our
consideration of the half-quantum flag variety more generally.
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7. The universal restriction functor κ∗ : FKGq → QCoh(Xq)

Let us consider again the quantum Frobenius kernel FKGq. We have the obvious
forgetful functor

FKGq = QCoh(Ǧ)Gq → QCoh(Ǧ)Bq = QCoh(Xq) (20)

This functor is immediately seen to be exact and monoidal, and the R-matrix for
the quantum group provides it with a central structure (see Section 7.3 below). We
refer to the above functor as the universal restriction functor, and denote it

κ∗ : FKGq → QCoh(Xq).

Our language is informed by certain observations which we articulate in Section 11.
Below we prove that the universal restriction functor is fully faithful, and induces

a fully faithful functor on unbounded derived categories as well. In the statement
of the following theorem, D(FKGq) denotes the unbounded derived category of
complexes in FKGq, and D(Xq) is the unbounded derived category of complexes
in QCoh(Xq).

Theorem 7.1. The central tensor functor κ∗ : FKGq → QCoh(Xq) is fully faithful,
and induces a fully faithful monoidal embedding

κ∗(= Lκ∗) : D(FKGq)→ D(Xq)

on the corresponding unbounded derived categories.

Proof. Follows immediately by Theorem 7.4 below. �

Theorem 7.1 is essentially a consequence of Kempf vanishing [54], or rather the
quantum analog of Kempf vanishing provided in [5, 81, 73].

7.1. Compact sheaves in D(Xq). We begin with a little lemma, the proof of
which is deferred to Section 9.3.

Lemma 7.2. Suppose that V is a finite-dimensional Bq-representation and that the
restriction of V to the small quantum Borel u(Bq) is projective. Then the associated
vector bundle EV over Xq is compact in D(Xq). Similarly, any summand of EV is
compact in D(Xq).

Now, by Proposition 3.4, all coherent projectives in FKGq are summands of
vector bundles EV with V projective over Gq, and hence projective over u(Gq) and
u(Bq) as well (see Proposition 5.2). So Lemma 7.2 implies the following.

Corollary 7.3. The functor κ∗ : D(FKGq) → D(Xq) sends compact objects in
D(FKGq) to compact objects in D(Xq).

7.2. Analysis of universal restriction via extensions.

Theorem 7.4. The forgetful κ∗ induces an isomorphism on cohomology

ExtiFKGq (M,N)
∼=−→ ExtiXq (M,N), (21)

for all i and all M and N in D(FKGq).

Proof. The forgetful functor is exact and hence induces a map on unbounded de-
rived categories. We first claim that the map on extensions is an isomorphism
whenever M is in the image of the de-equivariantization/equivariant vector bundle
map E− : RepGq → FKGq, and N is arbitrary in FKGq. Recall that this vector
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bundle functor has an exact right adjoint −|Gq : FKGq → RepGq provided by

taking global sections and forgetting the O(Ǧ)-action, and we have the analogous
adjunction for QCoh(Xq), as discussed in Section 6.1. (We make no notational
distinction between vector bundles in FKGq and in QCoh(Xq), and rely on the
context to distinguish the two classes of sheaves.)

Since the equivariant vector bundle functors for FKGq and QCoh(Xq) are exact,
the adjoints −|Gq and −|Bq preserve injectives. So we have isomorphisms

Ext∗FKGq (EV , N)
∼=→ Ext∗Gq (V,N |Gq ) and Ext∗Xq (EV , N)

∼=→ Ext∗Bq (V,N |Bq )

which fit into a diagram

Ext∗FKGq (EV , N)
κ∗ //

∼=
��

Ext∗Xq (EV , N)

∼=
��

Ext∗Gq (V,N |Gq )
restrict
∼=

// Ext∗Bq (V,N |Bq ).

The bottom morphism here is an isomorphism by Kempf vanishing, or more pre-
cisely by the transfer result of Theorem 4.9. So we conclude that the top map is
an isomorphism.

We now understand that the map (21) is an isomorphism whenever M = EV
for some V in RepGq and N is arbitrary in FKGq. It follows that (21) is an
isomorphism whenever M is a summand of a vector bundle EV and N is arbitrary
in FKGq, and hence whenever M is simple or projective in FKGq by Proposition
3.4.

Since coherent projectives in FKGq are compact in D(FKGq), and the functor
D(FKGq) → D(Xq) preserves compact objects by Corollary 7.3, it follows that
(21) is an isomorphism whenever M is a coherent projective in FKGq and N is in
the localizing subcategory

Loc(FKGq) = Loc(D(FKGq)
♥) ⊂ D(FKGq) (22)

generated by the heart of the derived category. But, this localizing subcategory is
all of D(FKGq) [56, §5.10], so that the map (21) is an isomorphism whenever M
is coherent projective and N is arbitrary in D(FKGq). We use the more precise
identification

Loc(proj FKGq) = D(FKGq)

[56, §5.10], where proj FKGq denotes the category of coherent projectives in FKGq,
to see now that (21) is an isomorphism at arbitrary M and N . �

7.3. A stronger centrality for the embedding κ∗. We have argued above that
one should consider QCoh(Xq) as a flat family of tensor categories over the flag
variety. Hence the appropriate “Drinfeld center” for QCoh(Xq) should be the cen-
tralizer

ZǦ/B̌(QCoh(Xq)) := the centralizer of QCoh(Ǧ/B̌) in Z(QCoh(Xq)).

We have the central structure κ̃∗ : FKGq → Z(QCoh(Xq)) for universal restriction
which is provided by the R-matrix in the expected way,

γN,M : N ⊗ κ∗(M)→ κ∗(M)⊗N, γN,M (n,m) = R21(m⊗ n). (23)
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One sees directly that for N in the image of the embedding ζ : QCoh(Ǧ/B̌) →
QCoh(Xq), γN,M reduces to the symmetry provided by the exponentiated Killing
form symmN,M . Since the Killing form is a symmetric, square zero operation on
all such products N ⊗ M it follows that the image of κ̃∗ does in fact lie in the
centralizer of QCoh(Ǧ/B̌), so that we restrict to obtain the desired “QCoh(Ǧ/B̌)-
linear” central structure

µ̃∗ : FKGq → ZǦ/B̌(QCoh(Xq)). (24)

When we speak of the universal restriction functor as a central tensor functor we
mean specifically the functor κ∗ : FKGq → QCoh(Xq) along with the lift (24)
provided by the half-braidings (23).

7.4. The geometry of QCoh(Xq) and the quantum Frobenius kernel. We
conclude the section with some remarks on the “geometry” of the category QCoh(Xq),
and how this geometry does (not) transfer to FKGq.

As was explained previously, the QCoh(Ǧ/B̌)-action on QCoh(Xq) endows this
category with a kind of external geometry. This external geometry is realized by
the construction of sections

QCoh(Xq)|f := QCoh(S)⊗QCoh(Ǧ/B̌) QCoh(Xq)

over arbitrary maps f : S → Ǧ/B̌. (See section 11, and compare with [39].)
This local structure on QCoh(Xq) does not restrict to provide any local structure
on the category FKGq. In particular, FKGq is not stable under the action of

QCoh(Ǧ/B̌) on QCoh(Xq). This is clear since QCoh(Ǧ/B̌) has infinitely many

invertible objects, provided by the collection of 1-dimensional B̌-representations,
while FKGq has only finitely many invertible objects.

However, the action of QCoh(Ǧ/B̌) provides an additional “internal geometry”
on the category QCoh(Xq). This internal geometry is realized by the inner-Homs
HomXq , as described in Lemma 6.9, and these inner-Homs provide an enhancement
for QCoh(Xq) in the category of sheaves over the flag variety:

QCoh(Xq)  QCohEnh(Xq) := (obj QCoh(Xq), HomXq ).

This internal geometry is less stable than the external geometry discussed above,
but does endow the category of small quantum group representations with a kind
of local structure over Ǧ/B̌. In particular, since the embedding κ∗ : FKGq →
QCoh(Xq) is fully faithful, the aforementioned enhancement for QCoh(Xq) will
restrict to a monoidal enhancement for the small quantum group

FKGq  (obj FKGq, HomFKGq ),

where we take HomFKGq := HomXq (κ
∗−, κ∗−). This local structure for the

category of quantum group representations is not discussed in detail in this text,
but plays a fundamental role in our related study of support theory [67, Part II].

In Section 8 and 9 we clarify some basic claims about the internal geometry
of QCoh(Xq), as discussed above. We subsequently explain how the enhancement

QCohEnh(Xq) for QCoh(Xq) readily derives to provide an enhancement for the
derived category D(Xq). We then turn to a discussion of relationships between Xq

and the quantum Borels Bλ.
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8. Structure of Hom I: Linearity, composition, and tensoring

In the next two sections we provide an analysis of the inner-Hom, or sheaf-Hom,
functor for the action of QCoh(Ǧ/B̌) on QCoh(Xq). Here we show that sheaf-
Homs admit natural composition and monoidal structure maps, and so provide
a monoidal enhancement QCohEnh(Xq) for the monoidal category of sheaves on
the half-quantum flag variety. Many of the results of this section are completely
general and completely formal. So some proofs are sketched and/or delayed to the
appendix.

In the subsequent section, Section 9, we provide an explicit description of the
sheafy morphisms HomXq and describe objects in QCoh(Xq) which are projective
for this functor.

Remark 8.1. Sections 8–10 are purely technical, as we are only verifying some
expected properties for the inner-Hom functor, both at the abelian and derived
levels. So one might skim these sections on a first reading. The next substantial
results come in Sections 11 and 12, where we calculate the fibers of the category
QCoh(Xq) and the mapping sheaves RHomXq over the flag variety, respectively.

8.1. QCoh(Ǧ/B̌)-linearity of sheaf-Hom. The adjoint to the identity map id :
HomXq (M,N)→HomXq (M,N) provides an evaluation morphism

ev : HomXq (M,N) ? M → N.

The evaluation is just the counit for the (?,Hom)-adjunction. For any F in
QCoh(Ǧ/B̌) the map

id⊗ ev : F ? (HomXq (M,N) ? M)→ F ? N

provides a natural morphism F ? HomXq (M,N) → HomXq (M,F ? N) in the
category of sheaves over the flag variety. In analyzing this natural morphism it is
helpful to consider a notion of projectivity for the sheaf-Hom functor.

Definition 8.2. An object M in QCoh(Xq) is called relatively projective (resp.
relatively injective) if the functor HomXq (M,−) (resp. HomXq (−,M)) is exact.

Discussions of relatively injective and projective sheaves are provided in Lemma
8.10 and Section 9.4 below, respectively.

Lemma 8.3 (cf. [70, Lemma 3.3]). Consider the structural map

F ?HomXq (M,N)→HomXq (M,F ? N) (25)

at M and N in QCoh(Xq), and F in QCoh(Ǧ/B̌). The map (25) is an isomor-
phism under any of the following hypotheses:

• F is a coherent vector bundle.
• M is relatively projective and F is coherent.
• M is coherent and relatively projective, and F is arbitrary.
• M admits a presentation E′ → E → M by coherent, relatively projective

sheaves and F is flat.
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Proof. When F is a vector bundle it is dualizable, so that we have (explicit) natural
isomorphisms [70, Lemma 2.2]

HomǦ/B̌(−,F ?HomXq (M,N)) ∼= HomXq (F
∨ ⊗−,HomXq (M,N))

∼= HomXq ((F
∨ ⊗−) ? M,N)

∼= HomXq (− ? M,F ? N)
∼= HomǦ/B̌(−,HomXq (M,F ? N))

and deduce an isomorphism F ?HomXq (M,N) ∼= HomXq (M,F ?N) via Yoneda.
One traces the identity map through the above sequence to see that this isomor-
phism is in fact just the structure map (25). The second statement follows from the
first, after we resolve F by vector bundles. The third statement follows from the
second and the fact that HomXq (M,−) commutes with colimits in this case. The
fourth statement follows from the second by resolving M by relatively projective
coherent sheaves. �

Remark 8.4. We will see at Corollary 9.4 below that all coherent sheaves in
QCoh(Xq) admit a resolution by relative projectives. So the fourth point of Lemma
8.3 simply says that HomXq (M,−) is linear with respect to the action of flat

sheaves over Ǧ/B̌, whenever M is coherent.

Remark 8.5. One should compare Lemma 8.3 with the familiar case of a linear
category. For a linear category C , i.e. a module category over Vect, we have natural
maps V ⊗k HomC (A,B) → HomC (A, V ⊗k B) which one generally thinks of as
associated to an identification between V ⊗k − and a large coproduct. This map
is an isomorphism provided V is sufficiently finite (dualizable), or A is sufficiently
finite (compact).

8.2. Enhancing QCoh(Xq) via sheaf-Hom. Evaluation for HomXq provides
natural composition functions

◦ : HomXq (M,N)⊗HomXq (L,M)→HomXq (L,N)

which are adjoint to the maps

HomXq (M,N)⊗HomXq (L,M) ? L
id⊗ev−→ HomXq (M,N) ? M

ev→ N.

We also have monoidal structure maps

t : HomXq (M,N)⊗HomXq (M
′, N ′)→Hom(M ⊗M ′, N ⊗N ′)

which are adjoint to the composition

HomXq (M1, N1)⊗HomXq (M2, N2) ? (M1 ⊗M2)

symm−→ (HomXq (M1, N1) ? M1)⊗ (HomXq (M2, N2) ? M2)

ev⊗ev−→ N1 ⊗N2.

(26)

One can check the following basic claim, for which we provide a proof in Appendix
A (cf. [70, 34]).

Proposition 8.6. The composition and monoidal structure maps for HomXq are
associative, and are compatible in the sense of Section 2.7.
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This result says that the pairing of objects from QCoh(Xq), along with the sheaf-
morphisms HomXq , constitutes a monoidal category enriched in the symmetric

monoidal category of quasi-coherent sheaves on Ǧ/B̌.

Definition 8.7. We let QCohEnh(Xq) denote the enriched monoidal category

QCohEnh(Xq) :=
(

obj QCoh(Xq), HomXq

)
,

with composition and tensor structure maps as described above.

As the notation suggests, the category QCohEnh(Xq) does in fact provide an
enhancement for the category of sheaves on the half-quantum flag variety.

Theorem 8.8. The adjunction isomorphism

Γ(Ǧ/B̌,HomXq (−,−))
∼=→ HomXq (−,−)

induces an isomorphism of monoidal categories

Γ(Ǧ/B̌,QCohEnh(Xq))
∼=→ QCoh(Xq).

The proof of Theorem 8.8 is outlined in Appendix A, and is essentially the same
as [72, proof of Lemma 3.4.9], for example. Let us enumerate the main points here
in any case.

Recall that the linear structure on QCoh(Xq) corresponds to an action of Vect
on QCoh(Xq). The inner-Homs with respect to this action are the usual vector
space of morphisms HomXq with expected evaluation

ev : HomXq (M,N)⊗kM → N, f ⊗m 7→ f(m).

This evaluation map specifies a unique binatural morphism

HomXq (M,N)⊗k OǦ/B̌ →HomXq (M,N) (27)

which is compatible with evaluation, in the sense that the diagram

HomXq (M,N)⊗kM

��

// N

HomXq (M,N) ? M

77 (28)

commutes. If we consider HomXq (M,N) as a constant sheaf of vector spaces

on Ǧ/B̌, the map (27) is specified by a morphism of sheaves HomXq (M,N) →
HomXq (M,N), which is in turn specified by its value on global sections.

One can check that the global sections of the map HomXq (M,N)→HomXq (M,N)
of (27) recovers the adjunction isomorphism referenced in Theorem 8.8. One then
uses compatibility with evaluation (28) to see that the adjunction isomorphism is
compatible with composition and the monoidal structure maps, and hence that
QCohEnh(Xq) provides an enhancement of QCoh(Xq) over the flag variety, as
claimed.

8.3. Implications for the quantum Frobenius kernel FKGq. Recall that the

functor κ∗ : FKGq = Coh(Ǧ)Gq → QCoh(Xq) is a monoidal embedding. By

restricting along this embedding the enhancement QCohEnh(Xq) for QCoh(Xq)
restricts to a monoidal enhancement for the quantum Frobenius kernel.
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Theorem 8.9. Let HomFKGq denote the restriction of the inner-Homs HomXq

to the full monoidal subcategory FKGq via the functor κ∗,

HomFKGq (M,N) := HomXq (κ
∗M,κ∗N).

Then the pairing (obj FKGq, HomFKGq ) provides a monoidal enhancement for
the quantum Frobenius kernel FKGq in the category of quasi-coherent sheaves over

the flag variety Ǧ/B̌.

8.4. A local-to-global spectral sequence. The following lemma says that in-
jectives in QCoh(Xq) are relatively injective for the sheaf-Hom functor.

Lemma 8.10. If M is flat over Xq then the functor HomXq (M,−) sends injectives

in QCoh(Xq) to injectives in QCoh(Ǧ/B̌). Additionally, when I is an injective
object QCoh(Xq), the functor HomXq (−, I) is exact.

Proof. Suppose that I is injective over Xq and that M is flat. Then the functor
HomXq (− ⊗M, I) is exact, and hence HomXq (− ? M, I) is an exact functor from

QCoh(Ǧ/B̌). Via adjunction we find that the functor HomXq (−,HomXq (M, I)) is
exact. So HomXq (M, I) is injective.

Now, if I is injective then for all vector bundles E over Ǧ/B̌ the operation
HomǦ/B̌(E ?−, I) is exact, which implies that each functor

HomǦ/B̌(E ,HomXq (−, I))

is exact. This is sufficient to ensure that HomXq (−, I) is exact. �

Recall that we have the natural identification

HomXq (M,N) ∼= HomǦ/B̌(OǦ/B̌ ,HomXq (M,N))

= Γ(Ǧ/B̌,HomXq (M,N))

provided by adjunction. We therefore obtain a natural map

RHomXq (M,N)→ R Γ(Ǧ/B̌,RHomXq (M,N)),

where we derive HomXq (M,−) by taking injective resolutions. Lemma 8.10 implies
that this map is a quasi-isomorphism.

Corollary 8.11. The natural map RHomXq (M,N)→ R Γ(Ǧ/B̌,RHomXq (M,N))
is a quasi-isomorphism. Hence we have a local-to-global spectral sequence

H∗(Ǧ/B̌,E xt∗Xq (M,N)) ⇒ Ext∗Xq (M,N)

at arbitrary M and N in QCoh(Xq).

Remark 8.12. Spectral sequences analogous to Corollary 8.11 can be found in
much earlier works of Suslin, Friedlander, and Bendal [79, Theorem 3.6]. So certain

pieces of the enhancement QCohEnh(Xq), and the universal restriction functor, had
already been employed in works which appeared as early as the 90’s.

9. Structure of Hom II: explicit description of sheaf-Hom

We show that the morphisms HomXq (M,N) are explicitly the descent

HomXq (M,N) = descent of HomQCoh(Ǧ)u(Bq)(M,N)∼ (29)

of morphisms in the category QCoh(Ǧ)u(Bq) of u(Bq)-equivariant sheaves over Ǧ,

whenever M is coherent. Here u(Bq) is taken to act trivially on Ǧ, so that u(Bq)
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acts by OǦ-linear endomorphisms on such sheaves. Also, implicit in the formula (29)

is a claim that the above morphisms over QCoh(Ǧ)u(Bq) admit natural, compatible
actions of O(Ǧ) and B̌, so that the associated sheaf over Ǧ is B̌-equivariant. We
then apply descent to produce a corresponding sheaf on the flag variety. (See
Proposition 9.1 below.) We also describe the composition and tensor structure
maps for HomXq in terms of the formula (29).

9.1. Bq-equivariant structure on HomǦ. Recall that for an algebraic group
H acting on a finite-type scheme Y , the usual sheaf-Hom functor HomY pro-
vides the inner-Homs for the tensor action of Coh(Y )H on itself. We claim that
this is also true when we act via a quantum group. Specifically, we claim that
when M and N are Bq-equivariant sheaves on Ǧ, and M is coherent, the sheaf-
morphisms HomǦ(M,N) admit a natural Bq-equivariant structure. Indeed, the
functor HomǦ(M,−), with its usual evaluation morphism, provides the right ad-
joint for the action of M on QCoh(Xq). We describe the equivariant structure on
HomǦ(M,N) explicitly below.

Let −|Bq : QCoh(Xq) → RepBq denote the global sections functor, which we
understand as adjoint to the vector bundle map E− : RepBq → QCoh(Xq). The
Uq(b)-actions on M |Bq and N |Bq induce an action of Uq(b) on the linear morphisms
Homk(M |Bq , N |Bq ), via the usual formula (x ·f)(m) = x1f(S(x2)m). The compat-

ibility between the O(Ǧ) and Uq(b)-actions on M and N ensure that the subspace

of right O(Ǧ)-linear maps

HomO(Ǧ)(M |Bq , N |Bq ) ⊂ Homk(M |Bq , N |Bq )

forms a Uq(b)-subrepresentation, and the natural left action of O(Ǧ) provides

the space HomO(Ǧ)(M |Bq , N |Bq ) with the structure of a Uq(b)-equivariant O(Ǧ)-
module.

Now, provided M is coherent, the action of Uq(b) on the above O(Ǧ)-linear mor-
phism space integrates to a Bq-action, so that HomO(Ǧ)(M |Bq , N |Bq ) is naturally

an object in the category of relative Hopf modules O(Ǧ)M
O(Bq). Indeed, one can

observe such integrability by resolving M by vector bundles EW → EV → M .
Since

Γ(Ǧ,HomǦ(M,N)) = HomO(Ǧ)(M |Bq , N |Bq )

we see that HomǦ(M,N) is naturally a Bq-equivariant sheaf on Ǧ.
We now understand that we have an endofunctor

HomǦ(M,−) : QCoh(Xq)→ QCoh(Xq)

provided by usual sheaf-Hom. The evaluation maps exhibiting HomǦ(M,−) as
the right adjoint to the functor −⊗M are the expected ones

ev : HomǦ(M,N)⊗M → N, f ⊗m 7→ f(m).

9.2. Explicit description of HomXq . Suppose that M is a coherent sheaf over

Xq. We consider the “quotient stack” Yq = Ǧ/u(Bq) via the trivial action, and

the corresponding category of sheaves QCoh(Yq) = QCoh(Ǧ)u(Bq). These are just
sheaves with an action of u(Bq) by sheaf endomorphisms, and we have the sheafified
morphisms

HomYq = HomǦ(−,−)u(Bq).
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Left exactness of the invariants functor ensures that the sections of HomYq over
opens are as expected,

HomYq (M,N)(U) = HomO(U)(M(U), N(U))u(Bq)

= HomO(U)⊗u(Bq)(M(U), N(U)).

We have the faithful inclusion QCoh(Xq) → QCoh(Yq), as in Section 6.2, and
restrict the domain of HomYq to obtain an operation

HomYq : QCoh(Xq)
op ×QCoh(Xq)→ QCoh(Ǧ)B̌ ,

where the natural B̌-action on HomYq (M,N) is deduced as in Section 9.1.

Proposition 9.1. Let M be in Coh(Xq). Then, at arbitrary N in QCoh(Xq), we
have a natural identification

HomXq (M,N) = descent of the B̌-equivariant sheaf HomYq (M,N).

Under the subsequent natural isomorphism π∗HomXq (M,−) ∼= HomYq (M,−), the
evaluation maps for HomXq are identified with the morphisms

HomYq (M,N)⊗M → N, f ⊗m 7→ f(m).

Proof. By the materials of Section 9.1 we have the adjunction

HomXq (L⊗M,−) ∼= HomXq (L,HomǦ(M,−)).

For any F in QCoh(Ǧ)B̌ ⊂ QCoh(Xq) we have

HomXq (F,−) = HomQCoh(Ǧ)B̌ (F, (−)u(Bq)).

So for F in QCoh(Ǧ/B̌) the above two formulae give

HomXq (F ? M,−) = HomXq (π
∗(F )⊗M,−)

= HomXq (π
∗(F ),HomǦ(M,−))

= HomQCoh(Ǧ)B̌ (π∗(F ),HomǦ(M,−)u(Bq))

∼= HomǦ/B̌(F ,desc of HomYq (M,−)).

(30)

The above formula demonstrates the descent of the sheaf HomYq (M,−) is the
right adjoint to − ? M , and hence identifies HomXq (M,−) with the descent of
HomYq (M,−). Tracing the identity map through the sequence (30) calculates
evaluation for HomXq as the expected morphism

π∗HomXq (M,N)⊗M ∼= HomYq (M,N)⊗M → N, f ⊗m 7→ f(m).

�

For arbitrary M in QCoh(Xq) we may write M as a colimit M = lim−→α
Mα of

coherent sheaves to obtain

HomXq (M,N) = lim←−
α

HomXq (Mα, N),

where the final limit is the limit in the category of quasi-coherent sheaves over Ǧ/B̌.
So, Proposition 9.1 provides a complete description of the inner-Hom functor.
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9.3. Relatively projective sheaves. For any finite-dimensionalBq-representation
V we consider the functor

Homu(Bq)(V,−) : QCoh(Xq)→ QCoh(Ǧ)B̌ ,

where specifically Homu(Bq)(V,−) = Homk(V,−)u(Bq). We have the following de-
scription of sheaf-Hom for the equivariant vector bundles which refines the descrip-
tion of Proposition 9.1.

Proposition 9.2. For any finite-dimensional Bq-representation V , there is a natu-
ral identification between HomXq (EV ,−) and the descent of the functor Homu(Bq)(V,−).

Proof. For any F in QCoh(Ǧ/B̌) we calculate

HomXq (F ? EV ,−) = HomXq (π
∗(F )⊗k V,−)

= HomXq (π
∗(F ),−⊗k V ∗)

= HomXq (π
∗(F ),Homk(V,−))

= HomQCoh(Ǧ)B̌ (π∗(F ),Homk(V,−)u(Bq)) = HomǦ/B̌(F ,desc of Homu(Bq)(V,−)).

Thus, by uniqueness of adjoints, we find that HomXq (EV ,−) is identified with the
descent of the functor Homu(Bq)(V,−). �

As a corollary we observe a natural class of relative projective sheaves in QCoh(Xq).

Corollary 9.3. Suppose that V is a finite-dimensional Bq-representation which is
projective over u(Bq). Then the functor HomXq (EV ,−) is exact.

Proof. To establish exactness of HomXq (EV ,−) it suffices to show that the functor
Homu(Bq)(V,−) is exact. But this follows by projectivity of V over u(Bq). �

Note that any coherent sheaf M in QCoh(Xq) admits a surjection E →M from
an equivariant vector bundle E = EV , with V finite-dimensional and projective
over u(Bq). So Corollary 9.3 implies that the category of coherent sheaves over Xq

has enough relative projectives.

Corollary 9.4. Any coherent sheaf M in QCoh(Xq) admits a resolution · · · →
E−1 → E0 →M by coherent, relatively projective sheaves Ei.

9.4. A proof of Lemma 7.2. At Lemma 7.2 above, we have claimed that the
vector bundle EV is compact in the unbounded derived category D(Xq) whenever
the given Bq-representation V is finite-dimensional and projective over u(Bq). We
can now prove this result.

Proof of Lemma 7.2. We have the functor HomXq (EV ,−) which is the descent of
the functor Homu(Bq)(V,−). This functor is exact, and finiteness of V implies that
Homu(Bq)(V,−) commutes with set indexed sums. Hence these inner-Homs provide
a well-defined operation

HomXq (EV ,−) : D(Xq)→ D(Ǧ/B̌)

which commutes with set indexed sums. We then have

ExtiXq (EV ,−) = ExtiǦ/B̌(OǦ/B̌ ,HomXq (EV ,−))

at each integer i by Corollary 8.11. Compactness of OǦ/B̌ over Ǧ/B̌ therefore
implies compactness of EV over Xq. �
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9.5. Composition and tensor structure maps. Suppose that M is coherent in
QCoh(Xq). From Proposition 9.1 we have an identification

π∗HomXq (M,−) ∼= HomYq (M,−) (31)

under which the evaluation morphisms for HomXq pull back to the usual evaluation
morphisms

HomYq (M,N)⊗M → N, f ⊗m 7→ f(m)

for HomYq . It follows that, under the identification (31), the composition and
tensor maps

◦ : HomXq (M,N)⊗HomXq (L,M)→HomXq (L,N)

and

tens : HomXq (M,N)⊗HomXq (M
′, N ′)→HomXq (M ⊗M ′, N ⊗N ′)

pull back to the expected morphisms

π∗◦ : HomYq (M,N)⊗HomYq (L,M)→HomYq (L,N)
(f, g) 7→ f ◦ g

and

π∗tens : HomYq (M,N)⊗HomYq (M
′, N ′)→HomYq (M ⊗M ′, N ⊗N ′)

(f, f ′) 7→ f ⊗ f ′. (32)

Remark 9.5. To be clear that, when evaluating a product f ⊗ f ′ (32) on homoge-
nous sections of M ⊗M ′, we pick up “Koszul signs”

(f ⊗ f ′)(m⊗m′) = q(deg(f ′),deg(m))f(m)⊗ f ′(m′) = ±f(m)⊗ f ′(m′).
The is due to the presence of the half-braiding in the formula (26). As usual, these
signs vanish at odd order q.

10. The enhanced derived category

In Section 8 we saw that the sheaf-Hom functor HomXq provides a monoidal
enhancement for QCoh(Xq) over the classical flag variety. At this point we want to
provide a corresponding enhancement for the (unbounded) derived category D(Xq)
of quasi-coherent sheaves over the half-quantum flag variety. Given the information
we have already collected, this move to the derived setting is a relatively straight-
forward. We record some of the details here.

10.1. HomXq for complexes. Let dgQCoh(Xq) denote the category of quasi-
coherent dg sheaves on Xq. This is the category of quasi-coherent sheaves M with
a grading M = ⊕n∈ZMn, and a degree 1 square zero map dM : M → M . Mor-
phisms in this category are the usual morphisms of complexes. We similarly define
dgQCoh(Ǧ/B̌). Consider the forgetful functor f : dgQCoh(Xq)→ QCoh(Xq).

Let M and N be in dgQCoh(Xq). For an open U ⊂ Ǧ/B̌ and M in QCoh(Xq)
take M |U := OU ? M . A section

s : OU →HomXq (fM, fN)|U
over an open U ⊂ Ǧ/B̌ is said to be homogenous of degree n if, for all i ∈ Z, the
restriction s|Mi : M i|U → N |U has image in N i+n|U . Here s : M |U → N |U is
specifically the composite

M |U = OU ? M |U →HomXq (fM, fN)|U ? M |U
ev|U→ N |U .
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The collection of degree n maps in HomXq (fM, fN) forms a subsheaf which we
denote

Homn
Xq (M,N) ⊂HomXq (fM, fN).

The sum of all homogeneous morphisms also provides a subsheaf

⊕n∈ZHomn
Xq (M,N) ⊂HomXq (fM, fN).

Definition 10.1. For M and N in dgQCoh(Xq) we define the inner-Hom complex
to be the dg sheaf consisting of all homogenous inner morphisms

HomXq (M,N) = ⊕n∈ZHomn
Xq (M,N)

equipped with the usual differential dHom(M,N) = (dN )∗ − (dM )∗.

We note that, when M is bounded above and N is bounded below, this complex
is just the expected one

HomXq (M,N) = ⊕n∈Z(⊕iHomXq (M
i, N i+n)) along with dHom.

Evaluation for HomXq (fM, fN) restricts to an evaluation map for the Hom com-
plex ev : HomXq (M,N) ? M → N . This evaluation map induces an adjunction

HomdgQCoh(Xq)(F ? M,N)
∼=→ HomdgQCoh(Ǧ/B̌)(F ,HomXq (M,N)).

10.2. Enhancement for the derived category. We consider the central action

? : D(Ǧ/B̌)×D(Xq)→ D(Xq)

for the unbounded derived categories of quasi-coherent sheaves, and we have an
adjunction

HomD(Xq)(F ? M,N) ∼= HomD(Ǧ/B̌)(F ,RHomXq (M,N))

which one deduces abstractly, or from the adjunction at the cochain level de-
scribed above. Here the ?-action is derived by resolving M by K-flat sheaves and
RHomXq (M,N) = HomXq (M, IN ) for a K-injective resolution N → IN [78, Tag
079P]. Evaluation

ev : RHomXq (M,N)⊗M → N

provides composition and tensor structure maps for derived sheaf-Hom RHomXq

so that we obtain a monoidal category

DEnh(Xq) = (obD(Xq), RHomXq )

which is enriched in the unbounded derived category of quasi-coherent sheaves on
the flag variety.

We have the derived global sections

H0(Ǧ/B̌,−) = HomD(Ǧ/B̌)(OǦ/B̌ ,−)

and corresponding adjunction isomorphism

HomD(Xq)

∼=−→ H0(Ǧ/B̌,RHomXq ). (33)

Just as in the proof of Theorem 8.8 (Appendix A), one finds that the binatural
isomorphism (33) realize DEnh(Xq) as an enhancement for the derved category
D(Xq).

Proposition 10.2. The isomorphism (33) induces an isomorphism of monoidal
categories

H0(Ǧ/B̌,DEnh(Xq))
∼→ D(Xq).

https://stacks.math.columbia.edu/tag/079P
https://stacks.math.columbia.edu/tag/079P
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Proof. As in the proof of Theorem 8.8, one sees that the adjunction map provides
a morphism from the constant sheaf

HomD(Xq)(M,N)→ RHomXq (M,N)

which recovers the standard evaluation maps for HomD(Xq). This is sufficient to
deduce the result. �

10.3. Coherent dg sheaves. In order to gain a better handle on things, we might
restrict our attention to objects in D(Xq) which satisfy certain finiteness conditions.
Abstractly, we consider the subcategory of perfect, or dualizable, objects. In terms
of our specific geometric presentations of these categories, we are interested in
coherent dg sheaves. Let us take a moment to describe this category clearly.

We consider the derived category Dcoh(Xq) ⊂ D(Xq) of coherent, Bq-equivariant

dg sheaves over Ǧ. These are, equivalently, complexes in D(Xq) with bounded
coherent cohomology, or complexes in D(Xq) which are dualizable with respect to
the product ⊗ = ⊗L.

10.4. Enhancements for the coherent derived categories. When we consider
the enhancements DEnh(Xq) provided above, we can be much more explicit about
the evaluation and tensor maps when we restrict to the subcategories of coherent
dg sheaves. We let DEnh

coh (Xq) denote the full (enriched, monoidal) subcategory
consisting of such sheaves in DEnh(Xq).

For coherent M and bounded N we can adopt any of the explicit models

RHomXq (M,N) = HomXq (M, IN ) or HomXq (PM , IN )

or HomXq (PM , N)

depending on our needs, where PM → M and N → IN are resolutions by rela-
tive projectives and injectives respectively. The composition maps for these inner
morphisms can then be obtained from composition at the dg level

◦ : HomXq (M, IN )⊗HomXq (PL,M)→HomXq (PL, IN ),

as can the tensor structure maps

tens : HomXq (PM , N)⊗HomXq (PM ′ , N
′)→HomXq (PM ⊗ PM ′ , N ⊗N ′).

Of course, the equivalence of Proposition 10.2 realizes DEnh
coh (Xq) as an enhancement

of Dcoh(Xq).

10.5. Derived implications for the quantum Frobenius kernel. As in the
abelian setting, we restrict along the fully faithful embedding κ∗ : D(FKGq) →
D(Xq) to obtain an enhancement

DEnh(FKGq) = (objD(FKGq), RHomFKGq ),

RHomFKGq := RHomXq (κ
∗−, κ∗−),

from the corresponding enhancement DEnh(Xq) for the half-quantum flag variety.
Furthermore, in the coherent setting, the analysis of Subsection 10.4 restricts to
provide explicit realizations of the composition and tensor structure maps for the
derived sheaf-Homs RHomFKGq .
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11. QCoh(Xq) as a total space for the quantum Borels

We now have a basic understanding of the internal geometry for QCoh(Xq), as
well as the relationship between Xq and the quantum Frobenius kernel. The point
of this section is to examine some aspects of the external geometry for QCoh(Xq).
In particular, we show that the fibers of the category QCoh(Xq), considered as
a flat family of tensor categories over the flag variety, recover the small quantum
Borels of Section 5. These fiber calculations are valid at both an abelian and
derived level. In this way QCoh(Xq) serves as a total space for the family of Borels

{Bλ : λ : Spec(K)→ Ǧ/B̌} constructed in Section 5.
We furthermore show that the composite

FKGq
κ∗→ QCoh(Xq)→ QCoh(Xq)|λ ∼= Bλ

recovers the restriction functor resλ. Hence our understanding of κ∗ as a universal
restriction functor for the Borels.

We begin by recalling some basic information about categorical base change.

11.1. Base change for cocomplete categories. Consider a presentable, and in
particular cocomplete tensor category C (see Section 2.2). By a module category
M over C we mean a presentable k-linear category with an associative action
C ×M →M (or M × C →M ) which commutes with arbitrary colimits in each
factor.

Fix a presentable tensor category C , and presentable categories M and N with
left and right actions of C respectively. We consider, for any presentable k-linear
category D , the category

BilC (N ×M ,D)

of C -bilinear maps N ×M → D with natural transformations. By a C -bilinear
map we mean a k-linear functor F from the product N ×M which commutes with
arbitrary colimits in each factor, and comes equipped with a natural, associative,
isomorphism F (N,V ⊗M) ∼= F (N ⊗V,M) for all V in C . Natural transformations
between bilinear functors are natural transformations of functors which respect the
natural isomorphisms F (−,−⊗−) ∼= F (−⊗−,−).

We similarly define the category of C -linear functors FunC (M ,M ′) for left (or
right) module categories M and M ′. These are functors which commute with
arbitrary colimits and come equipped with associative natural isomorphisms F (V ⊗
M) ∼= V ⊗ F (M). Morphisms in FunC (M ,M ′) are natural transformations which
respect the C -linear structure. When C = Vect we take Funk = FunVect, and
when C = QCoh(X) for a scheme X we take FunX = FunQCoh(X). We note
that Funk(M ,M ′) is just the category of cocontinuous k-linear functors between
k-linear categories.

Following [53, 33, 29], a balanced tensor product N ⊗C M is a choice of pre-
sentable k-linear category, and a C -bilinear map F : N ×M → N ⊗C M for
which restriction along F provides an equivalence

F ∗ : Funk(N ⊗C M ,D)
∼→ BilC (N ×M ,D),

at arbitrary presentable D .

Remark 11.1. In [33, 29] the authors are primarily concerned with finite cate-
gories, and so their functors are only assumed to commute with finite colimits.
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In our cocomplete context it’s appropriate to assume commutation with arbitrary
set-indexed colimits. (See [53, Section 6.5] and [59, Section 4.8].)

By [53, Section 6.5, Proposition 10.4] the product N ⊗k M := N ⊗Vect M
always exists (cf. [37, Theorem 4]). The existence of colimits in the 2-category of
presentable linear categories implies that the product N ⊗C M exists as well [14,
Theorem 6.11] [18, Proposition 2.1.11], as it is computed abstractly as the colimit
of the diagram

N ⊗k C ⊗k C ⊗k M
// //// N ⊗k C ⊗k M // // N ⊗k M .

We are particularly interested in the case where C = QCoh(X) and N =
QCoh(Y ) for schemes X and Y , with action provided by pullback along a map
f : Y → X. In this case the product

QCoh(Y )⊗QCoh(X) M

should be interpreted as a base change for M . The fiber of M at a given point
λ : Spec(K) → X, where we have Vect(K) = QCoh(Spec(K)), is defined as the
base change

M |λ := Vect(K)⊗QCoh(X) M .

We note that when M is a tensor category over C = QCoh(X), i.e. a tensor
category with a central tensor functor QCoh(X) → M , the fiber M |λ at a given
K-point for X inherits a unique K-linear tensor structure so that the universal
(reduction) map M → M |λ is a map of tensor categories. Indeed, for any tensor
category A over QCoh(X), the universal property of the product ⊗QCoh(X) and the
tensor structures on A and M provide a natural tensor structure on the category
A ⊗QCoh(X) M , as outlined in [43, Theorem 6.2].

11.2. The pullback functor ι∗λ : QCoh(Xq) → Bλ. Consider a geometric point

λ : Spec(K) → Ǧ/B̌. Pulling back along the Bq-equivariant map ιλ : B̌λ → Ǧ
provides a colimit preserving monoidal functor

ι∗λ : QCoh(Xq)→ Bλ.

We let QCoh(Ǧ/B̌) act on Bλ via the fiber λ∗ : QCoh(Ǧ/B̌) → Vect(K) and the
K-linear structure on Bλ. We claim that under this action on Bλ the map ι∗λ is

QCoh(Ǧ/B̌)-linear. Indeed, for any sheaf F over Ǧ/B̌ we have

ι∗λ(F ?−) = ι∗λ(π∗F ⊗−) = ι∗λπ
∗(F )⊗ ι∗λ−

and ι∗λπ
∗ is naturally isomorphic to unit∗ λ∗, since we have the diagram

B̌λ
ιλ //

unit

��

Ǧ

π

��
Spec(K)

λ
// Ǧ/B̌.

This identification of pullbacks therefore provides a natural isomorphism

ι∗λπ
∗(F )⊗ ι∗λ− ∼= unit∗ λ∗(F )⊗ ι∗λ− = λ∗(F )⊗k ι∗λ − .

So in total we have the natural isomorphism

ι∗λ(F ?−) ∼= λ∗(F )⊗k ι∗λ(−)
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at all F in QCoh(Ǧ/B̌) which provides the pullback functor ι∗λ : QCoh(Xq)→ Bλ

with the claimed QCoh(Ǧ/B̌)-linear structure.
One simply recalls the definition of the restriction maps resλ : FKGq → Bλ to

observe the following.

Lemma 11.2. The composition of universal restriction κ∗ : FKGq → QCoh(Xq)
with the pullback map ι∗λ : QCoh(Xq)→ Bλ recovers resλ,

resλ ∼= ι∗λ ◦ κ∗.
More precisely, the functor ι∗λ : QCoh(Xq) → Bλ has the natural structure of a

morphism between QCoh(Ǧ/B̌)⊗k FKGq-central tensor categories.

11.3. Calculating the fibers.

Theorem 11.3. Consider any geometric point λ : Spec(K)→ Ǧ/B̌. The QCoh(Ǧ/B̌)-
linear map ι∗λ : QCoh(Xq) → Bλ induces an equivalence of K-linear tensor cate-
gories

QCoh(Xq)|λ = Vect(K)⊗QCoh(Ǧ/B̌) QCoh(Xq)
∼−→ Bλ.

Proof. Since the pullback map ι∗λ is already monoidal, it suffices to show that the
induced map fibλ from the product is an equivalence of linear categories. We take
M = QCoh(Xq). Suppose first that λ is a closed point, i.e. that K = k.

For any presentable k-linear category D , a QCoh(Ǧ/B̌)-bilinear map F ′ : Vect×M →
D is precisely the information of a map F : M → D equipped with a natural, as-
sociative, isomorphism

F (F ? M) ∼= (λ∗F )⊗k F (M)

for all F in QCoh(Ǧ/B̌) and M in M . So restricting along the inclusion M →
Vect×M , M 7→ (k,M), provides an equivalence of categories

BilQCoh(Ǧ/B̌)(Vect×M ,D) ∼= FunǦ/B̌(M ,D)

at arbitrary D .
We have the pushforward map (ιλ)∗ : Bλ →M and the pullback map ι∗λ : M →

Bλ. Restrictions along these maps provide functors

Iλ : FunǦ/B̌(M ,D)→ Funk(Bλ,D) and Iλ : Funk(Bλ,D)→ FunǦ/B̌(M ,D).

(34)
We claim that Iλ and Iλ are mutually inverse equivalences. The composite Iλ ◦ Iλ
is isomorphic to the identity because (ιλ)∗ ◦ (ιλ)∗ : Bλ → Bλ is isomorphic to the
identity. We consider the composition Iλ ◦ Iλ, which is just pulling back functors
along the endomorphism (ιλ)∗ ◦ (ιλ)∗ : M →M .

Let us take Aλ = K(λ), considered as an algebra object in QCoh(Ǧ/B̌). Then
pushing forward along λ : Spec(k) → Ǧ/B̌ identifies Vect with the category of
arbitrary Aλ-modules in QCoh(Ǧ/B̌), and identifies Bλ with the category of Aλ-
modules in M .

We consider the unit of the pullback-pushforward adjunction M = OǦ/B̌ ?M →
Aλ?M . Via QCoh(Ǧ/B̌)-linearity of F , we see that the unit map induces a natural
isomorphism

F (M)
∼=→ F (Aλ ? M) (35)

between F and F (Aλ ?−) in FunǦ/B̌(M ,D). But now, there is a natural isomor-

phism Aλ ?− ∼= (ιλ)∗ ◦ (ιλ)∗− via the identification between Bλ and the category
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of Aλ-modules in M . So the natural isomorphism (35) provides an isomorphism
idFun

∼= Iλ◦Iλ. The maps (34) are therefore seen to be mutually inverse, as claimed.
For an arbitrary geometric point λ : Spec(K)→ Ǧ/B̌, we note that any bilinear

functor F : Vect(K) ×M → D factors through the base change DK , which is
formally the non-full subcategory of objects T in D equipped with a structural
action K → EndD(T ). So by base change one can reduce to the argument for
closed points. �

Remark 11.4. One can similarly calculate the fiber QCoh(S)⊗QCoh(Ǧ/B̌)QCoh(Xq)

along any affine morphism f : S → Ǧ/B̌ (cf. [29, Theorem 3.3]).

Below we denote the equivalence of Theorem 11.3 by

fibλ : QCoh(Xq)|λ
∼→ Bλ.

The following result validates our interpretation of the embedding κ∗ : FKGq →
QCoh(Xq) as a universal restriction functor for the Borels.

Proposition 11.5. The composition

FKGq
κ∗→ QCoh(Xq)

reduce−→ QCoh(Xq)|λ
fibλ→ Bλ

is isomorphic to the restriction functor resλ : FKGq → Bλ, as a tensor functor.

Proof. The functor fibλ, by definition, satisfies fibλ ◦ reduce ∼= ι∗λ, and one has
directly

ι∗λκ
∗ = ι∗λ ◦ forget :

FKGq = QCoh(Ǧ)Gq → QCoh(Ǧ)Bq = QCoh(Xq)→ QCoh(B̌λ)Bq = Bλ.

One consults Section 5 to see that this map is precisely resλ. �

One can furthermore show that the sequence of Proposition 11.5 is isomorphic to
κ∗ as a central tensor functor, though we leave the details to the interested reader.

11.4. Taking fibers at the derived level. We record two versions of Theorem
11.3 which hold at a derived level, or more precisely at the level of presentable stable
∞-categories. We consider the derived ∞-categories of quasi-coherent sheaves on
the half-quantum and classical flag varieties

QCohdg(Xq) := D(QCoh(Xq)) and QCohdg(Ǧ/B̌) := D(QCoh(Ǧ/B̌)),

as constructed in [59, Definition 1.3.5.8]. We also consider the derived ∞-category
of sheaves for the small quantum Borel. Here we recall our explicit geometric
construction

Bλ = QCoh(B̌λ/Bq) and take QCohdg(B̌λ/Bq) := D(Bλ),

for the sake of consistency.
At the derived(= stable presentable∞) level we have an action of QCohdg(Ǧ/B̌)

on QCohdg(Xq), and can again consider the fiber at a given point λ : Spec(K) →
Ǧ/B̌,

QCohdg(Xq)|λ := Vectdg(K)⊗QCohdg(Ǧ/B̌) QCohdg(Xq).

In the above formula Vectdg(K) is the derived ∞-category of unbounded cochains
over K, and the base change operation is defined via a universal property [59,
Lemma 4.8.4.3], as in the abelian setting. We have the following derived analog of
Theorem 11.3.
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Theorem 11.6. Consider any geometric point λ : Spec(K)→ Ǧ/B̌. The QCohdg(Ǧ/B̌)-

linear map L ι∗λ : QCohdg(Xq)→ QCohdg(B̌λ/Bq) induces an equivalence of stable
∞-categories

QCohdg(Xq)|λ
∼−→ QCohdg(B̌λ/Bq).

Note that such an equivalence is automatically exact, since it must preserve
all limits and colimits. A proof of Theorem 11.6 is outlined below, following the
statement of Theorem 11.7.

We also have an “Ind-finite” version of Theorem 11.6. Here we consider the
Ind-completions of the coherent subcategories Cohdg(Y ) ⊂ QCohdg(Y ), for Y any
of the (noncommutative) spaces considered above. To be more specific, we take the
full, stable, and essentially small ∞-subcategory Cohdg(Y ) in QCohdg(Y ) whose
objects are all dg sheaves which are bounded and coherent in each degree. We then
apply the Ind-construction [58, Definition 5.3.5.1, Proposition 5.3.5.10] to obtain
∞-categories

IndCohdg(Xq), IndCohdg(Ǧ/B̌) = QCohdg(Ǧ/B̌), IndCohdg(B̌λ/Bq) (36)

which are all presentable and stable [59, Proposition 1.1.3.6].
The identification of IndCohdg(Ǧ/B̌) with QCohdg(Ǧ/B̌) in (36) follows from the

fact that all coherent dg sheaves are (already) compact in QCohdg(Ǧ/B̌) and gener-

ate the whole category [58, Proposition 5.3.5.11]. Also, the∞-category IndCohdg(B̌λ/Bq)
is identified with the Ind-category of the dualizable objects in D(Bλ).

In this Ind-finite, or Ind-coherent context we again have an action of QCohdg(Ǧ/B̌)
on IndCohdg(Xq) and can take the fibers along points in the flag variety. We obtain
an alternate version of Theorem 11.6 which, in some instances, is more useful than
its quasi-coherent cousin.

Theorem 11.7. Consider any geometric point λ : Spec(K) → Ǧ/B̌. The map
L ι∗λ : IndCohdg(Xq) → IndCohdg(B̌λ/Bq) induces an equivalence of stable ∞-
categories

IndCohdg(Xq)|λ
∼−→ IndCohdg(B̌λ/Bq).

Providing full details for the proofs of these theorems would take us far outside
of the (desired) scope of this text. So we omit formal proofs. However, we do record
the main points here.

For Theorem 11.6, for example, one can proceed as follows: Consider a flat

resolution Oλ
∼→ (ιλ)∗OB̌λ of algebras in Ch(QCoh(ǦK)B̌K ) ⊂ Ch(QCoh(Xq)K).

We are free to assume additionally that Oλ is bounded and coherent in each de-
gree. Note that the descent of the aforementioned resolution to ǦK/B̌K provides

a coherent and flat resolution of the residue field Oλ
∼→ K(λ).

We consider the categories of dg modules Oλ-modXq and Oλ-modǦ/B̌ in cochains

over Xq and Ǧ/B̌, respectively, and take the corresponding derived ∞-categories.2

We have obvious maps

D(Oλ-modXq )→ Oλ-modQCohdg(Xq) and D(Oλ-modǦ/B̌)→ Oλ-modQCohdg(Ǧ/B̌),

(37)

2Since one doesn’t have immediate access to a nice model structure on these categories of dg

modules, one should be slightly careful in defining their derived ∞-categories. One can sidestep
most model theoretic issues, however, by employing stable localization techniques from [69, §I.3]

and [15, §5.1, 5.2].
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which one shows are equivalences (cf. [48, Theorems 4.1.1 & 5.2.3] [59, Corollary
4.2.2.16 & Theorem 4.3.3.17]). On the right hand sides of the above equivalences
we consider, specifically, modules for the given algebra objects in their respective
derived ∞-categories [59, Definition 4.2.1.13].

As one expects from the triangular setting [78, Tag 09S6], base change along the

quasi-isomorphisms Oλ
∼→ (ιλ)∗OB̌λ and Oλ

∼→ K(λ) also provide equivalences

(ιλ)∗OB̌λ ⊗
L
Oλ − : D(Oλ-modXq )

∼−→ D((ιλ)∗OB̌λ -modXq ) = QCohdg(B̌λ/Bq)
(38)

and

K(λ)⊗L
Oλ
− : D(Oλ-modǦ/B̌)

∼−→ D(K(λ)-modǦ/B̌) = Vectdg(K).

So we have an equivalence Vectdg(K) ∼= Oλ-modQCohdg(Ǧ/B̌), and the generic base

change formula [59, Theorem 4.8.4.6] identifies the fiber in question as

QCohdg(Xq)|λ = Oλ-modQCohdg(Xq),

i.e. as the category of Oλ-modules in QCohdg(Xq) under the derived ?-action of

QCohdg(Ǧ/B̌) on QCohdg(Xq). However, since QCohdg(Ǧ/B̌) acts via the tensor

functor L ζ∗ : QCohdg(Ǧ/B̌)→ QCohdg(Xq), and L ζ∗Oλ = Oλ, we have a further
identification

QCohdg(Xq)|λ = Oλ-modQCohdg(Xq) = Oλ-modQCohdg(Xq). (39)

We consult the above formulas (37, 38, 39) to obtain the proposed calculation of

the fiber QCohdg(Xq)|λ
∼→ QCohdg(B̌λ/Bq).

As a final point, one can show that every equivalence above appears in a diagram
over QCohdg(Xq), so that we have a large diagram

QCohdg(Xq)
univ //

Oλ?−

""

Oλ⊗−
��

ι∗λ

}}

QCohdg(Xq)|λ

=

��

D(Oλ-modXq )

∼
((

∼
vv

QCohdg(B̌λ/Bq) Oλ-modQCohdg(Xq).
∼

induced
oo

The above diagram tells us that the equivalence

QCohdg(Xq)|λ
∼−→ QCohdg(B̌λ/Bq)

obtained above is in fact induced by the derived pullback functor L ι∗λ.
The proof in the Ind-coherent setting is similar. However, one has to take care

to keep track of coherent objects at every step. Dealing with the derived categories
of dg modules, in particular, becomes subtle at that point.

Remark 11.8. In Section 12 we provide a calculation of fibers for the derived
sheaf-Hom functor which occurs at a strictly triangular level, and directly reflects
the fiber calculation of Theorem 11.7.

https://stacks.math.columbia.edu/tag/09S6
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12. RHom as a total space for morphisms over the Borels

In the previous section we calculated the fibers of the family of categories QCoh(Xq)

over Ǧ/B̌. In particular, we saw that pulling back along the map ιλ : B̌λ → Ǧ
provides a calculation of the fiber

QCoh(Xq)|λ
∼→ Bλ

at any geometric point for Ǧ/B̌, and that a similar calculation holds at the derived
level.

In this section we provide a parallel calculation of the fibers of the dg sheaves
RHomǦ/B̌(M,N) in D(Ǧ/B̌) via morphisms over Bλ. If one takes proper account
of naturality, such a calculation of the fibers for RHomǦ/B̌ equivalently calculates

the fibers λ∗DEnh(Xq) of the enhanced derived category over Ǧ/B̌. As in Section

11, we employ QCoh(Ǧ/B̌)-linearity of the pullback functor ι∗λ : QCoh(Xq)→ Bλ

in an essential way in our analysis, and show that such linearity implies the desired
calculation of the fibers for RHomǦ/B̌ .

12.1. The natural map λ∗HomXq → HomBλ
. Consider M and N in QCoh(Xq).

As observed in Section 11.2, the monoidal functor ι∗λ : QCoh(Xq) → Bλ admits a

natural QCoh(Ǧ/B̌)-linear structure. We can therefore apply ι∗λ to evaluation

ev : HomXq (M,N) ? M → N

to obtain a map

ι∗λev : λ∗HomXq (M,N)⊗k ι∗λM → ι∗λN in the category Bλ. (40)

By adjunction we then obtain a natural map

φM,N = φ(λ)M,N : λ∗HomXq (M,N)→ HomBλ
(ι∗λM, ι∗λN) (41)

which is compatible with the evaluation, and hence compatible with composition
and the tensor structure. This is to say, the maps φM,N collectively provide a linear
monoidal functor

φ(λ) : λ∗QCohEnh(Xq)→ Bλ.

Proposition 12.1. The map φM,N of (41) is an isomorphism whenever M is
coherent and relatively projective.

We delay the proof to the end of the section, and focus instead on the implications
of Proposition 12.1 to our analysis of the derived inner-Hom functor.

12.2. The derived map Lφ(λ) : Lλ∗DEnh(Xq)→ DEnh(Bλ). Let us begin with
a basic lemma.

Lemma 12.2. (1) If M is relatively projective in QCoh(Xq) and N is flat,

then the sheaf HomXq (M,N) is flat over Ǧ/B̌.

(2) For any sheaf F over Ǧ/B̌, complex P of relatively projective sheaves over
Xq, and bounded complex N of flat sheaves over Xq, the natural map

F ⊗L HomXq (P,N)→ F ⊗HomXq (P,N)

is a quasi-isomorphism.
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(3) For any closed subscheme i : Z → Ǧ/B̌, and P and N as in (2), the natural
map

L i∗HomXq (P,N)→ i∗HomXq (P,N)

is a quasi-isomorphism.

Proof. Let us note, before beginning, that flatness of N implies exactness of the
operation − ? N = π∗(−) ⊗ N . For the first point, consider an exact sequence
0 → F ′ → F → F ′′ → 0 of coherent sheaves and the corresponding possibly
(non-)exact sequence

0→ F ′ ⊗Hom(M,N)→ F ⊗Hom(M,N)→ F ′′ ⊗Hom(M,N)→ 0.

By Coh(Ǧ/B̌)-linearity of Hom(M,−), Lemma 8.3, the above sequence is isomor-
phic to the sequence

0→Hom(M,F ′ ? N)→Hom(M,F ? N)→Hom(M,F ′′ ? N)→ 0.

The second sequence is exact by flatness of N and local projectivity of M . So we
see that Hom(M,N) is flat relative to the action of coherent sheaves on Ǧ/B̌. This
is sufficient to see that Hom(M,N) is flat in QCoh(Ǧ/B̌).

For the second point, resolve F by a finite complex of flat sheaves F ′ → F .
Via a spectral sequence argument, using flatness of Hom(P,N) in each degree, one
sees that the induced map

F ⊗L Hom(P,N) = F ′ ⊗Hom(P,N)→ F ⊗Hom(P,N)

is a quasi-isomorphism. Point (3) follows from point (2) and the identification
L i∗(−) = i∗OZ ⊗L −. �

We now consider the derived category D(Xq). We have the derived pullback

L ι∗λ : D(Xq)→ D(Bλ)

which still annihilates the D(Ǧ/B̌)-action. So, as in Section 12.1, we get an induced
map on inner-Homs

LφM,N : Lλ∗RHomXq (M,N)→ RHomBλ
(L ι∗λM,L ι∗λN)

which is compatible with composition and the tensor structure. We therefore obtain
a monoidal functor

Lφ(λ) : Lλ∗DEnh(Xq)→ DEnh(Bλ), (42)

where DEnh(Bλ) is the linear enhancement of D(Bλ) implied by the action of
D(Vect).

Consider coherent M and bounded N in D(Xq). (By coherent we mean that
M is in Dcoh(Xq).) If we express RHomXq by resolving the first coordinate by
relatively projective sheaves, which are necessarily flat, and we replace N with a
bounded complex of flat sheaves if necessary, the map LφM,N is simply the fiber
map

LφM,N = φM,N : λ∗HomXq (PM , N)→ HomBλ
(ι∗λPM , ι

∗
λN)

defined at equation (41), via Lemma 12.2 (3). By Proposition 12.1, the map LφM,N

is then seen to be an isomorphism whenever M is coherent and N is bounded.
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Theorem 12.3. The map

LφM,N : Lλ∗RHomXq (M,N)→ RHomBλ
(L ι∗λM,L ι∗λN)

is a quasi-isomorphism whenever M is coherent and N is bounded. Consequently,
the monoidal functor

Lφ(λ) : Lλ∗DEnh(Xq)→ DEnh(Bλ)

is fully faithful when restricted to the full subcategory of coherent dg sheaves.

Proof. We have already argued above that LφM,N is an isomorphism at such M
and N . Fully faithfulness of the restriction of Lφ(λ) to DEnh

coh (Xq) follows. �

Remark 12.4. From the perspective of Theorem 11.7, the finiteness conditions
appearing in statement of Theorem 12.3 are relatively intuitive. Namely, the fiber
map IndCohdg(Xq)|λ

∼→ IndCohdg(B̌λ/Bq) is basically given by base change K(λ)?
−, and the natural map

K(λ)⊗RHomXq (M,N)→ RHomXq (M,K(λ) ? N) = λ∗RHomBλ
(M |λ, N |λ)

should be an isomorphism whenever M is coherent, and hence compact in the Ind-
category. The restrictions on N in Theorem 11.7 then appear because QCohdg(Xq)
and IndCohdg(Xq) differ in general, but intersect at the bounded derived ∞-
category of quasi-coherent sheaves. In particular, the functor IndCohdg(Xq) →
QCohdg(Xq) admits a fully faithful section over the subcategory of bounded quasi-
coherent dg sheaves.

12.3. Proof of Proposition 12.1.

Proof of Proposition 12.1. Recall the explicit expression of HomXq in terms of

morphisms in QCoh(Yq) = QCoh(Ǧ)u(Bq), provided by Proposition 9.1. After

pulling back π∗ : QCoh(Ǧ/B̌)
∼=→ QCoh(Ǧ)B̌ we, equivalently, have a morphism

(O(B̌λ)⊗O(Ǧ) HomYq (M,N))B̌ → HomBλ
(ι∗λM, ι∗λN) (43)

which is compatible with evaluation, and we are claiming that this map is an iso-
morphism. By Lemma 8.3, or rather the proof of Lemma 8.3, and local projectivity
of M the map

O(B̌λ)⊗O(Ǧ) HomYq (M,N)→ HomYq (M, ι∗λN), f ⊗ ξ 7→ f · redλ ξ

is an isomorphism, where redλ : N → ι∗λN is the reduction map. (Here we are view-

ing sheaves on B̌λ as sheaves on Ǧ via pushforward.) Furthermore HomYq (M, ι∗λN) =
HomYq (ι

∗
λM, ι∗λN) and when we take invariants we have

HomYq (ι
∗
λM, ι∗λN)B̌ = HomCoh(Xq)(ι

∗
λM, ι∗λN).

We therefore have an isomorphism

(O(B̌λ)⊗O(Ǧ) HomYq (M,N))B̌
∼=→ HomXq (ι

∗
λM, ι∗λN) (44)

given by f⊗ξ 7→ f ·redλ(ξ), and under this isomorphism the reduction of evaluation
for HomYq (M,N) appears as the expected evaluation map

HomXq (ι
∗
λM, ι∗λN)⊗k ι∗λM → ι∗λN, ξ ⊗m 7→ ξ(m).

Under the identification (44) the map (43) now appears as

HomXq (ι
∗
λM, ι∗λN)→ HomBλ

(ι∗λM, ι∗λN), ξ 7→ ξ. (45)
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One simply observes that these morphism spaces are literally equal, since Bλ =
Coh(B̌λ)Bq and Coh(Xq) = Coh(Ǧ)Bq , and notes the map (45) is the identity
to see that (45) is an isomorphism. It follows that our original map (43) is an
isomorphism. �

13. Accessing the Springer resolution via RHom

We now turn away from our discussion of the triad, consisting of the half-
quantum flag variety, small quantum group, and small quantum Borel, and observe
a connection between the Springer resolution and sheaves on Xq.

We show that the sheafy endomorphism algebra

AÑ := RHomXq (1,1)

for the unit in QCoh(Xq), which is formally an algebra in the derived category

D(Ǧ/B̌), has cohomology equal to the structure sheaf for the Springer resolution.

This suggests a further enhancement DEnh2

(Xq) in the derived category of (dg)
sheaves over the Springer resolution. We elaborate on the latter point in the sub-
sequent, and final, section of the text.

We begin by recalling the necessary background concerning the Springer resolu-
tion. We then provide the calculation of cohomology

H∗(AÑ ) = p∗OÑ

at sufficiently large odd order parameter q, which we deduced from results of
Ginzburg and Kumar [42].

13.1. The Springer resolution. Let g be the Lie algebra for Ǧ. Recall that the

Springer resolution Ñ is the affine bundle Ñ = Ǧ×B̌ n over the flag variety Ǧ/B̌,
where n is the (positive) nilpotent subalgebra n ⊂ g. Equivalently, the Springer
resolution is obtained as the relative spectrum [45, §9.1] of the descent of the B̌-
equivariant algebra OǦ ⊗ Sym(n∗) over Ǧ,

Ñ = Ǧ×B̌ n = SpecǦ/B̌ (descent of OǦ ⊗k Sym(n∗)) = SpecǦ/B̌(Sym(E )). (46)

In the above formula E is the equivariant vector bundle on Ǧ/B̌ associated to the
B̌-representation n∗.

From this construction of Ñ as the relative spectrum of a sheaf of algebras
on the flag variety, we see that pushing forward along the (affine) structure map

p : Ñ → Ǧ/B̌ provides an identification p∗OÑ = Sym(E ) and also an equivalence
of monoidal categories

p∗ : QCoh(Ñ )
∼−→ QCoh(p∗OÑ )

[45, Théorème 9.2.1]. To be clear, the latter category is the category of modules over
the commutative algebra object p∗OÑ in QCoh(Ǧ/B̌), and the monoidal product
is as expected ⊗p∗OÑ .

The Springer resolution Ñ can alternatively be identified with the moduli space
of choices of a Borel in g, and a nilpotent element in the given Borel,

Moduli = {(bλ, x) : bλ ⊂ g a Borel x ∈ bλ is nilpotent} (47)
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[19, §3.2]. This moduli space sits in the product Moduli ⊂ Ǧ/B̌ × N , where N
is the nilpotent cone in g, and we have an explicit isomorphism between Ñ and
Moduli given by the Ǧ-actions on the two factors in this product,

Ñ = Ǧ×B̌ n
∼=→Moduli, (g, x) 7→ (Adg(b),Adg(x)).

In the above formula b is the positive Borel in g. We identify Ñ with this moduli
space when convenient, via the above isomorphism.

We consider Ñ as a conical variety over Ǧ/B̌ by taking the generating bundle E
to be in (cohomological) degree 2. In terms of the moduli description given above,
this conical structure corresponds to a Gm-action defined by the squared scaling
c · (bλ, x) = (bλ, c

2 · x).

Remark 13.1. For certain applications Ñ might be viewed, more fundamentally,
as a dg scheme over Ǧ/B̌ which has generating bundle in cohomological degree 2
and vanishing differential. Compare with [7].

13.2. The moment map. Given our identification of the Springer resolution Ñ
with the moduli of pairs (47), we have two projections bλ ← (bλ, x) → x which

define maps p : Ñ → Ǧ/B̌ and µ : Ñ → N . The map p is affine, and simply

recovers the structural map Ñ = SpecǦ/B̌(Sym(E ))→ Ǧ/B̌. The map µ provides

an identification of the affinization of Ñ with the nilpotent cone,

µ̄ : Ñaff

∼=−→ N .
The map µ is called the moment map. The moment map is a proper birational
equivalence, and so realizes the Springer resolution as a resolution of singularities
for the nilpotent cone [49, Theorem 10.3.8].

13.3. A calculation of cohomology. The following is deduced from results of
Ginzburg and Kumar [42].

Theorem 13.2. Suppose that q is of odd order ord(q) > h, or that G is of type
A1. There is a canonical identification

H∗(AÑ ) = p∗OÑ ,

as sheaves of graded algebras over Ǧ/B̌.

Proof. Recall that QCoh(Ǧ/u) = QCoh(Ǧ)u(Bq), by definition. We have

RHomǦ/u(1,1) = OǦ ⊗k RHomu(Bq)(k, k),

where RHomu(Bq)(k, k) is given its natural B̌-action as inner morphisms for the

Rep B̌-action on RepBq. Hence, by the calculation of Extu(Bq)(k, k) provided in
[42, Lemma 2.6], we have

H∗(RHomǦ/u(1,1)) = OǦ ⊗k Extu(Bq)(k, k) = OǦ ⊗k Sym(n∗).

One therefore applies Proposition 9.1 to obtain

H∗(AN ) = H∗(RHomXq (1,1)) = descent of OǦ ⊗k Sym(n∗) = p∗OÑ .

The proof in the type A1 setting, at even order q, is completely similar. Here
one calculates the cohomology directly Extu(Bq)(k, k) = k[x], where x is of degree 2

and the B̌-action is determined by the associated character for the torus. We have
kx = Ext2

u(Bq)(k, k) = (kEl)∗ ∼= n∗, giving again Extu(Bq)(k, k) = Sym(n∗). �
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As noted in the original work [42], the higher global section H>0(Ǧ/B̌, p∗OÑ )
vanish so that Theorem 13.2 implies a computation of extensions for QCoh(Xq).
In the following statement O(N ) is considered as a cohomologically graded algebra
with generators in degree 2.

Corollary 13.3 ([42]). Suppose q is of odd order ord(q) > h, or that G is of type
A1. There is an identification of graded algebras ExtXq (1,1) = O(N ).

Remark 13.4. The calculationH∗(AÑ ) = p∗OÑ is expected to hold at arbitraryG
and arbitrary (large order) q. In particular, whether q is of odd order or even order
shouldn’t matter. In order to determine this cohomology one need only calculate
the specific B̌-representation e = Ext2

u(Bq)(k, k) at even order q, as in general the

cohomology H∗(AÑ ) is identified with the pushforward of the structure sheaf on

the affine bundle Ǧ ×B̌ e∗. Such a calculation has not appeared in the literature
however.

14. Formality conjectures and geometric representation theory

As a final point in the paper, we conjecture that the derived endomorphism
algebra AÑ = RHomXq (1,1) is formal, and that this formality lifts to a categorical
level. In particular, we conjecture that the derived (∞-)category of sheaves on
the half-quantum flag variety forms a sheaf of tensor categories over the Springer
resolution. We provide related conjectures, which claim that certain non-monoidal
equivalences of Arkhipov-Bezrukavnikov-Ginzburg and Bezrukavnikov-Lachowska
[7, 12] are recoverable in a manner which is manifestly monoidal.

We first record our conjectures, then provide a rationalle for these claims, based
on the findings of this text and preexisting results from [7, 12]. In this section we
exchange our geometric interpretation for quantum group representations FKGq
for the standard algebraic construction Rep(u(Gq)) (see Theorem 3.7).

14.1. Main conjectures. As in Section 11.4, we let QCohdg(Y ) denote the derived
∞-category of sheaves on a (possibly noncommutative) space Y . For an algebraic
group, or quantum group T , we take

Repdg(T ) := IndDfin(T ), (48)

where Dfin(T ) is the derived∞-category which sits over the usual derived category
of (bounded) finite-dimensional dg representations for T . The Ind-construction is
as in [58, Definition 5.3.5.1].

We also consider the Ind-category IndCohdg(Y ), where Cohdg(Y ) is the derived
∞-category of coherent dg sheaves. When Y is smooth dg scheme, or smooth and
sufficiently tame stack, we have

IndCohdg(Y ) = QCohdg(Y )

[58, Proposition 5.3.5.11].

Conjecture 14.1 (Strong Formality). There is a central, fully faithful, QCohdg(Ǧ/B̌)-
linear tensor functor

η∗ : QCohdg(Ñ )→ IndCohdg(Xq).

The functor η∗ is an equivalence onto the localizing QCohdg(Ǧ/B̌)-submodule cat-
egory generated by the unit in IndCohdg(Xq). Similarly, there is a fully faithful
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tensor functor η̄∗ : QCohdg(N ) → Repdg(u(Gq)) which is an equivalence onto the
localizing subcategory generated by the unit in Repdg(u(Gq)).

We note that the claim for the quantum group would follow from the corre-
sponding claim for Xq, via fully faithfulness of the embedding κ∗ : Repdg(u(Gq))→
IndCohdg(Xq) (Theorem 7.1) and the fact that pullback identifies QCohdg(N ) with

the localizing subcategory generated by the unit in QCohdg(Ñ ). So the existence
of the functor η∗ for Xq is the essential point here.

At a global level, one can approach Conjecture 14.1 by first recognizing a non-
monoidal embedding

QCohdg(n/B̌)→ Repdg(Bq),

which one more-or-less extracts from [7], then by “proceeding towards” the Springer
resolution and Xq via a sequence of categorical base change opperations. In this
way one can reduce Conjecture 14.1 to an analysis of the nilpotent subalgebra n and
its relations to the quantum Borel. At this point, however, we leave any additional
details on this line of inquiry to a later text.

We note that such a functor η∗ would realize sheaves on the half-quantum flag
variety as a tensorial correspondence between the small quantum group and the
Springer resolution

IndCohdg(Xq)

QCohdg(Ñ )

η∗
77

Repdg(u(Gq)),

κ∗
hh

(49)

where by a correspondence we mean a pair of (ideally mutually centralizing) monoidal
functors to a common target. Such a pair (49) might also be thought of as a mor-

phism QCohdg(Ñ )→ Repdg(u(Gq)) in a 4-category of braided tensor∞-categories
over Vectdg [51, Example 1.14].

As with any correspondence, our Pavlovian response is to consider the associ-
ated push-pull functor. We note that although this correspondence is manifestly
monoidal in nature, the associated push-pull functors will not be monoidal, since
pushforward functors are generally non-monoidal. In the following conjecture we
consider the principal block PrinBlockdg(u(Gq)) in Repdg(u(Gq)).

Conjecture 14.2. The push-pull functor η∗κ
∗ restricts to an equivalence

η∗κ
∗ : PrinBlockdg(u(Gq))

∼→ QCohdg(Ñ ).

Furthermore, this equivalence recovers the equivalence of Arkhipov-Bezrukavnikov-
Ginzburg and Bezrukavnikov-Lachowska [7, 12].

The point here is that the non-monoidal analyses of the texts [7, 12] should be

recoverable in a manner which clearly takes the monoidal structures on QCohdg(Ñ )
and Repdg(u(Gq)) into account. We close the paper with some elaborations on
Conjecture 14.2.

14.2. Additional comments for Conjecture 14.2. The rationalle behind this
second conjecture is rather simple minded. We forgo a direct comparison with
Bezrukavnikov-Lachowska [12], and deal with the claim that the given map is an
equivalence via Arkhipov-Bezrukavnikov-Ginzburg [7].
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Let us suppose that Conjecture 14.1 is in fact valid.3 Via a calculus of equivari-
antization and de-equivariantization, and the fact that the map η∗κ

∗ is (or rather,
will be) Ǧ-equivariant, we have a corresponding functor F : PrinBlockdg(Gq) →
QCohdg(Ñ )Ǧ which fits into a diagram

PrinBlockdg(Gq)
F //

��

QCohdg(Ñ )Ǧ

��
PrinBlockdg(u(Gq))

η∗κ
∗

// QCohdg(Ñ )

[8, Theorem 5.8]. This calculus furthermore implies that F is an equivalence if
and only if η∗κ

∗ is an equivalence (cf. [66, Proposition 8.6]), and via faithfulness

of the forgetful functor QCohdg(Ñ )Ǧ → QCohdg(Ñ ) the functor F is completely

determined by its composite to QCohdg(Ñ ). The above diagram identifies this
composite as

PrinBlockdg(Gq)→ QCohdg(Ñ ), V 7→ η∗κ
∗(V ),

and

η∗κ
∗(V ) = RHomXq (1, EV ) = descent of OǦ ⊗k RHomu(Bq)(k, V )∼.

Here we understand RHomu(Bq)(k, V ) as a B̌-equivariant O(n)-module (see [7, Sec-
tion 1.4]). So we identify F as the functor

F : V 7→ descent of OǦ ⊗k RHomu(Bq)(k, V ),

where Ǧ-equivariance is deduced via Ǧ-equivariance of OǦ. Now, upon consid-
ering the discussions around [7, Equation 1.4.1], this appears to be precisely the
equivalence from [7].

Appendix A. Inner-Hom nonsense

A.1. Proof outline for Proposition 8.6.

Outline for Proposition 8.6. If we take F = HomXq (M,N), composition is alter-

natively defined by the QCoh(Ǧ/B̌)-linearity F ?Hom(L,M)→Hom(L,F ?M)
composed with evaluation ev : F ? M → N in the second coordinate. One uses
these two descriptions to deduce associativity of composition.

Associativity for the monoidal structure follows from the fact that both maps

Hom(M1, N2)⊗Hom(M2, N2)⊗Hom(M3, N2)⇒Hom(M1⊗M2⊗M2, N1⊗N2⊗N3)

are adjoint to the map

Hom(M1, N2)⊗Hom(M2, N2)⊗Hom(M3, N2) ? (M1 ⊗M2 ⊗M3)

symm−→ (Hom(M1, N2) ? M1)⊗ (Hom(M2, N2) ? M2)⊗ (Hom(M3, N2) ? M3)

comp−→ N1 ⊗N2 ⊗N3.

3One only needs a non-monoidal embedding QCohdg(Ñ ) → QCohdg(Xq) here. Having forgone
monoidality, such a nice functor almost certainly exists.
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Compatibilities with composition appears as an equality

(g1⊗g2)◦(f1⊗f2) = (g1◦f1)⊗(g2◦f2) : G1⊗F1⊗G2⊗F2 →Hom(L1⊗L2, N1⊗N2)
(50)

where fi and gi are “generalized sections”, i.e. maps

fi : Fi →Hom(Li,Mi), gi : Gi →Hom(Mi, Ni).

To equate these two sections (50) one must equate the corresponding morphisms

(G1 ⊗F1 ⊗ G2 ⊗F2) ? (L1 ⊗ L2)→ N1 ⊗N2,

which involve various applications of the half-braiding for QCoh(Ǧ/B̌) acting on
QCoh(Xq). One represents these two morphisms via string diagrams and observes

the desired equality via naturality of the half-braiding for the QCoh(Ǧ/B̌)-action.
�

A.2. Proof of Theorem 8.8.

Lemma A.1. The adjunction isomorphism

HomXq (M,N)→ HomǦ/B̌(OǦ/B̌ ,Hom(M,N)) = Γ(Ǧ/B̌,Hom(M,N))

is precisely the global sections of the natural map (27).

Proof. The adjunction map sends a morphism f : M → N to the unique map
OǦ/B̌ →Hom(M,N) for which the composite

M = OǦ/B̌ ? M →Hom(M,N) ? M
ev→ N

is the morphism f . Let us call this section f : OǦ/B̌ →Hom(M,N). By consider-
ing the fact that we have the surjective map of sheaves

⊕f∈Hom(M,N)OǦ/B̌ ? M
⊕f⊗id−→ Hom(M,N)⊗kM

we see that the above property implies that the uniquely associated map

Hom(M,N)⊗k OǦ/B̌ →Hom(M,N)

whose global sections are the adjunction isomorphism fits into the diagram (28),
and is therefore equal to the morphism (27). �

We now prove our theorem.

Proof of Theorem 8.8. Compatibility with evaluation (28) implies that the restric-
tions of the composition and tensor structure on HomXq along the inclusion

a : HomXq (M,N) ⊂ HomXq (M,N)⊗k OXq →HomXq (M,N)

provided by adjunction recovers the composition and tensor structure maps for
HomXq (M,N). (Here HomXq (M,N) denotes the constant sheaf.) For composition
for example we understand, via (28) and the manner in which composition and
evaluation are related for HomXq , that the map

Hom(M,N)⊗k Hom(L,M)
◦−→ Hom(L,N)

a→Hom(L,N) (51)

is the unique one so that the composite

Hom(M,N)⊗k Hom(L,M)⊗k L→Hom(L,N)⊗ L ev→ N

is just the squared k-linear evaluation map

Hom(M,N)⊗k Hom(L,M)⊗k L→ Hom(M,N)⊗kM → N
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But by (28) this second map is equal to the composite

Hom(M,N)⊗k Hom(L,M)⊗k L
a⊗a⊗id−→ Hom(M,N)⊗Hom(L,M)⊗ L ev2

→ N

Hence (51) is equal to the map

Hom(M,N)⊗k Hom(L,M)
a⊗a→ Hom(M,N)⊗Hom(L,M)

◦→Hom(L,N),

which just says that restricting along the adjunction map a recovers composition
for HomXq via the global sections of composition for HomXq . Compatibility with
evaluation also implies that the aforementioned map between Hom spaces respects
the Ǧ-action. �
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[1] J. Adámek and J. Rosicky. Locally presentable and accessible categories, volume 189. Cam-

bridge University Press, 1994.
[2] H. H. Andersen. The strong linkage principle for quantum groups at roots of 1. J. Algebra,

260(1):2–15, 2003.

[3] H. H. Andersen and W. Kexin. Representations of quantum algebras. The mixed case. J.
Reine Angew. Math., 427:35–50, 1992.

[4] H. H. Andersen and J. Paradowski. Fusion categories arising from semisimple Lie algebras.

Comm. Math. Phys., 169(3):563–588, 1995.
[5] H. H. Andersen, P. Polo, and K. Wen. Representations of quantum algebras. Invent. Math.,

104:1–59, 1991.

[6] S. Arkhipov, R. Bezrukavnikov, A. Braverman, D. Gaitsgory, and I. Mirkovic. Modules over
the small quantum group and semi-infinite flag manifold. Transform. Groups, 10(3):279–362,

2005.

[7] S. Arkhipov, R. Bezrukavnikov, and V. Ginzburg. Quantum groups, the loop Grassmannian,
and the Springer resolution. J. Amer. Math. Soc., 17(3):595–678, 2004.

[8] S. Arkhipov and D. Gaitsgory. Another realization of the category of modules over the small
quantum group. Adv. Math., 173(1):114–143, 2003.

[9] P. Balmer. Tensor triangular geometry. In Proceedings of the International Congress of Math-

ematicians, volume 2, pages 85–112. Hindustan Book Agency New Delhi, 2010.
[10] D. Ben-Zvi, J. Francis, and D. Nadler. Integral transforms and Drinfeld centers in derived

algebraic geometry. J. Amer. Math. Soc., 23(4):909–966, 2010.
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Grundlehren der mathematischen Wissenschaften [FundamentalPrinciples of Mathematical
Sciences]. Springer-Verlag, Berlin, 1971.

[46] A. Grothendieck and M. Raynaud. Revêtements étales et groupe fondamental. Lecture Notes
in Mathematics. Springer, Berlin, Heidelberg, 1971.

[47] S. Gukov, P.-S. Hsin, H. Nakajima, S. Park, D. Pei, and N. Sopenko. Rozansky-Witten

geometry of Coulomb branches and logarithmic knot invariants. J. Geom. Phys., page 104311,
2021.

[48] V. Hinich. Rectification of algebras and modules. Documenta Math., 20:879–926, 2015.

[49] R. Hotta and T. Tanisaki. D-modules, perverse sheaves, and representation theory, volume
236. Springer Science & Business Media, 2007.

http://arxiv.org/abs/2112.01559
http://arxiv.org/abs/1002.5047
http://arxiv.org/abs/1809.02116


55

[50] J. C. Jantzen. Representations of algebraic groups, volume 107. American Mathematical

Society, 2003.

[51] T. Johnson-Freyd and C. Scheimbauer. (Op)lax natural transformations, twisted quantum
field theories, and “even higher” Morita categories. Adv. Math, 307:147–223, 2017.

[52] M. Kashiwara. Crystal bases of modified quantized enveloping algebra. Duke Math J., 73(2),

1994.
[53] G. M. Kelly. Basic concepts of enriched category theory, volume 64. CUP Archive, 1982.

[54] G. R. Kempf. Linear systems on homogeneous spaces. Ann. of Math., 103(3):557–591, 1976.

[55] A. Kirillov Jr and V. Ostrik. On a q-analogue of the McKay correspondence and the ADE
classification of sl2 conformal field theories. Adv. Math., 171(2):183–227, 2002.

[56] H. Krause. Triangulated categories, chapter Localization theory for triangulated categories,

pages 161–235. London Mathematical Society Lecture Note Series. Cambridge University
Press, 2010.

[57] H. F. Kreimer and M. Takeuchi. Hopf algebras and Galois extensions of an algebra. Indiana
Math. J., 30(5), 675–692, 1981.

[58] J. Lurie. Higher topos theory. Princeton University Press, 2009.

[59] J. Lurie. Higher algebra. available at https://www.math.ias.edu/ lurie/papers/HA.pdf, 2017.
[60] G. Lusztig. Finite dimensional Hopf algebras arising from quantized universal enveloping

algebras. J. Amer. Math. Soc., 3(1):257–296, 1990.

[61] G. Lusztig. Quantum groups at roots of 1. Geom. Dedicata, 35(1):89–113, 1990.
[62] G. Lusztig. Introduction to Quantum Groups. Birkhäuser Boston, 1993.
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