QUANTUM SL(2) AND LOGARITHMIC VERTEX OPERATOR
ALGEBRAS AT (p,1)-CENTRAL CHARGE

TERRY GANNON AND CRIS NEGRON

ABSTRACT. We provide a ribbon tensor equivalence between the representa-
tion category of small quantum SL(2), at parameter ¢ = e"”/”, and the repre-
sentation category of the triplet vertex operator algebra at integral parameter
p > 1. We provide similar quantum group equivalences for representation
categories associated to the Virasoro, and singlet vertex operator algebras at
central charge ¢ = 1 — 6(p — 1)2/p. These results resolve a number of funda-
mental conjectures coming from studies of logarithmic CFTs in type A;.

1.

We prove a number of fundamental conjectures which relate quantum group
representations for SL(2), and modules for non-rational vertex operator algebras
(VOASs) at central charge ¢ = 1 — 6(1 — p)?/p. We consider specifically the triplet
W, singlet M,,, and Virasoro Vir. vertex operator algebras.

For the Virasoro VOA, we consider a category of modules which is the logarithmic
analog of a rational minimal model. By logarithmic we mean, in the simplest sense,
that the theories under consideration are non-rational, i.e. non-semisimple. The
rational minimal models occur at central charge ¢, ¢ = 1—6(p— q)?/pq, for coprime
p,q > 1. Their logarithmic analogs, which occur at central charge ¢ = ¢ 1, were
first considered in works of Pearce, Rasmussen, and Zuber [71, 73], though from a
physical perspective.

The triplet and singlet algebras have been studied extensively from both physical,
and representation theoretic perspectives (many of these papers are included in our
references below), with both algebras appearing first in work of Kausch from the
early 90’s [56]. Taken together, these three classes of vertex operator algebras Vir.,
M, and W, provide the most well-studied non-rational VOAs, or logarithmic
chiral CFTs, available to us at the present moment.

In recent works of Creutzig, McRae, and Yang [22, (6], and earlier work of
Tsuchiya and Wood [77], it was shown that each of the VOAs mentioned above
admits a corresponding ribbon tensor category of “affine” representations. We
denote these representation categories by

rep(Vire)am, rep(Mp)ag, and rep(W,) (1)

respectively. For modules over the triplet rep(W,), we simply consider finite length
Wy-modules. The constructions of the categories rep(Virc)ag and rep(M,)a.g are
slightly more involved, and are recalled in Sections 10.2 and 11.1 below. Let us say
here that the simple objects in rep(Vir.)as and rep(M,)an are those simple modules
of integral lowest (conformal) weight h,, s = ﬁ((np —-5)?—(p—1)?),n,s€Z. An
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important point is that the categories (1) are all affine, in the sense that they each
admit a distinguished tensor generator, or distinguished faithful representation if
one prefers (cf. [29, §11.5 Corollaire 5.2]).

We compare the tensor categories of (1) to categories of representations for
quantum SL(2) at parameter ¢ = exp(7i/p). We consider specifically the categories

rep SL(2),, rep(uy(slz)), and rep(u,(sle))

of character graded representations of Lusztig’s divided power algebra UqL"S (sls),
character graded representations of small quantum SL(2), and usual representations
of small quantum SL(2) respectively (see Sections 3.1 and 12.1). We establish
the following collection of equivalences, which were conjectured across the works
[44, 12, 24, 14, 16].

Theorem (9.5/10.1/12.1). There are equivalences of ribbon tensor categories

K : rep SL(2), = rep(Vire)as
U : rep(uy(sl2)) = rep(M,)ast
O : rep(uy(sle)) = rep(W,).

The particular ribbon structures employed on the quantum group sides of Theo-
rems 9.5, 10.1, and 12.1 are those “inverse” to the standard choices of [64, 52] (see
Section 3.1). We note that, in the process of proving the above result we establish
modularity of the category rep(W,) of triplet modules (see Theorem 4.7). This
point may be of independent interest to readers.

For a clearer historical account, the equivalences K and © were originally con-
jectured to exist in works of Bushlanov, Feigin, Gainutdinov, and Tipunin [12],
and Gainutdinov, Semikhatov, Tipunin, and Feigin [414] respectively. The basis for
these conjectures was that a number of invariants for quantum groups and their
corresponding vertex operator algebras were (essentially) observed to agree. In-
deed, it was argued in [36] that the modular group representations for uq(sly) and
W, agree, and also that their fusion rings agree [41]. Furthermore, it was shown in
work of Nagatomo and Tsuchiya [68], and subsequently McRae and Yang [66], that
there is an abelian, non-tensor, equivalence between rep(uq(slz)) and rep(W,). At
the particular parameter p = 2, Creutzig, Lentner, and Rupert verified that this
equivalence can in fact be enhanced with the desired tensor structure [20]. The pos-
sibility of the equivalence ¥ was alluded to in the works of Creutzig and Milas, and
Costantino, Geer, and Patureau-Mirand [24, 14], then was conjectured explicitly in
work of Creutzig, Gainutdinov, and Runkel [16].!

As one might expect, analogs of Theorems 9.5, 10.1, and 12.1 have been con-
jectured in arbitrary Dynkin type [37, 76, 59]. The analog of the equivalence ©
at a given almost-simple algebraic group G, for example, proposes an equivalence
of modular tensor categories between representations of the small quantum group
for G at ¢ = ¢™/P, and modules for the “logarithmic W-algebra” W, (G) of [4, 76].
Here, for the small quantum group, one should specifically take the cocycle cor-
rected variant of [69, 42].

While additional infrastructure is needed to address these conjectures outside
of type A;—in particular the VOAs W,(G) need to be studied further—the results

ITo be clear, our equivalence ¥ concerns the “integral part” of [16, Conjecture 1.4]. See
Remark 12.2 for details.



herein give credence to the claim that representations of quantum groups and CFTs
should be strongly intertwined, even in the logarithmic context. If we consider type
A< for example, and suppose a sufficently strong understanding of the algebras
W, (SL(n)), one could presumably employ the Hecke presentation for rep SL(n),
of [27, Proposition 4.7], and follow the arguments of the present text, using [69,
Proposition 7.3] and [15, Proposition 7.4.2], to provide the desired equivalences
between rep u,(sl,) and rep W, (SL(n)) at arbitrary n.

1.1. Methods. Let us focus on the equivalence © : rep(uq(sly)) = rep(W,) of
Theorem 9.5, which is the primary target of this work. We first note that our
small quantum group u,(sl2) is the cocycle corrected variant of [43, 16], which we
accept at this point as the “correct” version of the small quantum group at an
even order root of unity. A point which is essential to this work is the observation
[69] that the category of representations rep(uq(slz)) can be understood as the de-
equivariantization of rep SL(2), along the embedding Fr : rep PSL(2) — rep SL(2),
provided by Lusztig’s quantum Frobenius functor [64]. Of course, this is a rather
technical statement, but the point is the following (Proposition 9.2): One can
identify tensor functors rep(uq(slz)) — < to a given tensor category </ with a
particular class of tensor functors rep SL(2), — < out of big quantum SL(2).

With this general framework in mind, we observe furthermore that tensor maps
out of rep SL(2), are classified in work of Ostrik [70]. (See Theorems 5.3 and 9.4.)
In particular, a tensor map rep SL(2), — <7 to a some category < is specified by a
choice of self-dual object W in the target 7, which satisfies certain non-degeneracy
properties. So we approach the equivalence O by leveraging the works [70] and [69]
in tandem.

Of course, in order to produce the equivalence © in the suggested manner, we
must have a clear understanding of the category of modules rep(W,), and in particu-
lar of its self-dual tensor generator X, . One obtains such a concrete understanding
of rep(W,) by exploiting relationships between matrix entries of compositions of
intertwining operators and differential equations on the sphere. Such relationships
go back to the beginnings of CFT, and are also central to the philosophies of, say,
Huang [45] and Tsuchiya-Wood [77]. (See Section 8.) This approach is also present
in the recent works [22, 66]. The equivalence O is therefore deduced via a propitious
interplay between category theoretic and analytic techniques.

The equivalence K for the Virasoro is essentially a corollary of our arguments
for the triplet, which we employ in conjunction with works of Creutzig, Kanade,
McRae, and Yang [19, 66]. The equivalence ¥ is deduced from a nontrivial analysis
of the representation category rep(M,)a.s, and an additional analysis of certain
rational actions of the torus C* on the categories rep(u,(slz)) and rep(W,).

Remark 1.1. In work of Creutzig, Lentner, and Rupert [20], the authors suggest
an alternate construction of the equivalence © for the triplet, and they realize
their construction explicitly when p = 2. The methods employed in [20] differ
significantly from the ones employed here, and we invite the curious reader to
consult the aforementioned text.

Remark 1.2. Our results for the triplet VOA rely on explicit understandings of the
indecomposable projectives, and fusion rules for rep(W,). Such structural results
first appeared in works of Nagatomo, Tsuchiya, and Wood [68, 77], though by most
accounts some details are missing from [68]. With this point in mind, we note that
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independent (re)constructions of the indecomposable projectives and fusion rules
for rep(W,) can be found in recent work of McRae and Yang. See in particular [66,

§7.1].

1.2. Outline. Sections 2-4 cover background material. Section 5 recalls Ostrik’s

classification of tensor functors out of rep SL(2),, and also recalls basic facts about
the Temperley-Lieb category. In Section 6 we perform a straightforward calculation
of all braidings for the Temperley-Lieb category. Sections 7 and 8 are dedicated to
an analysis of the self-dual generator X, of rep(W,). In Sections 9-12 we establish
the equivalences ©, K, and ¥ for the triplet, Virasoro, and singlet vertex operator
algebras, respectively. In the appendices we cover some technical information re-
garding induction for VOA extensions, and the calculus of (de-)equivariantization
for tensor categories equipped with algebraic group actions.
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elaborations on the work [70], and also on various aspects of Tannakian reconstruc-
tion. Thanks to Robert McRae for clarification on the literature, and to Thomas
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2. (FINITE) TENSOR CATEGORIES

We cover some basic information about finite tensor categories. Our presentation
is based on the texts [10, 35], as well as the paper [34]. We work over the base field
k=C.



2.1. (Finite) tensor categories and fusion categories. A tensor category (over
C) is a C-linear, Hom-finite, abelian monoidal category % which is rigid, has all
objects of finite length, and has a simple unit object 1. Rigidity means that all
objects X in % have left and right duals X* and *X [35, §2.10]. A tensor functor
between tensor categories F' : € — 2 is, by definition, an ezact, C-linear, monoidal
functor. By a natural isomorphism between tensor functors we mean a natural
isomorphism which respects the monoidal structures in the expected ways. The
following basic observation will be used throughout the text.

Proposition 2.1 ([28, Proposition 1.19]). Any tensor functor F : € — 2 between
tensor categories is faithful.

A tensor category ¥ is called finite if it has finitely many simple objects, up to
isomorphism, and enough projectives. A tensor category is called a fusion category
if it is finite and semisimple.

Abstractly, any finite tensor category % admits an abelian equivalence ¥ =
rep(B) to the representation category of a finite-dimensional algebra. (One can
take specifically B to be the endomorphism ring of a projective generator.) For
some examples, one can consider the category € = rep(WV,) of finite length mod-
ules over the triplet vertex operator algebra. One sees from results of [3, 13, 46, 77]
that rep()V,) admits a natural finite tensor category structure. Also, for any
finite-dimensional quasi-Hopf algebra w [35, §5.13], the category rep(u) of finite-
dimensional u-representations has the natural structure of a finite tensor category,
with the product ® on rep(u) induced by the coproduct on w.

2.2. Frobenius-Perron dimension. For % a tensor category, the Grothendieck
ring K (%) is a Zi-ring [35, Definition 3.1.1], in the sense that it is a free Z-
algebra with specified basis {z;}; C K(%) and non-negative structure coefficients
cf,j, TixTj =y g cﬁjxk. The basis {z;}; is provided by the isoclasses of the simples
{[X;] : X; simple in €}, and the unit [1] in K (%) is provided by the unit object
in €. When € is a finite tensor category, the Grothendieck ring K (%) is of finite
rank over Z.

For any finite-rank Z,-ring A one has a canonically associated dimension func-
tion FPdim : A — R called the Frobenius-Perron dimension. For any x in the
specified basis for A, the Frobenius-Perron dimension FPdim(x) is defined as the
maximal non-negative real eigenvalue of the linear map z- — : R®z A - R ®z A.
Since multiplication by x is represented by a matrix with non-negative entries, the
Frobenius-Perron theorem ensures the existence of such an eigenvalue. Further-
more, for any such x, we have that FPdim(x) > 1 [35, Propositions 3.3.4].

The function FPdim is a ring homomorphism, and it is in fact the unique
character of A which takes positive values on the given basis [35, Proposition
3.3.6]. We apply the above general construction to deduce a dimension function
FPdim : K(%¢) — R for the Grothendieck ring of any finite tensor category €.
The uniqueness properties of the Frobenius-Perron dimension imply the following
(standard) result.

Lemma 2.2. If B is a finite-dimensional quasi-Hopf algebra, then for any V in
rep(B), FPdim(V) = dim¢(V).

Proof. The vector space dimension defines an algebra map dimg : K(rep(B)) — R
which takes positive values on each class [V] of a non-zero representation V. Since
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FPdim is the unique character of K(rep(B)) with this property, it follows that
FPdim = dim¢. [l

We also have a general notion of Frobenius-Perron dimension for Z -rings them-
selves [35, Definition 3.3.12], which reduces to the following in our setting.

Definition 2.3 ([35, Definition 6.1.7]). For any finite tensor category %, the
Frobenius-Perron dimension of € is defined as

FPdim(%) := Y  FPdim(P;) FPdim(X;),

where the sum runs over the isoclasses of simples X;, and each P; is the projective
cover of X;.

2.3. Surjective tensor functors. A tensor functor F : € — 2 is called surjective
if any object in Z is a subquotient of F'(X), for some X in €. We have the following
two essential results.

Theorem 2.4 ([34, Theorem 2.5]). If F : € — 2 is a surjective tensor functor
between finite tensor categories, then the image F(P) of any projective object P in
€ is projective in 9.

Theorem 2.5 ([34, Proposition 2.20]). If F: € — 2 is a surjective tensor functor
between finite tensor categories, then FPdim(2) < FPdim(%). Furthermore, if
FPdim(2) = FPdim(¥), then any surjective tensor functor F' : € — Z is an
equivalence.

2.4. Tensor generators. For a collection of objects {Y;}, in a tensor category
%, let (Y;); denote the smallest (full) tensor subcategory in ¢ which contains the
Y; and is closed under taking subquotients. We call this subcategory the tensor
subcategory in ¢ generated by the Y;. We say € is tensor generated by the collection
)}, 1% = (1;);.

2.5. Braided tensor categories, ribbon tensor categories, etc. A braiding on
a tensor category € is a chosen collection of natural isomorphisms cxy : X @Y —
Y ® X, for each X and Y in ¢, which satisfy the equation

CXY®RZ = (Zd X CX,Z)(CX,Y ® Zd) and CXQY,Z = (CX,Z ® Zd)(ld X CY,Z) (2)

for each triple of objects in €, and cx/ yv/(f ® g) = (¢ ® f)ex,y for each pair of
morphisms f: X — X' and g: Y — Y’ in ¥. We also require that the braidings
c1,x and cx; composed with the unit isomorphisms are the identity. A tensor
category equipped with a particular choice of braiding is called a braided tensor
category.

Remark 2.6. We have suppressed the associator in the equations (2).

For a braiding ¢ on a tensor category ¢, we let ¢? denote the square operation
cg(,y = cy,xc¢x,y. The Miger center Znig(%6) of a braided tensor category € is
the full subcategory consisting of all objects X in % for which cg(y_ =idxg—. We
call a finite braided tensor category non-degenerate if the Miiger center Zppig(%)
is just Vect, i.e. if any Miiger central object is isomorphic to some additive power
of the unit.



A twist for a braided tensor category ¥ is a choice of natural automorphism 6
of the identity functor, i.e. a collection of natural isomorphisms fx : X — X for
each X, such that

Oxegy = (0x ® 9Y)C§(7y

at all X and Y in ¥. A ribbon tensor category is a braided tensor category with a
choice of twist § which is stable under duality, in the sense that 0% = 0x- at all X
in €. A modular tensor category is a finite, non-degenerate, ribbon tensor category.
Note that, unlike some authors, we do not require a modular tensor category to be
semisimple. When it is, we call it a modular fusion category.

2.6. Tensor categories coming from vertex operator algebras. Consider V
a vertex operator algebra (VOA). VOAs and their modules carry an action of
the Virasoro algebra, coming from the conformal vector w € V. By a general-
ized V-module W is meant a module in the obvious algebraic sense, together with
a grading W = [, .c W() into generalized eigenspaces of the Virasoro operator
L(0). The presence of the adjective ‘generalized’ here is unfortunate and histor-
ical, and merely refers to the subspaces W(,) being generalized eigenspaces. We
are primarily interested in grading-restricted W, which means each subspace W)
is finite-dimensional, and for each » € C we have W, ;) = 0 for all sufficiently
small k € Z. For example, V is a grading-restricted generalized module over itself,
where all V{,.y are actually eigenspaces for L(0), and where all weights r are integers.
A common requirement on generalized modules is Cj-cofiniteness (defined e.g. in
[46]).

In the series of papers [51]-[50], Huang, Lepowsky and Zhang give technical
conditions under which a full subcategory of the category of grading-restricted
generalized V-modules can be a braided tensor category. In particular, see [50,
Theorem 12.15, Corollary 12.16]. In these cases, the VOA V itself serves as the unit,
and all structure maps are deduced via a certain analysis of multivalued functions
on the punctured complex plane. We should be clear that, when we speak of a class
C of V-modules admitting @ braided tensor structure, the braided tensor structure
is specified uniquely. In general, the problem is that, for a given class of V-modules,
no such structure may exist.

Establishing rigidity is more subtle. The dual of a grading-restricted generalized
module W should be the contragredient W*, which is the natural V-module struc-
ture on the restricted dual ][, W(;,. In a natural sense, (W*)* can be identified with

W — this is clearly true as a vector space (since the W, are finite-dimensional),
but as well the formula for the vertex operator of (W*)* collapses to that of W. In
establishing rigidity, the (co-)evaluation maps are generally clear up to scaling; the
challenge is to verify the rescalings are finite.

Such a tensor category of VOA modules comes equipped with a twist provided
by the exponential § = €2>7*L(0) which one verifies as in [45, Theorem 4.1]. (A
concise recounting of the situation can be found in [19, Section 3].)

We follow the standard VOA practice of distinguishing between modules and
representations. The notion of a representation of a VOA V (i.e. a homomorphism
from V to some sort of VOA canonically associated to vector space W), and its
relation to V-modules, is much more subtle than it is for say associative algebras.
This is discussed in more detail in the book [60], which also serves as a standard
introduction to VOA theory.
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3. QuaNTUM SL(2)

We recall basic information for the category of quantum SL(2)-representations,
and give two interpretations of the small quantum group for SL(2) at a root of
unity ¢ € C*. Much of our presentation is general, in the sense that the quan-
tum parameter ¢ can be an arbitrary (nonzero) complex number. However, when
specificity is needed, we focus on the even order case ord(¢) = 2p.

3.1. Big quantum SL(2). Consider an arbitrary parameter ¢ € C*, and let A
denote the character lattice for SL(2), so that A = }Za with a simple and positive.
Let (—, —) denote the normalized Killing form on A, so that («, a) = 2. We consider
the tensor category

_ The category of A-graded representations B .
rep SL(2)¢ = { of Lusztig’s divided power algebra UCL“S(slg) = rep U¢(sl)

The final algebra UC (sl2) is the modified quantum enveloping algebra of [64, Chapter
31], and for the A-grading we require that toral elements in UCL“S (sl2) act on the
A-space V) via the appropriate eigenfunctions. We refer to objects in rep SL(2)¢ as
SL(2)¢-representations.

For a finite order parameter ord((?) = p, for example, we require that the toral
elements in the quantum group act as

K -v=¢@Yy and [K‘;;O} Sy = [ (al’)/\) ]v, where [Z] is the ¢-binomial.

At such ¢ the category rep SL(2); can then be described explicitly as the cate-
gory of finite-dimensional A-graded vector spaces V' equipped with linear operators
E,F,E® F®) .V — V which shift the grading as

E-Vy\C V,\+a, E(p) -V C V)\+pa, F-V,C V)\_a, F(p) -V C V,\_pa

and satisfy the standard quantum group relations of [63, 64]. At an infinite order
parameter one can deduce a similar (but slightly easier) presentation of rep SL(2),.

Let Q: VW — V ® W denote the diagonal endomorphism associated to the
normalized Killing form,

Qv @ w) = ¢dee®dee@)y, @y (a,a) = 2.

When ( is of finite order ord(¢?) = p, we have the formal element

p—1 -1 n
R=(> 02 O g eyt = (1 (¢ ¢ EF . ) (3)
n=0 [n]'
which acts as a well-defined linear endomorphism on products V ® W of quantum
group representations. Similarly, at an infinite order parameter we have the element
R defined by replacing the finite sum (3) with the evident power series. The element
R provides an R-matrix for the category rep SL(2)¢, so that we have the associated
braiding

cyw VW =WV,
-1 n
CV,W('U ® U}) := Roq - (w ® 7)) — C—(deg v,deg w) Zn C—n(n—l)/Q (€ [ni() Frw Q@ E™

[52, 64].
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Remark 3.1. To be clear, the normalized Killing form takes half-integer values
on the character lattice A, so that the definition of Q@ = 37, \ ¢y ® 1,
involves a choice of square root for (. We simply halve the argument and take the
positive square root of the magnitude to define (/2 := \/|([exp(iarg /2), where
0 < arg < 27 is such that ¢ = [¢|e?®8. There is, however, another R-matrix for
rep SL(2), defined by taking the negative square root of |¢| and, accounting for
reverse braidings, we observe a total of four possible braidings on the category of
SL(2)¢-representations.

We refer to the above braiding on rep SL(2)¢, defined by taking the positive
square root of the magnitude || and corresponding R-matrix (3), as the “standard
braiding” on rep SL(2)..

Suppose now, for the sake of specificity, that ¢ is of even order ord(¢) = 2p. The
category rep SL(2), is pivotal [35, Definition 4.7.7], with slightly unorthodox pivotal
element provided by the grouplike K?~!. We consider the Drinfeld morphism

p—1 2 n
1
uw : W — W, UW(’LU) — C(deguudeg w) E Cn(n+1)/2cn(degw,a) (C[n]' ) F"E™w

n=0

defined by R to find the corresponding twist

Ijvl =uw K PT W — W,

p—1 9
—_ 1)
Ot ) = (~des el emdee) 3 grinsny2grtaeswe = pn,
n=0 ’

This twist provides the category of quantum group representations rep SL(2)¢ with
a ribbon structure.

3.2. Simple objects in rep SL(2), and the standard representation. For any
dominant weight A\ € A, i.e. any weight of the form A\ = n§ with n positive, we
have a uniquely associated simple module L(\) in rep SL(2)¢ of highest weight A.
Furthermore, these representations exhaust all of the simple objects in rep SL(2)¢
[62, Proposition 6.4]. Each L(\) appears as

L()\) =Cuy @ Curpma @ - @ (CU,\_mn(A)a,

where the m; are positive integers which depend on A\. At A = £ we obtain a
2-dimensional simple representation

1 .
V= L(ia) =Cv1 ®Cv_y, with vy =vig.

We call V the standard representation for SL(2)..

When ( is of infinite order, each simple L(n«/2) is of dimension n + 1 and the
category rep SL(2)¢ is semisimple. Indeed, at such ¢ we have the obvious abelian
equivalence between classical representations rep SL(2) and rep SL(2), which in-
duces an isomorphism on Grothendieck rings.

Consider now ¢ of finite order, and take p = ord(¢?). We adopt special notations
for the first p simples:

Vi =1=L(0), %:V:L(%a), Va=L(a), ..., vp:L(f”%1 ) (4)

Each simple V; is of dimension s, and has non-vanishing weight spaces in degrees
(s —1—2j5)a/2, forall j=0,...,s — 1.
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By considering the behaviors of weight spaces under the tensor product, it is
easy to see that each simple L()\) is a quotient of some power V& of the standard
representation. The following is well-known, and is a consequence of the fact that
the simple representation V,, is also projective [12, Lemma 3.2.1].

Lemma 3.2. The standard representation V generates rep SL(2)¢, as a tensor
category.

As for the simples of highest weight > %a, each simple L(rfa) is (r + 1)-
dimensional, is supported in weight spaces (r — 2j)5a, for 0 < j < r, and is
annihilated by £ and F. We have the following basic result.

Lemma 3.3 ([6, Theorem 1.10]). Each simple L(\) admits a unique decomposition
L(X\) = L(p) ® Vs, where p € pZ5 and X\ = pi + %a.

Proof. The general version of this theorem is covered in [6]. In our case, one can
examine the product L(u) ® Vs directly to see that it admits no submodules, and
so is simple. Since L(u) ® Vi is of highest weight A\ = u + (551)0[7 we conclude

L(p) ® V, = L(A). 0

3.3. Lusztig’s quantum Frobenius. For the remainder of the section we suppose
¢ is of even order ord({) = 2p, again for the sake of specificity.

Let us consider the sub-lattice AM := pZa in A. The collection of objects W
in rep SL(2); whose A-grading is supported on the sublattice AM forms a tensor
subcategory in rep SL(2).. This subcategory is semisimple and is equivalent to
the category of representations of classical PSL(2). Indeed, Lusztig’s quantum
Frobenius provides a braided tensor embedding

Fr : rep PSL(2) — rep SL(2),

[64, Chapter 35]. Furthermore, one sees that the image of the functor Fr is precisely
the Miiger center of rep SL(2)¢ [69, Theorem 5.3], so that we have an identification

g (rep SL(2)¢) = rep PSL(2).

3.4. Small quantum SL(2) as a quasi-Hopf algebra [16]. Recall our standing
assumption ord(¢) = 2p. As an algebra, the small quantum group wuc(sly) :=
u¢(SL(2)) has a presentation

2 K-K! 2 —2
uq(sly) = C(E,F,K)/(K*P—1, EP, FP, [E’F}_W’ KE-(°E, KF-( “FK).
We let G = (K) denote the subgroup of units in u(sly) generated by K.

The quasi-Hopf structure on u,(sly) is a “toral perturbation” of the usual Hopf
structure induced by the algebra inclusion uc(sly) — UCL“S (sl2) into Lusztig’s di-
vided power algebra [63, 64]. While we won’t explicitly describe the quasi-Hopf
structure here, let us say that the (co)associator ¢ € u¢(sl2)®? lies in the group of
grouplikes ¢ € (CG)®3, and the coproduct is of some form

A(E)=E®L+M(K®E), A(F)=FL '+ M (K '®F), A(K)=K®K,
with L € CG and M, M’ € CG ® CG. The counit u¢(slz) — C is the usual one.
(More details can be found in any of [16, 42, 69].)

The category of u¢(slz)-representations admits a ribbon structure for which the
restriction functor

res” = (res, T%) : rep SL(2)¢ — rep u¢(sla)



11

becomes a map of ribbon tensor categories, after we introduce a nontrivial tensor
compatibility 77y : res(V) @ res(W) — res(V ® W) [69, Proposition 6.3].

The particular form of the quasi-Hopf structure on w¢(slz) will not be impor-
tant for us. Indeed, when addressing the tensor category rep uc(sle) we prefer the
presentation of Section 3.5 below. There are, however, some advantages to consid-
ering the quasi-Hopf interpretation of representations for the small quantum group.
Namely, simple facts about the representation theory of u¢(sly) are clear from this
concrete perspective.

We observe for u¢(slz) the anomalous 1-dimensional representation

x=Cuvp, F-v,=F-v,=0, K-vp,=—0p.

Since x is 1-dimensional, one sees abstractly that it must be invertible in the tensor
category repuc(sly), and since x is in fact the unique non-trivial 1-dimensional
representation for uc(slz) we see that it is self-dual. So x ® x = 1.

There are furthermore a total of 2p simple w, (sl2)-representations which corre-
spond to the 2p characters of the group of grouplikes G. The first p simples are
provided by the images of the simples V in rep SL(2)., under restriction. The final
p simples are given as the products x ® Vs, so that we have a complete list of simple
representations {Vi, x ® Vs : 1 < s < p}, up to isomorphism.

The fact that the restriction functor from rep SL(2), — repuc(sly) is a tensor
functor, or rather admits the structure of a tensor functor, tells us that the fu-
sion rules for rep u¢(slz) are the expected ones. Rather, the fusion rules are those
one would calculate from the naive Hopf structure on u¢(sly) induced by that of
UCLus (5[2).

3.5. Small quantum SL(2) as Frobenius de-equivariantizaton [9, (9]. We
have the quantum Frobenius Fr : rep PSL(2) — rep SL(2), of Section 3.3, and can
consider the central algebra object € := Fr ¢ (PSL(2)) in the category Rep SL(2)¢
of infinite-dimensional quantum group representations. (Specifically, Rep SL(2)¢
is the category of arbitrary Ué“s(slg)-modules M which are the unions M =
UuM,, of finite-dimensional subobjects M,, in rep SL(2)¢.) We consider the de-
equivariantization

| The monoidal category of finitely presented
(rep SL(2)¢Jpsi(z) = { O-modules in Rep SL(2),

[9, 26]. The category (rep SL(2)¢)psL(2) is monoidal, with product ®¢, and we have
the monoidal functor

dE :repSL(2)¢ — (rep SL(2)¢)psr(2), dE(V):=0V

[57, Theorem 1.6]. There is a unique ribbon structure on the category (rep SL(2)¢)psi(2)
so that the de-equivariantization map dFE is a map of ribbon monoidal categories,
and we consider (repSL(2)¢)psr(2) as a ribbon category with its induced ribbon
structure.

Theorem 3.4 ([69]). The category (repSL(2)¢)psr(2) is finite, rigid, and non-
degenerate, and hence modular. Furthermore, there is a ribbon tensor equivalence
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C®% — : (rep SL(2)¢)psi(2) — repuc(sly) which fits into a diagram

w

rep SL(2)¢ = rep uc(sla)

R Coe—

(rep SL(2)¢)psL(2)

The above result is comprised specifically of [69, Corollary 5.6, Proposition 6.3,
& Corollary 7.2]. We argue in the present paper that one should observe an equiv-
alence
F: (rep SL(2)¢)psi(2) 5 rep(W,)

directly from the de-equivariantization of rep SL(2)c, rather than from the repre-
sentation category of the quasi-Hopf algebra wu¢(slz). This is very natural from the
VOA perspective, as we will see starting next section. Indeed, we will interpret the
de-equivariantization dF as the induction of Vir.-modules to W,-modules.

4. MODULES OVER THE TRIPLET ALGEBRA

We provide basic information regarding the tensor category of modules for the
triplet vertex operator algebra WV,. In this section, by module we mean finite length
generalized module. Most of our presentation is deducible from works of Adamovic-
Milas [3], Nagatomo-Tsuchiya [68], and Tsuchiya-Wood [77], although some of our
conclusions are not explicitly in the literature.

As explained in the introduction, we compare modules over the triplet algebra
to representations of quantum SL(2) at a particular complex parameter g.

Throughout this work we fiz ¢ = e™/?.

The parameter ¢ appears in a number of formulas related to modules for the triplet
algebra.

We similarly fiz the central charge c =1 — 6(p — 1) /p.

4.1. Tensor categories for Cs-cofinite VOAs. To keep this subsection relatively
short, we will use some standard technical terminology without defining it — see e.g.
the series of papers [51]-[50] for details in a very general context.

By a strongly-finite VOA we mean a simple Cs-cofinite VOA of positive energy
with V isomorphic to V* as V-modules. By rep(V) we mean the category whose
objects are finite length generalized V-modules, and whose morphisms are homo-
morphisms. For simplicity we will just call these modules. In this context, ‘finite
length’ is equivalent to ‘grading-restricted’ or ‘quasi-finite-dimensional’ (see [46,
Proposition 4.3]).

Recall from Section 2.6 that VOA modules carry actions of the Virasoro algebra.
When the VOA is strongly-finite, the eigenvalues of L(0) are rational. Any module
W has a minimum such eigenvalue, called the conformal weight h(W).

The category rep(V) for strongly-finite V has finitely many simples [30, Propo-
sition 3.6] and enough projectives [46, Theorem 3.23]. In fact, rep(V) is a braided
monoidal category [46, Theorem 4.11] (we use monoidal here rather than tensor
because the latter usually requires rigidity), with the tensor unit being V itself. It
is a finite tensor category provided the simple modules (hence all modules) are in
addition rigid (see [22, Theorem 4.4.1]).
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4.2. The triplet algebra and some modules. We consider the triplet vertex
operator algebra W, at an arbitrary integer parameter p > 1. Let V zq be the
lattice VOA associated to the ,/p-scaling of the root lattice @ C h* for SL(2),
where @ is given its normalized Killing form (a, ) = 2, and we employ the non-
standard conformal vector

p—1
2\/p
Then W, is a vertex operator subalgebra W, C V, 5q, and both algebras are of
central charge ¢ = 1 — 6(p — 1)?/p. We therefore have a sequence of inclusions

1
w= foz(Q_l)|O> +

1 Oz(_g)‘0> S V\/[,Q

Vire = W, — V\/m,

where Vir, is the simple Virasoro VOA at the prescribed central charge. (Details
can be found in [3].)

rep(W,) is a braided finite tensor category: that W, is strongly-finite is proved
in [13, 3], while rigidity is proved in [77] (with some details fleshed out in [22]). The
categorical duals *X and X* of X are both identified with its contragredient. In
Theorem 4.7 we prove that rep(W,) is a modular tensor category, as was expected.
We denote the tensor product on rep(WV,) via the generic notation ®.

The VOA W, has precisely 2p simple modules X + 1 < s < p, and the triplet
algebra itself appears as the simple W, = X 1+ . As modules for the Virasoro algebra
we have

XS =@em—DLom s, X; =D 2m Lo,

m>1 m>1

where L,, ; is the simple Virasoro module of lowest conformal weight

1

finss = 3, (P = s)? = (p—1)°) ()

[3] and central charge c¢. Therefore X and X have respective conformal weights

1 1 3 1 1
hti=his=—(s?—1)—=(s—1) and h] i=hos=-p+—(s>—1)—s+ =.
Fimhie= e o) = g(e=1) and K] = ha = ot pef < 1) sk g
In the case s = 2 the above expression reduces to hj = %—%.

The triplet algebra W, = X is generated as a VOA by the conformal vector
w together with three vectors of conformal weight 2p — 1. The conformal vector
generates the subalgebra Vir.. Each of those three vectors generates over Vir, a
copy of L3 1. We establish in this paper the ribbon tensor equivalence of rep SL(2),
with a subcategory of rep(Vir.); under this equivalence, L3 is identified with the
image by Lusztig’s quantum Frobenius of the adjoint representation of PSL(2), and
W, (as a Vir,-module) with the regular representation of PSL(2). From the point
of view of VOAs, this happens because Aut(W,) = PSL(2,C) [2, Theorem 2.3],
and the orbifold (fixed-point subalgebra) of this PSL(2, C) action on W, is Vir,.

Remark 4.1. With the two notations PSL(2) and PSL(2, C) we are simply distin-
guishing between PSL(2) considered as an algebraic group, or group scheme, and
its corresponding discrete group, or Lie group, of C-points.
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4.3. The fusion ring for rep()V,) and Frobenius-Perron dimensions. Let us
recall some basic information from [77].

Proposition 4.2 ([3, Theorems 4.4, 5.9] [68, Theorem 5.1]). The object X5 is
projective (and simple) in rep(WV,).

An independent verification of the projectivity of Xp+ can also be found in [66,

Proposition 7.7].

Theorem 4.3 ([77]). In the fusion ring K(rep(W,)), the class [X{] is the unit,
the class [X7] acts as [X;]-[XE] = [XT], and the class [X] acts as

XS] [(XE = (X + [X5], when1<s <p,
X5 1X5] = 2(XF) + 20 ).
The above two results imply the following.
Corollary 4.4. The tensor category rep(W,) is generated by X .

Proof. By Theorem 4.3 each simple object in rep(W,) appears as a subquotient of
some power (X;7)®" so that each simple object lies in the subcategory (X, ) of
rep(WV,) generated by X;. By Proposition 4.2, the projective cover & of some
simple object X also appears in (X;r ). Via the composite

X*'0Z X" 09X 31,

exactness of the tensor product, and projectivity of the product X*® & in rep(W,)
[34, Proposition 2.1], we find that the unit object 1 admits a surjection from a
projective object which lies in (X;). Tt follows that the projective cover of 1 lies
in (XJ), and subsequently that all projectives in rep(W,) lie in (X, ). Hence the
subcategory (X;) is all of rep W), O

Via associativity, the formulas of Theorem 4.3 determine the fusion rules for
K (rep(W,)) completely. Furthermore, one can explicitly calculate the fusion ring
of ug(sly)-representations to find that there is a unique isomorphism of Z*-rings

T : K(repugy(sly)) = K(repW,) (6)

which sends the class of the generator [V] to [X;]. We consider the Frobenius-
Perron dimension of the category rep(W,) (see Section 2.2).

Lemma 4.5. FPdim(rep(W,)) = FPdim(rep u,(sl)) = 2p3.

Proof. The isomorphism (6) sends each simple [V;] over ug(slz) to [X ], and each
simple [y ® V5] to [X;]. Since the Frobenius-Perron dimension of an object is

determined by its action on the Grothendieck ring, we find now
FPdim(X7F) = FPdim(x ® V,) = FPdim(V;) = s.

Furthermore, by a direct comparison of composition factors for the projective covers
P, — V, and 2+ — XZF [68, Proposition 4.5] [66, Theorem 7.9] [58, Proposition
2.3.5], one sees also that for the projective covers of the simples we have

TP =[2]], Tx® P]=[2/],
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so that the Frobenius-Perron dimensions of the projective covers agree as well. It
follows that
FPdim(rep(W,)) = FPdim(®, +2F ® X7)
=2 - FPdim(®;Ps ® V;) = FPdim(rep u,(slz)) = 2p>.

O

4.4. The ribbon structure and modularity of rep(W,). We recall that the
category of W,-modules is ribbon, with twist provided by the exponential of the
zero mode of the conformal vector

g — 2miL(0)
Applying this to the simples described in Section 4.2 gives the following.
Lemma 4.6. The twist 0 acts on the simple modules X+ as the scalars
Oyt = (_1)(s—l)q(s2—1)/2 and Oy - = _e3mp/2q(52—1)/2.
In particular, HX; = —¢3/2.

Proof. One simply checks the value of e>™L(°) on the vector vF of lowest conformal
weight in X,

) .
eQﬂ'lL(O),U;l: _ p2mihg ’Ui

e T

We plug in the weights h¥ to obtain

riht mi(s? — 1 . o &2
i = exp( =) exp(mils — 1)) = (1)~ gl V2

and

o 3 1 .
emihs = exp(mép + 7ri2—(52 —1) — 2mwis + i) = —e3mip/2g(s*=1)/2
P

as claimed. O

One can use the above formula for the twist to establish modularity of the
category rep(W,) of triplet modules.

Theorem 4.7. The category rep(W,) is a non-degenerate, and hence modular,
tensor category.

Proof. By naturality of the braiding, if a given object X is Miiger central, then
all of its simple composition factors are also Miiger central. Additionally, the unit
object in a finite tensor category admits no extensions [34, Theorem 2.17]. So
Zhtig (tepWV,p)) = Vect if and only if the only Miiger central simple is the unit
object. So we can simply check the braidings of X, against the simples, using the
formula for the twist given in Lemma 4.6, to observe the claimed triviality of the
Miiger center. Let us compute.
The fusion
XF@XF =X, 0X5,,

at 1 < s < p, implies that the twist 9X2+®X5+ has eigenvalues 9XS+71 = (—1)5(](52_25)/2
and 9Xj+1 = (—1)sq(s2+28)/2. Similarly ex,j@x; has eigenvalues GX;I = —e3mip/2g(s*~29)/2
and 0+ = —63”ip/2q(32+25)/2. Since ¢° = ¢~ * if and only if s = p, we see that each

s+1
twist 0X2+®Xsi € Endyy, (X ® XF) has two distinct eigenvalues when 1 < s < p.
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The competing endomorphism 6 X ®0 x+ acts as a scalar, so that the square braid-
ing
-1 -1
9X;®X3 ) (HX; ® HXSi) = Cfx;,x}

is not the identity at 1 < s < p. It follows that no such simple X is Miiger central.

At s =1, £ = —, we have X ® X; = X, and Ox. = —e3P/2¢3/2 while

— o3mip/2 ,3/2

Oxy @0x-=¢ ¢°’“. Hence

_ -1 -1y _ 2
and we conclude that X is not Miiger central.

Finally, for Xpi we note that 9X;—®X1:)t has an eigenvalue —e37?/2

or 1, while
9X2+ ® Gxgc is scaling by

(_1)pq(p2—1)/2q3/2 _ e?ﬂrip/?q or e37rip/2q(p2—1)/2q3/2 =q,

respectively. From this information we conclude, just as above, that the square
braiding ¢, |+ has an eigenvalue +¢~', so that the objects X are not Miiger

2 7XP
central. This exhausts all non-trivial simples in rep(W,), and we conclude that the
Miiger center of rep(W,) is precisely Vect. O

5. OSTRIK’S THEOREM

We recall a theorem of Ostrik, which classifies tensor functors rep SL(2); — &
from quantum SL(2) into an arbitrary tensor category 7.

Our presentation is relatively robust, and we discuss various mechanisms em-
ployed in the proof of Ostrik’s theorem in detail. In particular, we recall the con-
struction of the Temperley-Lieb category TL(d) and its universal properties. The
Temperley-Lieb category will play a prominent role in many of the arguments in
the sections that follow.

5.1. Ostrik’s theorem. By a self-dual object W in a tensor category </ we mean
a triple (W, coev,ev) of an object W, and maps coev : 1 — W @ W and ev :
W @ W — 1 which identify W as its own left and right dual (in the sense of [35,
§2.10)).

Definition 5.1. For a self-dual object W in a tensor category 7, the intrinsic
dimension of W is the composite endomorphism
dW) =1 wWew 25 1).

Since End (1) = Cidy, we can identify the endomorphism d(WW) with a scalar.
Also, when W is simple, this scalar d(W) is independent of choice of structure
maps for W, and so is an invariant of W as an object in /. When W is not simple
however, this dimension does depend on the choices of coevaluation and evaluation.
So calling such a dimension intrinsic is a slight abuse of language in this case.

Remark 5.2. More generally, when W is simple and not self-dual, all that can
be defined is an intrinsic squared dimension. When & has a pivotal structure,
the square of the intrinsic dimension of W equals the product of the left and right
categorical dimensions of W.
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For a self-dual object W of intrinsic dimension d(W), there is a unique-up-to-
inversion scalar ¢ € C* so that d(W) = —(¢ +¢~!). Hence the order ord(¢?) is an
invariant of W as a self-dual object, or simply as an object in &/ when W is simple.
Let us call this number the quantum order of &/ at W, or just the quantum order
of W.

As we explain below, when W is of (finite) quantum order p, the coevalua-
tion and evaluation maps provide a collection of self-dual objects W7 = 1, Wy =
W, Ws,...,W, in & and splittings

WeW,2W,_1®W,1q, forall r<p.

Each object W, is of intrinsic dimension £(¢" =1 +¢" 3+ - -+~ ") for appropriate
choice of signs. In particular, d(W,) = 0. We say W is non-reduced (resp. reduced)
if the object W, is non-vanishing (resp. vanishes) in .

Theorem 5.3 (Ostrik’s Theorem [70, §2.6]). Suppose & is a tensor category, and
W is a self-dual object in o/ which is of intrinsic dimension —(¢ + ¢™1). Suppose
also that ord(¢?) < oo, and that W is non-reduced. Then there is a uniquely
associated (exact) tensor functor

Fw :1epSL(2)¢ = &/ with Fyy (V) = W.

Furthermore, any tensor functor F : rep SL(2)¢c — < is isomorphic to Fy for some
non-reduced, self-dual object W .

As we recall below, the standard representation V in rep SL(2). is self-dual, and
the equality Fyy (V) = W in the statement of Theorem 5.3 should be interpreted as
an identification of self-dual objects. So, Fyy is required to send the (co)evaluation
maps for V to the (co)evaluation maps for W. Theorem 5.3 appears precisely in
[70, Remark 2.10]. We sketch the proof of Ostrik’s theorem below.

For the sake of consistency, we call a self-dual object non-reduced whenever
ord(¢?) = oo as well. In the infinite order (aka generic) case, the appropriate
analog of the above theorem holds. Namely, a self-dual object W in &/ which is of
infinite quantum order uniquely specifies a map Fyy : rep SL(2); — 7. This generic
version of Theorem 5.3 is well-known, and is easily deduced from our presentation.

Remark 5.4. Consider the situation presented in Theorem 5.3. In the case in
which W is self-dual and reduced, with d(W) = —(¢ + (1), we obtain a uniquely
associated tensor functor Fy : €' (SL(2),() — < from the semisimplified represen-
tation category of SL(2) at ¢. The category € (SL(2), () is explicitly the quotient of
the category of tilting modules in rep SL(2), by the ideal of negligible morphisms
[10, §3.3]. An example of a tensor category &/ realizing this case is the modular
fusion category rep(L; (k,0)) with ¢ = e™/(F+2) - where L (k,0) is the rational
Cs-cofinite VOA associated to affine sly at level k € Z( [60, Chapter 6]. So, a
more complete recounting of Ostrik’s theorem would include the reduced case as
well. This point, however, is inessential for our study.

5.2. The Temperley-Lieb category. Consider TL(d), the Temperley-Lieb cate-
gory at parameter d € C [55] [39, Appendix]. This category has objects [n], for each
non-negative integer n, and morphisms Homrry,([m], [n]) given as the C-linear span
of non-crossing pairings (non-crossing planar string diagrams) between m points
and n points, up to isotopy. So, a general morphism from [5] to [7] is a sum of
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diagrams which look like

NN W

Composition is given by stacking diagrams vertically, where we reduce any diagram
with loops to a diagram without loops by replacing each loop with the scalar d,
O =d-id € I‘IOHITL([O]7 [0])

The category TL(d) is a C-linear, rigid monoidal category with products given
by placing diagrams alongside each other horizontally, so that [n] ® [m] = [n + m)].
The generating object [1] is self-dual with coevaluation and evaluation given by the
cup and cap morphisms

coevp) = U € Homrp,([0],[2]), evp) =N € Homry([2], [0]).

Hence all products [m] = [1]®™ are also self-dual, and the object [1] is of intrinsic
dimension
d([1]) = evpyj o coevpyy = O = d.

The category TL(d) has a universal property among monoidal categories equipped
with a chosen self-dual object. We recall this universal property momentarily, after
introducing a preferred additive completion of T'L(d).

Let T L(d) denote the Karoubi, followed by additive, completion of the Temperley-
Lieb category

TL(d) = Kar(TL(d))®.

So, we construct 7L(d) by splitting idempotents in TL(d), then adding in finite
sums of objects.

Theorem 5.5 ([40, Theorem 4.1.1], [82, Lemma 6.1]). For </ a C-linear, pre-
additive monoidal category, and W a self-dual object in o7 of intrinsic dimension
d, there is a unique linear monoidal functor Fy : TL(d) — o with Fy ([1]) = W,
Fy (coevpy)) = coevw, and Fyy (evyy)) = evw .

When o is a tensor category, the aforementioned universal map extends uniquely
to an additive monoidal functor Fy : TL(d) — <.

By “unique” we mean unique up to natural isomorphism of monoidal functors.

Proof. As an alternative to the cited texts, one can note that TL(d) admits a
monoidal presentation by generators and relations [78, §2.2], with generating object
[1] and generating morphisms given by evaluation and coevaluation. One then
applies [78, Lemma 4.3.1] to obtain the claimed universal property. O

5.3. The self-dual generator for SL(2).. The object V in SL(2)¢ is self-dual,
with (co)evaluation maps
coev:1—=V@V, coev(l) =20 @v_1 —CV20_1 @0y
ev: VeV -1, ev(vy®vr) =ev(vog ®v_1) =0
ev(vy @v_1) = (/2
ev(v_y ®vy) = V2.
One deduces these morphisms via the (co)evaluation maps for the usual dual V*
and the explicit SL(2)¢-isomorphism

6: VIV, gor) =~V plooy) = (A,
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where v* denotes the dual function to v; in the above expression. We then calculate
the dimension
d(V) = evocoev=—(C+¢7Y).

The following result is fundamental.

Theorem 5.6 ([33, Lemma A.7] [70]). Ford = —(¢C+¢™'), the map Fy : TL(d) —
rep SL(2)¢, determined by the self-dual object V, is fully faithful, and restricts to an
equivalence

Fy:TLd) ST
onto the subcategory of tilting objects in rep SL(2)¢.

While the tilting category 7¢ in rep SL(2), admits a rich representation theoretic
structure (see e.g. [5, 7, 75, 8]), for us it is simply the full, additive, Karoubian,
monoidal subcategory in rep SL(2), generated by V. This category is all of rep SL(2),
precisely when ( has infinite order, or is £1.

Sketch proof. Fully faithfulness of the initial functor Fy : TL(d) — rep SL(2), fol-
lows from [33, Lemma A.7] via base change, and implies that the corresponding
map from the completion 7L(d) is also fully faithful. Since the indecomposable
objects in T¢ are summands of the powers Fy([n]) = V®" of the standard repre-
sentation [75, Proposition 4], the image of 7L£(d) is precisely the subcategory 7¢ of
tilting objects. O

From the above identification TL(d) = 7¢ we deduce a universal property for
the subcategory of tilting modules in rep SL(2),.

Corollary 5.7 ([70, Theorem 2.4]). For any tensor category <, and self-dual object
W in o/ of dimension d(W) = —(C + (1), there is a unique additive monoidal
functor Fw : Te — o with Fyw (V) = W, Fy(coevy) = coevw, and Fy (evy) =
evw -

As stated above, 7 = rep SL(2)¢ when ord({) = oco. So Corollary 5.7 already
implies the generic version of Ostrik’s theorem.

When ( is of finite order ord(¢?) = p, recall that we have the p simple SL(2)-
representations V; of respective highest weights (s — 1)a/2, for s < p, as in (4).
These simples V; all lie in the subcategory of tilting modules in rep SL(2). It follows
that for any self-dual object W in & which is of dimension d(W) = —(¢ + (1),
the functor Fy defines distinguished objects Wy in &7 by taking

Wy =1, Wy =W, and W, = Fy(V3) for all s < p. (7)

These W are alternatively defined via certain idempotent endomorphisms in TL(d)
[81, 53].

5.4. The proof of Ostrik’s theorem. We paraphrase the proof from [70]. Con-
sider W a self-dual object in < of dimension d(W) = —(¢ + ¢71), and ord(¢?) =
p < 0o. Suppose also that W is non-reduced. In the arguments below, by a tensor
triangulated category we simply mean a triangulated category with a compatible
rigid monoidal structure.

Fix F = Fyw : T — &/. We consider the bounded homotopy category K b(’TC) of
tilting complexes and have maps

A KbT¢) — DY(SL(2)¢) and RF : K°(T;) — D’(«) (8)
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induced by the inclusion 7 — rep SL(2). and the additive map F : T¢ — &.
Here D*(%) denotes the bounded derived category [30, Ch 10] of the given abelian
category ¢, and RF specifically denotes the composite

KT K5 Kb (ar) 22 Db (o),

All of the functors of (8) are maps of tensor triangulated categories.

By a general result of Beilinson, Bezrukavnikov, and Mirkovié [11] [8, Proposition
2.4] [70, Proposition 2.7], the functor A : K°(T¢) — DP(SL(2)¢) is an equivalence
of tensor triangulated categories. We consider the candidate extension of F' to all
of rep SL(2), defined via the composite

F = (rep SL(2)¢ — DP(SL(2)) 4= Kb (T¢) B5 Db (ar) 2 d) .9

The functor % is a perfectly well-defined map of additive categories, and satisfies
Fl7. = F. We must argue now that .7 is exact, and preserves tensor products,
provided F'(V},) # 0.

We claim that, for any V in rep SL(2)¢,

the cohomology H*(RF o A~*(V')) vanishes in all nonzero degrees. (10)

If we can verify this claim, then the tensor map rep SL(2); — D’(&/) appearing
in (9) has image in the abelian subcategory D?(27)% of objects with cohomology
concentrated in degree 0, and it follows that .# is an exact, C-linear, monoidal
functor as desired. Indeed, in this case we have an exact tensor functor rep SL(2), —

Db(&7)¥ and composing with the tensor equivalence H° : Db(o7)¥ S o we see
that .Z is exact and monoidal.

As all objects in rep SL(2)¢ are obtainable from the simples via extension, it
suffices to prove the desired vanishing (10) for all of the simples L(A) in rep SL(2),.
As explained in [70, §2.6], it furthermore suffices to prove the desired vanishing
(only) at the 2-dimensional simple L({c) in repSL(2)¢. For this final claim one
writes out L(5«) as a 3-term complex A~ (L(5a)) =0 L -V®L — L —0
of tilting modules, and observes that after tensoring with the projective V,,, the
complex A™*(L(5a)) ® V), is isomorphic to a tilting module L” concentrated in
degree 0 in K°(7¢) [70, Sublemma 1 §2.5]. We therefore calculate

Pa
2

) ® F(V,) = RE (A7 (L($) @ V,) = F(L"),

RF (A7 (L(
and find that the leftmost object has cohomology concentrated in degree 0. Via
exactness and faithfulness of the product on & [10, Proposition 2.1.8], and the fact
that F(V,) is nonzero in &/ by assumption, we conclude that RF(A™(L(5w)))
has cohomology concentrated in degree 0, as desired. So we establish the desired
vanishing (10).

We conclude finally that, when W, = F'(V,) # 0in </, the map .# : rep SL(2)¢ —
o/ of (9) provides the desired extension of F' : Tc — &7 to all of rep SL(2)¢. Unique-
ness follows from the fact that, by the above information, any two such extensions
Z and #' of F must have isomorphic derived functors, and hence must themselves
be isomorphic.
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6. BRAIDINGS FOR TL(d) AND QUANTUM GROUP REPRESENTATIONS

We directly calculate all possible braidings on TL(d), and on rep SL(2).. The
results of this section are used to determine when a given tensor functor Fy, :
repSL(2)¢ — </ into a braided tensor category < is in fact a braided tensor
functor.

6.1. Calculating braidings for TL(d). Consider d € C and write d = —(¢+¢ 1)
for some ( € C*. Recall that there is a unique solution to the equation d =
—(X + X1 up to inversion, so that the choice here is between ¢ and (~!. We
define the square root (/2 unambiguously by halving the argument of ¢ and taking
the positive square root of the magnitude |(|. Throughout the section we abuse
notation and write coev (resp. ev) for the coevaluation morphism coevy;) (resp.
evaluation morphism evyyj) in TL(d).

Consider the Temperley-Lieb category TL(d) and write, for any nonnegative
integer m, TLy,(d) = Homry,([m], [m]). We have the map f : [2] — [2] given by

f=UoN=coevoev

and the two elements {id|y), f} form a basis for the endomorphism ring TLa(d).
When d # 0 we furthermore have the idempotent d=!f which realizes [0] as a
summand of [2] in the Karoubi completion of TL(d).

In TL(d) one can calculate the (standard) equations

focoev =d-coev, (f®1)(1® coev)= (coev®1), (1® f)(coev®1)= (1R coev).
For an element ¢ € TLa(d) = Endry,([1] ® [1]) let us define
e = (c@1)(1®@c) and o)) = id.
The following two results are straightforward, and certainly well-known.
Lemma 6.1. There are precisely four solutions ¢ € TLy(d) to the equation
crap,1)(coev ® 1) = (1 ® coev)epo), ) (11)
in Homrr,([1], [3]), namely
c=£(C2f V) and e=2(CTRFHC),
Proof. Write ¢ = af + b. We have directly
cr2),1)(coev @ 1) = (e, @ 1)(1 @ ey, ay) (coev @ 1)
= a(cpyp ® 1)(1 @ f)(coev ® 1) + blepypy ® 1)(coev @ 1)
=a?(f®@1)(1® f)(coev®@1) +ab(1® f + f ®1)(coev ® 1) + b?(coev @ 1)

= (a® + b*)(coev @ 1) + ab(1 @ f + f @ 1)(coev @ 1)
= (a® 4 b% + dab)(coev @ 1) + ab(1 ® coev).

Since the two representing diagrams for (coev ® 1) and (1 ® coev) are non-isotopic,
and hence these maps are linearly independent in Homy,q)([1], [3]), the identity
(11) implies the equations

1

ab=1 = b=a""' and subsequently d= —(a®+a?).

The final equation gives a? = (¥, Hence a = +¢F1/2. O
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Note that for any braiding ¢ on TL(d) the endomorphism ¢(1),;1; € TL2(d) solves
the equation (11). Note also that any braiding on TL(d) is specified uniquely by
its value on [1]®[1]. So the above lemma says that there are precisely four possible
braidings on TL(d). In the above formulas, inverting ¢ corresponds to replacing the
braiding by its opposite. Changing the sign of the braiding corresponds to choosing
a different square root of (. The existence of the Kauffman bracket implies that all
four possibilities are realized as braidings on TL(d).

Proposition 6.2. The category TL(d) has precisely four braidings, and precisely
two braidings modulo inversion. These two braidings (up to inversion) are specified
uniquely by their values on [1] ® [1], and differ only by a sign

cpppy = £(C2F+ V3.

Proof. The Kauffman bracket, see e.g. [79, §X11.2.2], realizes all four of the possible
braidings suggested in Lemma 6.1 as braidings on TL(d). (These braidings are also
realized as braidings on rep SL(2),, which one recalls involves a choice of square
root for ¢.) To pair inverses we check

(T =(d+C+ T +1=1
O

When d # 0, we have the two idempotents e; = d~'f and e3 = 1 — d~! f which
provide an alternate basis for the endomorphisms TLa(d). One translates directly
to find 12 f+¢ V2 = —(3/2¢; +(1/2e5. So, in terms of this basis of idempotents,
Proposition 6.2 yields the following.

Proposition 6.3. When d # 0, the category TL(d) has precisely two braidings,
modulo inversion, which are specified by the values

cu,) = +(—=C%%e; 4+ ¢ 2%;).

6.2. Calculations with the generator V in repSL(2). Via the equivalence
K®(TL(d)) = D*(SL(2)) we observe a bijection between braidings on rep SL(2),
and braidings on the Temperley-Lieb category (see §5.4). In particular, restricting
along the fully faithful functor Fy : TL(d) — rep SL(2), induces a bijection between
the respective collections of braidings. So we may compare the standard braiding of
Section 3.1, for the category of quantum group representations, with the possibilities
of Proposition 6.2. We perform some calculations with the generator V.

Consider the braiding ¢ on rep SL(2)¢ determined by the R-matrix (3). Since V
is annihilated by the second powers of E and F', we have

CV,V(U ® ’UI) _ C—(deg(v),deg(v/)v/ v — C—(deg(v),deg(v/))(g _ C—l)Fv/ ® FEv
so that
v1 ®@v1 = (V20 @ vy,
Vo1 ®@v_1 = (P @y,
V1 QU_q Cl/QU—1 ® vy,
V_1 QU1 — C1/21}1 RU_q1 — Cl/Q(C — Cil)v_l X vq.
Also, the element fy = coev o ev € End,epsr(2) (V ® V) is such that

fv(vr ®@v1) = fy(v_1 ®v_y1) =0,
fr(vi®voq) ==C oy @uog+vo1®ur, fy(vor ®@v) =v1 @ vy — (v_g @ v1.

cyy =
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One observes an expression for the standard braiding directly from the above cal-
culations.

Lemma 6.4. cyy = (Y2 fy + (/2

7. AN ANALYSIS OF THE GENERATOR X,

The object X, is self-dual [77, Theorem 37], and so the materials of Section
5.1 imply the existence of a tensor functor from some quantum group category to
rep(WV,). As explained in Theorem 5.3 and Remark 5.4, the precise domain of this
functor depends on the behaviors of X;r in rep(W,). In this section we prove the
following

Proposition 7.1. The object X5 is of intrinsic dimension d(XJ) = —(q+ ¢ 1),
and s non-reduced.

Proposition 7.1 implies, via Ostrik’s theorem, the existence of a unique tensor
functor

Fyy trep SL(2)q — rep(Wp)
with Fiy+ (V) = X5. This functor is examined in more detail in Section 9.

We note that the dimension d(X2+ ) can be calculated directly by following the
analysis of Tsuchiya and Wood [77, §4.2]. We will, however, determine the dimen-
sion via abstract arguments which simultaneously address the non-reduced property
of X5, and also provide information on the braiding for rep(W,). At the conclusion
of the section we determine the braiding Cxf x o UpP to a sign. We complete our
analysis of the braiding in Section 8.

7.1. Proof of Proposition 7.1. Recall that at p = 2 the product X, ® X,
is the minimal projective cover of the unit 1 = X~ [77, Theorem 37], and the
evaluation map X, ®X, — 1 identifies 1 with the cosocle of this projective module.
In particular, evaluation is the unique nonzero map in Homyy, (XS ® XF,1), up
to scaling. This statement also holds at p > 2, since we have a decomposition
XS ® X5 = 1@ X5 . Therefore at arbitrary p there is a unique linear map

1/(—) : Endyy, (XS @ X)) — Endyy, (1)

defined by composing functions with any nonzero morphism X, ® X5 — 1. In
terms of evaluation for example, this map is uniquely defined by the property

(If)oev =evo f.
Lemma 7.2. At p > 2 the natural braiding on rep(W,) is such that
g =0 e

and at all p the corestriction of the braiding along evaluation is 1\c§(2+ X+ = g 3.

To be clear, the e; above are the (unique) idempotents in Endyy, (XS @ X3)
corresponding to the simple factors X;™ and X3 in the product X; ® X5, e; :=
(X5 @ XS = X — X5 o X).

Proof. When p > 2 we have, by naturality of the twist,

4
Oxjoxy =0rer+0xres =e1+qes
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and 62 | = ¢3. Hence
X2

2 _ 1 -1y _ -3
Oxpoxt = Oxtext (9X2+ ® HX;) =4q et ges

In general, naturality of the twist gives
0xroxs (O3 @0.0) =q  (loxpoxy) =a 0 =g
([l

Lemma 7.3. The category rep(W,) is of finite quantum order at X (see §5.1).
Furthermore, this order divides p.

Proof. Take ¢ € C* so that d(X;) = —(¢ + ¢™'). Then by the fusion rule for
rep(WV,), and induction, we observe

AX) =2+ T

for all 1 < r < p. But now, the simple X;‘ is projective, and so must be of
dimension 0. To make this point more clear, simply note that any composite 1 —
X} ® X} — 1 must be 0, since otherwise 1 would appear as a summand of the
projective object X;‘ ® X;‘ , and would therefore be projective. But, we know this
is not the case.

The vanishing d(X,") = 0 implies

0= (X ) = S (" = 0= (- DA™ = -1,
m=0 m=0

Hence ord(¢?), which is the quantum order of X5 in rep(W,), is finite and divides
p. t

Lemma 7.4. The object X is non-reduced in rep(W,) (see §5.1).

Proof. Take ¢ such that d = d(X5) = —(¢ +¢~!). We already saw at Lemma 7.:
that ord(¢?) < p. Take p’ = ord(¢?). In the arguments that follow, the fact that p’
is less than or equal to p is of significance.

We have the universal map Fy+ : T¢ = TL(d) — rep(W,), F(V) = X7, and one
sees by a recursive argument that FX2+ (Vi) 2 X for all s < p'. Namely, we have
Fys (V) = FX;(VQ) = X, , and if we assume Fys (V,) =2 X,F for all r < s then we
have

X;_—Q D FX; (VG) = X (V® Vs—l)
= Fyr (V)@ Fyr (Vi) 2 Xy @ X =2 X, 0 X

as proposed.

s

Uniqueness of Jordan-Holder series therefore forces F' x5 (Vs) 2 X
These identifications imply, in particular, that F' X7 (V,r) is isomorphic to the (nonzero)

simple X;. So we see that X is non-reduced. g
We can now prove the claimed result.

Proof of Proposition 7.1. We have already seen that X is non-reduced, in Lemma
7.4. So we only have to determine the dimension. When p = 2 the object X5 ® X5
is projective, and thus the intrinsic dimension of X3 is 0 = —(i —i~'). Suppose
now p > 2.
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Fix ¢ so that d = d(X5) = —(¢ +¢™'). We want to show that ¢ = ¢*'. We
have the universal map Fy+ : TL(d) — rep(W,), F([1]) = X;. Since X, is non-
reduced, the map Fy+ extends to a tensor functor from rep SL(2), and is therefore
faithful [28, Proposition 1.19]. Faithfulness, and the fact that

dime Endyy, (X5 ® X57) = dimc Endyy, (X" @ X5) = 2,

implies that the map on morphisms FX; : TLy(d) — Endyy, (XS ® X)) is an
isomorphism.

Now, by Lemma 6.1 and Proposition 6.2, the preimage ¢ € TLy(d) of the element
Cxiox; € Endw, (X" ® XJF) specifies a unique braiding on TL(d) under which the
functor F X; is braided monoidal. By the calculation of Lemma 7.2, this braiding
satisfies

2 _ -3
=9 et ges.

By the constraints placed on braidings on TL(d) given in Proposition 6.3, we see
that ¢ = ¢! and d = d(X)) = —(¢+ ¢ ). O

7.2. The braiding on rep(,), up to a sign. In keeping with our general con-
vention, we let fX2+ : X @ XS — X @ XS denote the composite of the evaluation
and coevaluation maps

XfeoXf—-1- X, XS

Since X2+ is simple, the endomorphism f X7 is independent of the specific choice of
evaluation and coevaluation.

Lemma 7.5. The braiding on rep(W,) is specified, up to a sign, as
exp xy = £a P fxp +d'?) (12)

Proof. At p > 2 the endomorphism (12) can be rewritten as +(—¢~%/2e; + ¢'/%e3)
and squares to the appropriate formula according to Lemma 7.2. At p = 2 the
square of this endomorphism is 2f + ¢ = 2f + ¢ 3, since ¢* = 1 and f? = 0, where
we write f = fX;r. (At p = 2 the square of f is zero since 1 is not projective, and
so does not appear as a summand of the projective object X;r ® X;r )

As explained in the proof of Proposition 7.1, there is a unique braiding on TL(d)
under which the (faithful) monoidal functor F Pea TL(d) — rep(W,) is braided

monoidal. By the constraints of Propositions 6.2, and the fact that ; |c§(+ = q3
2 02

by Lemma 7.2, we see that the only possible values for Cxj xg are those of the form

(12). O

At general p, these two possibilities for the braiding can be distinguished by their
compositions along any nonzero projection X;' ® X;' — 1.

Corollary 7.6. We have 1|cX;7X2+ = +(—q~3/?), with sign + corresponding pre-
cisely to the sign at (12).

Proof. One calculates directly
cvolq Py +4'?) = (72d+q"?)ev = =g Pev.
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8. THE BRAIDING FOR rep(WV,)
We calculate the braiding on rep(W,) explicitly via its vertex tensor structure.

8.1. Categorical data for strongly-finite VOAs. Let V be a strongly-finite
VOA, and W € rep(V) be a module (recall the discussion in Section 4.1). Then as
in Section 2.6 we obtain the decompositions V = [[" V() and W =[], W(,) by
L(0). For each v € V(,,) we have the vertex operator Yy (v,2) = ) V2™
where the linear map vy, sends W,y to Wi,y _m—1)-

To understand the tensor product of V-modules, we need a generalization of
vertex operators called (logarithmic) intertwining operators Y. If Wi W?2 W3

meZ

are simple, then an intertwining operator of type (WVYSVQ) has shape Y(w?, 2) =

(W) =h(WH)—h(W?) Y mer wl 2™ for any w! € W1, where w}, sends W(Qs) to
W(?;«—h(wl)+s—h(W2)—m—1+h(W3)) when w'! € W(IT). More generally, when W* are
merely indecomposable, each term in the sum will include polynomials in log(z).
More precisely, choosing w! € W(lr) and w? € W(QS ) let k; be the smallest values
such that (L(0) — r)¥1w! = 0 = (L(0) — s)*2w?, then the mth term in the sum is
LW —h(WH=h(W?)=m—1 timeg 5 polynomial in log(z) of degree ki + ko + k3 — 3
with coefficients in Wé), where t = h(W3) +r — h(W1) + s — h(W?) —m — 1 and
ks is the smallest power such that (L(0) — t)*3w3 = 0 for all w3 € W(3t).

We denote by V (WVY;W) the space of intertwining operators of that type. Its
dimension equals that of Homy (W' ®@W?2 W3) ([49, Proposition 4.17]). Thus when

3 . 1 2 . . s . W3
W+ is simple and W' QW= is semisimple, dim V (W1W2
of W3 in W' @ W2

The tensor unit is V. There is a unique nondegenerate invariant bilinear form
on V up to scaling; let (u,v) denote the one normalised so that (1,1) = 1, where

will equal the multiplicity

Vo = C1. We will need an explicit intertwining operator ) of type (W‘;V> (for
W simple, this space is always 1-dimensional). It is defined by
(’U, y(w7 Z)’LU/) _ <e7r7i(h(W)7wt w)272wt weL(fl)/zYW (’U, 677”‘271)62[/(1)107 w/> (13)

for any v € V, w € W and w’ € W*. The Virasoro operator L(1) lowers weights by
1 (so automatically kills lowest weight vectors), while L(—1) raises them by 1.

For VOAs, the braiding isomorphism cy1 2 : W W?2 - W2 @ W! is skew-
symmetry. More precisely, suppose V is strongly-finite and W', W?2 are simple.
When W1!®W? is semisimple (i.e. isomorphic to a sum of simples), we can identify
the V-module W' ®@ W? with @V (W‘QV;VQ) ®c W3, where the (finite) sum is over
inequivalent simple V-modules W3. In this case we can interpret cw1 we as a linear

3 3
map between spaces of intertwining operators V (WVYWQ) -V (vawl ):
ewr w2 (V) (w?, 2)wt = FEDY (Wl e 2)w? (14)

forany Y €V (WVY‘;Z ), where we’re using the skew-symmetry operator 2, defined

in [48, equation (7.1)] (for us, 7 = 0). The notation e™ here indicates the appro-
priate choice of branch of logarithm, needed to evaluate fractional powers. We also
use (14) when W' @ W? is not semisimple, though in this case the relation of the
intertwining operator to the tensor product can be slightly more subtle.
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8.2. The sign of the braiding. In Proposition 7.1 we determined the dimension
d(X3) of X by “abstract nonsense”. In Lemma 7.5 we similarly determined
the braiding on rep(J},) up to a sign, again by “nonsense”. Here we specify the
braiding on the category of triplet modules precisely, by dealing directly with the
vertex tensor structure on rep(W,).

Proposition 8.1. The braiding on rep(W,) satisfies Cxioxf = q71/2fx2+ +¢'/2.

Proof. By Corollary 7.6, in order to specify uniquely the braiding of rep(W,) it
X;V)?;) defined in
(13). For all p, this Y corresponds to the (unique up to scaling) homomorphism
XFe XS —w,

Take w' = w? = w, a nonzero vector in the lowest weight space of X2+ , which is
I-dimensional. Note that Y(w, 2)w € 2'73/2P(z1 4+ 2W,[[2]]) for some z € C. Tt is
clear from (13) that z # 0. We find

cxt xy (V)(w, z)w € (N emi=3/20) ;123120 (1 4 2 W, [2]])

suffices to apply (14) to the intertwining operator ) € Wp<

_ 76737‘—7"/2172173/2‘7)(%1 + ZWp[[ZH)
This must be a multiple of Y (since dim W, (X;VX;) = 1), and because = # 0,
that multiple is thus —g—3/2. O

For p = 2 the product X, ® X, is not semisimple, but rather is the minimal
projective cover P1+ of the unit. This plays no role in the proof, however. When
p = 2, for what it’s worth, ) is the part of the full logarithmic intertwining operator

¥
of type ( Xflx+) coming with the highest powers of log(z).
2 2
For p > 2 we can determine the rest of the braiding in a similar way. Take any

nonzero Y € W, (X)fi+) Then Y(w, 2)w € 2'/?P(ws + 2X5 [[2]]), so
2 2

exp xt V), 2)w € eHEDem 202 (wy 2 X [[2]]) = €™/ 212 (ws +2X [[2]])

for some w3 € X5 . This must be a multiple of Y, and provided ws # 0, that
multiple is thus ¢'/2, as desired. It is elementary to show that ws # 0 using the
hypergeometric function calculations in [77, 22]. But we will skip the details as we
already knew ¢'/2 is correct from Lemma 7.5 together with the calculation in the
preceding proof.

We note that, by naturality of the braiding and the braid relation, the braiding on
the category rep(W,) is determined uniquely by its value ¢ XF.x; on the generator,
as implied by Lemma 7.5.

9. A MODULAR TENSOR EQUIVALENCE rep(uq(sls)) = rep(W,)

At Theorem 9.5 below, we prove that there is an equivalence of (non-semisimple)
modular tensor categories rep(uq(slz))*® = rep(W,), at quantum parameter ¢ =
e™/P_ Our proof relies on a number of technical points. First, we identify tensor
functors out of the de-equivariantization (rep SL(2)4)psr(2) with a certain class of
tensor functors out of rep SL(2),. We then prove a braided version of Ostrik’s the-
orem, which is given in Theorem 9.4 below. These results, in conjunction with the

analysis of rep(WV,) provided in Sections 7 and &, will imply the claimed equivalence.
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9.1. De-equivariantization as categorical base change. Suppose ( € C* is
of even order 2p, for the sake of specificity. We say a functor M : rep SL(2), —
o/ annthilates the central subcategory rep PSL(2) C repSL(2). if the image of
rep PSL(2) in & is precisely the subcategory Vect C &7 generated by the unit, and
for any W in rep PSL(2) and V in rep SL(2), the diagram

MW © V) —— )NV @ W) (15)
M(W) © M(V) 22 M(V) @ M(W)

commutes. Here the vertical maps are the structure maps for M, and myyw) m(v) is
the half-braiding provided by the trivial lift Vect — Z(&7) of the unit Vect — <.
(Rather, 7 is the half-braiding provided by the unit structure —®1 = id 2 1® —.)
A very practical way to observe the above diagram (15) is the following.

Lemma 9.1. Given a braided tensor functor M : rep SL(2); — 7, into a braided
tensor category <f , M annihilates rep PSL(2) if and only if M(rep PSL(2)) C Vect.

Proof. Compatibility with the braiding implies that the diagram (15) commutes,
after we replace 7 with the braiding ¢ for &/. But now, the hypotheses on any
braiding requires cxy = 7Tx,y for all trivial X, so that compatibility with the
braiding implies the diagram (15). O

The following is a general result about de-equivariantization, which we state only
in the case of (repSL(2)¢)psL(2)- The general situation is discussed in Appendix

Proposition 9.2. Suppose a tensor functor M : repSL(2); — & annihilates the
central subcategory rep PSL(2) C repSL(2)¢. Then there exists a tensor functor
from the de-equivariantization p : (repSL(2)¢)psL2) — &/ which fits into a (2-
)diagram

rep SL(2)¢ M o (16)

(rep SL(Z)C)PSL(Q)

When <f is braided, and M is a map of braided tensor categories, then p can be
taken to be a map of braided tensor categories as well. Furthermore, the collection
of all such factorizations {p admitting a diagram (16)} admits a natural PSL(2)-
action.

As is made clear in the appendix, a more careful statement of Proposition 9.2
would specify not only the functor M, but also a choice of trivialization of the
restriction M |.ep psr(2)-

The factorization p can be written explicitly as p = 1 @y ¢ M(—), where & =
Fr 0(PSL(2)). The ambiguity appears in the choice of the point (algebra map)
M & — 1 at which we take the fiber to produce u. The collection of such points
for M & has the structure of a PSL(2)-torsor.

Proof. Suppose we have such a map M : rep SL(2); — « which annihilates rep PSL(2).
Then the algebra object ¢ = Fr ¢(PSL(2)) in Rep SL(2), has image B =M€, an
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algebra object in Ind Vect C Ind.«/. Thus we may consider the exact monoidal
category mod . (B) of finitely presented B-modules in «/. Given any augmenta-
tion (algebra map) B — 1, we have the associated monoidal functor 1 ® g — :
mod g (B) — & [57, Proof of Theorem 1.6(3), at € = mod(B) and A = 1] for
which the composite

o % mod . (B) 25 o
is isomorphic to the identity [57, Theorem 1.6(4) at ¥ = o/, A= B, X = 1]. (Note
that we use the canonical central structure on the embedding Vect — & in place
of the braidings employed in [57, Theorems 1.5 & 1.6].)

The tensor functor M induces an exact C-linear functor between categories of

modules

Mg : (rep SL(2)¢)psr(2) —+ mody (B),
which just sends an object N in Rep SL(2)¢ with a given &-action to the object
M(N) in Ind & with its induced B-action, B® M(N) 2 M(0 @ N) — M(N). We
compose with the fiber 1 ® 5 — at any (fixed) augmentation B — 1 to obtain the
desired factoring of M through the de-equivariantization p = (1 ® g —) o Mg, as a
C-linear functor.

(We note that, since & is a finitely generated commutative algebra object in
RepPSL(2), B is a finitely generated commutative algebra object in Vect, i.e. a
finitely generated commutative algebra over C. Hence B admits a plethora of
augmentations which are parametrized by Spec(B).)

We now claim that My is a monoidal functor, or rather admits the structure of
a monoidal functor, and hence that p is a monoidal functor. We also claim that u
is exact. Let us argue these points.

Since M annihilates rep PSL(2) C rep SL(2),, the two right B-actions on Mg ()
induced by the braiding on rep SL(2), and the central structure for the Vect-action
on o/, agree. Additionally, exactness of M implies that the image of the equalizer
diagram

M(N®@G@@N = NN — N®gN')
for the action maps on &-modules N and N’ provides an equalizer diagram
M(N)® B@ M(N') = M(N) @ M(N') = M(N ®4 N’) (17)

for the corresponding B-modules in Ind «7. Since M(N) ® g M(N’) is the equalizer
of the diagram (17), by definition, the monoidal structure on M induces unique
binatural isomorphism M(N) ® g M(N’) 2 M(N ®4 N') which fit into a diagram

M(N)®@ M(N') ——— > M(N ® N')

structural

i i

M(N) ®p M(N') —————— M(N @¢ N').

These isomorphisms give M the structure of a monoidal functor. The functor p
therefore inherits a monoidal structure, as it is a composition of monoidal functors.

For exactness of u, note that the reduction 1 ® g — : mod (B) — & admits a
right adjoint & — mod. (B) which sends an object V in & to the B-module in
o/ which is simply V, as an object in 7, with B acting through the augmentation
B — 1. As any functor which has a right adjoint is right exact, we see that the
reduction functor is right exact, and hence that p is right exact as it is a composition
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of right exact functors. Now, compatibility with duality [35, Exercise 2.10.6] implies
that p is left exact as well.

As for the promised identification po dFE = M, we have the explicit sequence of
natural isomorphisms

podEWV)=p0xV)=10g MO V)
~ 105 (M(O)@M(V)) =105 (BoM(V)) 5 105 (10 M(V)) = M(V).

The inverse is provided by the natural map M(V) - M(0®V) - 1pM(O®V).

In the braided context we have that mod. (B) inherits a braiding from that of
&/, and the braiding caries through all of the given arguments. The PSL(2)-action
comes from the fact that the PSL(2)-action on ¢ (PSL(2)), by translation, induces
a PSL(2)-action on the algebra B. This PSL(2)-action permutes the points B — 1
at which we define the functor =1 ®p5 Mg(—). O

Remark 9.3. Note that restriction gives us a functor from rep SL(2), to the rep-
resentation category of the small quantum group (not cocycle corrected), which
sends rep PSL(2) to Vect. However it does not annihilate rep PSL(2) in our sense
(it does not satisfy (15)), and won’t factorize as in (16). So Proposition 9.2 cannot
be used to establish an equivalence between representations of the non-cocycle cor-
rected small quantum group and (rep SL(2)¢)psr,(2). Likewise, the forgetful functor
rep SL(2)¢ — Vect also does not annihilate rep PSL(2) in our sense, and so we do
not get an induced fiber functor for the de-equivariantization.

9.2. A braided version of Ostrik’s theorem. Consider a self-dual object W in
a tensor category 7. For such W we have an associated endomorphism

fw WeW =1->WeW, fw = -coevoev,

of the second tensor power of W. When the endomorphism algebra End (W) is
1-dimensional the morphism fy is independent of the choice of structure maps coev
and ev. This occurs, for example, when W is simple.

Theorem 9.4. Suppose W is a self-dual object in a braided tensor category <,
with dW) = —(¢ + ¢71). Suppose also that ord(¢) < oo, that W is non-reduced,
and that the braiding endomorphism cww € Endgy (W ® W) is in the subspace
spanned by fw and the identity.

Then, under one of the four braided structures on rep SL(2) provided in Propo-
sition 6.2, the tensor functor Fy : repSL(2)¢ — & promised in Theorem 5.5 is a
braided tensor functor.

Proof. Since the tensor functor Fy is necessarily faithful, its restriction to the
subcategory of tilting modules Fyy |7, is faithful as well. As in the proof of Propo-
sition 7.1, faithfulness and the fact the braiding endomorphism cy,w is in the
image of the map Fy : End7 (V® V) — Endy(W ® W) implies that Fy |7
respects the braidings on 7¢ and &/, under one of the four braidings on 7¢ consid-
ered in Proposition 6.3. Hence the corresponding functor of triangulated categories
R(Fwl7;) : K*(T¢) — D(«/) is also a map of braided monoidal categories.
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We recall that the inclusion 7: — rep SL(2), induces an equivalence of tensor
triangulated categories K°(7¢) = D®(SL(2)¢) [11], and note the diagram

o _ENTO memwin
/ \

RFw

Db(SL(2)¢) D(o).

The above diagram implies that the functor RFyy is braided monoidal, since both
maps out of K°(7¢) are braided. It follows that the original map Fy, which one
recovers by restricting RFy to the subcategory of complexes concentrated in degree
0, is braided monoidal as well. O

9.3. A modular tensor equivalence.

Theorem 9.5. There is an equivalence of modular tensor categories

~

O : rep(uy(sl2))™ = repWV,).
The functor © is such that ©(V) = X .

The superscript (—)™" indicates that we consider the representation category for
uq(sl) with inverse braiding, and inverse twist, relative to that of Section 3.1.

Proof. Throughout the proof we consider rep SL(2), with its inverse ribbon struc-
ture. Since we have the ribbon equivalence (rep SL(2),)psr,(2) = rep(uq(slz)) of The-
orem 3.4, it suffices to produce such an equivalence © from the de-equivariantization
(rep SL<2)q)PSL(2)~
By Theorem 9.4, Proposition 7.1, and Proposition 8.1 we have a braided tensor
functor
Fy :1epSL(2), — rep(WV,)

with Fi (V) = X. Since rep(W),) is generated by X, , the functor Fy is sur-
jective. Consequently, the Miiger center in rep SL(2), maps to a Miiger central
subcategory of rep(J},). But by Theorem 4.7, the category of triplet modules is
non-degenerate, so that the only central subcategory in rep(W,) is Vect. It follows
that Fyw (rep PSL(2)) C Vect. By Proposition 9.2, and Lemma 9.1, the map Fy
therefore factors to provide a braided tensor functor

O : (repSL(2)4)psL2) — rep(Wp)
from the de-equivariantization.
Since © o dF = Fy we have O(V) 2 X', and since rep(W,) is generated by X,
we conclude that © is surjective. Finally, since

FPdim ((rep SL(2)q)psi(2)) = FPdim(rep(uq(slz))) = FPdim(rep(W,)),

by Lemma 4.5, surjectivity of © implies that © is an equivalence, by Theorem 2.5.

Finally, for the ribbon structure, let 6 denote the twist of Section 3.1. The
category (rep SL(2)q)psr(2), With its reversed braiding, admits precisely two twists,
6~ and KP6~'. This is because u,(sl2) has precisely two central grouplike elements,
1 and KP. These twists are such that 6@1 = —¢*/? and K”@Ql = ¢*/2. Since the
value of the twist for rep(W,) at X is —¢%/2, we see that © is an equivalence
of modular tensor categories, after we provide (repSL(2)q)psr(2) With the inverse
ribbon structure §~1. O
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10. RESULTS FOR LOGARITHMIC MINIMAL MODELS

Consider Vir,, the Virasoro vertex operator algebra at our fixed central charge
¢ =1-6(p—1)%/p. This algebra is not Cy-cofinite (hence not strongly-finite).
In [66] McRae and Yang verify the existence of a vertex temsor structure on a
distinguished “affine” category rep(Vir.)ag of Virasoro modules, which we recall
below. Some important features of the category rep(Vir.)a.g are that it (a) admits
a tensor generator, and (b) contains all of the integral simples L, ;.

We prove the following theorem, which was first conjectured in [12] (cf. [69,
§11.2)).

Theorem 10.1. There is a ribbon tensor equivalence K : rep SL(2)5% = rep(Virc)as
which fits into a (2-)diagram

rep SL(2)5™ — K rep(Vire)as (18)

res® \L J{Wp@

rep(ugq(sla))'® ——————rep(W,).

It was argued by Bushlanov, Feigin, Gainutdinov, and Tipunin [12] that the
fusion rings for rep SL(2), and rep(Virc)ag are isomorphic. The equivalence of
Theorem 10.1 categorifies the isomorphism of fusion rings proposed in [12].

Throughout the section we ignore (notationally) the inversion of the ribbon struc-
ture on rep SL(2),, and take for granted that we are considering the category of
SL(2)4-representations along with its reverse braiding and inverted twist, relative
to that of Section 3.1.

10.1. Big categories of VOA modules. We begin with an aside on categories of
“big” modules for a given VOA. Let V be a vertex operator algebra with some cat-
egory rep(V)aqist of preferred, finite length modules. We'll require that the inclusion
rep(V)aist C rep(V) into the ambient category of finite length V-modules is fully
faithful, and that the class of preferred modules is closed under taking subquotients.

Given such rep(V)qist, we find ourselves in various situations which require a
larger category Rep(V)aist which contains rep(V)qist and in which we can, say, take
infinite direct sums of modules. Formally speaking, we construct such a big category
Rep(V)aist by taking the Ind-category of rep(V)aist [54, §6.1]. In our setting, one
can understand this category rather concretely [54, Corollary 6.3.5] [21, Section 4]:
We first consider the category Rep()) of arbitrary V-modules, with no finiteness
assumptions, then take

The full subcategory of V-modules M in Rep(V)
Rep(V)aist := ¢ for which M is the union M = U, M, of its
(finite length) submodules M, C M in rep(V)qist-

The category Rep(V)aist inherits an abelian structure from the inclusion Rep(V)gist C
Rep(V), and it is closed under taking arbitrary filtered colimits. We refer to the
category Rep(V)aist simply as the Ind-category of rep(V)gist, or informally as the
“big” category of preferred V-modules.

We note that if rep(V)qist admits a (braided) monoidal structure, for which the
product is right exact and commutes with sums, then Rep(V)qiss inherits a unique
(braided) monoidal structure which extends that of rep(V)qist and commutes with
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colimits. In particular, when rep(V)qiss admits a vertex tensor structure then the
big category Rep(V)aist is canonically braided monoidal. One can see [21] for an
explicit, vertex algebraic, analysis of this extended monoidal structure.

10.2. Categories of Virasoro modules. We recall some results from [17, 66]. We
adopt a calligraphic notation for Virasoro modules £, to distinguish such objects
from quantum group representations, which we generally denote via a Roman text
L.

We recall that there is a unique simple Vir.-module of conformal weight h for
any h € C. Consider first the category rep(Vir.)in of finite length Vir.-modules
with composition factors among the “integral weighted” simples £, ;. The L, ; are
specifically the simple Vir.-modules of conformal weight h, s = ﬁ((rp —8)?2—(p—
1)?), where 7 is a positive integer and 1 < s < p. We consider all morphisms, so
that rep(Vir:)int is a full subcategory in the ambient category of all Vir.-modules.

It is shown in work of Creutzig, Jiang, Hunziker, Ridout, and Yang [17], and
also McRae and Yang [66], that the category rep(Vir.)int satisfies the necessary
conditions to admit a vertex tensor structure, and that the corresponding braided
monoidal category is rigid. This category furthermore admits a ribbon structure
provided by the (standard) exponential § = 2™ L) The authors subsequently
define the subcategory

rep(Vire)ast

:= {the full subcategory in rep(Vir.)int (tensor) generated by the simple £4 2}.

The subcategory rep(Vir.).g in fact contains all of the simples in rep(Vir.)int,
and so is the subcategory in rep(Vir, )i, generated by all of the simple objects £, 5.
One can alternatively define rep(Vir.)a.g as the Miiger centralizer of the triplet
algebra W, = @,>0(2n — 1)Lap41,1 in rep(Vir)in, [66, Theorems 4.4, 5.2, & 5.4].
The category rep(Vir.)ag is affine in the sense that it admits a tensor generator
(cf. [29, §IL.5 Corollaire 5.2]).

Remark 10.2. The categories rep(Vir.)int and rep(Vir.).g are denoted by O, and
09 in [66], respectively.

By a general theory of VOA extensions [47, 19], which we’ve recalled in Appendix
A, we have an induction functor

w, .
F =17 :rep(Virc)ag — Rep(W,)

from the affine category of Virasoro modules to the Ind-category Rep(W,) of W,-
modules. McRae and Yang provide the following calculation.
Proposition 10.3 ([66, Proposition 7.4]). For the simple objects L, s inrep(Virc)as
one has F(L,5) = rXe", with e(r) = (—=1)7+1.

The above proposition implies, in particular, that the induction of each simple

object in rep(Vir, ). lies in the usual category rep(W,) of finite length W,-modules.
We apply Lemma A .3 to find

Lemma 10.4. Induction provides a surjective ribbon tensor functor F' : rep(Vire)ag —
rep(W,). In particular, F is faithful and ezact.

Proof. Any such induction functor is braided monoidal [57, Theorems 1.6 & 1.10],
and exactness of F' follows from exactness of the tensor product on rep(Vir.)ag, or
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more directly from exactness of the tensor product and Lemma A.3. Faithfulness
holds because any tensor functor between tensor categories is faithful [28, Propo-
sition 1.19]. Since we have F(L;2) = X, and since X, generates the tensor
category rep(W,) (Corollary 4.4), we also see that F' is surjective. Compatibility
with the ribbon structure follows from the fact that W, is central in Rep(Virc)as
and is a fixed point for the twist, so that
€2ﬂiL(0)‘F(£) = 9Wp,£ = (QWP ® GL)C%/VP,E = 05 = €2ﬂ—iL(0)|L‘,

at arbitrary £ in rep(Vire)asg. O
10.3. At the level of Grothendieck rings.

Lemma 10.5. There is a ribbon tensor functor K : repSL(2); — rep(Vire)as
which fits into the diagram (18). In terms of Ostrik’s theorem (Theorems 5.5 and
9.4), K is specified by the self-dual simple object L1 2 in rep(Vire)as -

Proof. We have the self-dual object £1 2 in rep(Vire)ag [66, Theorem 4.1] which is
of intrinsic dimension

d=d(Ly12) =d(F(L12) =d(XJ)=—(qg+q¢ ).

So we obtain, via the universal property of the Temperley-Lieb category, a linear
monoidal functor Fy, , : TL(d) — rep(Vire)ag. The composition

TL(d) = rep(Vire)ag - rep(WVy)

sends L4 2 to X;r , so that the composite is the universal map specified by the self-
dual object X in rep(W,). We have already seen that this map to rep(W,) is
faithful, via Proposition 7.1, Theorem 5.3, and Proposition 2.1, so that the original
map Fg, , to rep(Vir.)agq must be faithful as well.

By Ostrik’s theorem we now have a unique extension K : rep SL(2); — rep(Vire)an
of ¢, , to the category of all quantum group representations. Furthermore, by The-
orem 9.4, and the fact that the induction functor F' : rep(Vir:)ag — rep(WV,) is a
faithful ribbon tensor functor, we find that K is a map of ribbon tensor categories.
The diagram (18) commutes simply because the functor © : rep(uy(slz)) — rep(W,)
is constructed by de-equivariantizing the universal map rep SL(2), — rep(W,) spec-
ified by the self-dual object X, , which is (up to natural isomorphism) just the
composite F o K. ([l

From this point on K : rep SL(2), — rep(Vire)ag denotes the braided tensor
functor specified by the self-dual object L1 2 in rep(Vire)as-

We recall that the collection of all simples in rep SL(2), is precisely the collection
of products {L(u) ® Vs : p € Z>o%*,1 < s < p}. The following describes the
behavior of the functor K on simple objects.

Lemma 10.6. Take pu, = rpa/2 for any nonnegative integer r. For the simple
objects in rep SL(2), we have K (L(p,) @ Vi) = Ly41 5.

Proof. By the descriptions of the fusion rules for rep SL(2), and rep(Vir.)as, given
for example in [70, §2.5] and [66, Theorem 4.11], we observe that the lengths of
the powers V®" and L%;’ are the same, and that each such power has precisely
one simple composition factor which does not appear in a lower tensor power.
Specifically, the simples L(u,) ® Vs and L,41,, appear first in the powers ye(@rts)
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®(pr+s
Lyy

and . So we observe by induction, and exactness of K, that the simples in

rep SL(’Z)q map to simples in rep(Vir.)ag, in the prescribed manner. O

The following corollary is immediate.

Corollary 10.7. The induced map on Grothendieck rings K] : K(repSL(2),) —
K (rep(Virc)ag) s an isomorphism of Z4 -rings.

10.4. Projective representations.

Proposition 10.8. The functor K sends indecomposable projectives to indecom-
posable projectives.

Proof. Since the induction functor F : rep(Vir:)ag — rep(W,) has an exact right
adjoint, given by restriction along the algebra inclusion Vir, — W, it follows that
induction preserves projective objects. The object 1 = L1 1 in rep(Vir.)a.g has a
projective cover @1 with simple socle and cosocle, both of which are just a copy of
L1,1. We have the composition series

[Q1] = 2[L11] + [L2,p-1]

[66, Theorem 5.7].

Since F(Lap-1) = (X, ;)%? [66, Proposition 7.4], we see that the induction
F(Q,) is a length 4 projective in rep(W,) which comes equipped with a surjective
map to the unit object. Since the projective cover £} of the unit in rep(W,) is
also of length 4, we have 2" = F(Q).

Take P; the projective cover of the unit 1 in rep SL(2),. This is just a lift of the
corresponding projective cover in rep(uq(slz)), and so the image under composition

FoXK(Py) = O(res P) = 2

is the projective cover of X;". Now, in rep(Vir.).a projectivity of Q; implies the
existence of a map Q1 — K(P;) which lifts the surjection K(P;) — K(1) = £11.
After applying induction to rep(W,), any such map is an isomorphism. Since
induction is exact and faithful, it follows that the lift @; — K(P;) is an isomorphism
in rep(Vir.)as. Hence, K sends the projective cover P of 1 to the projective cover
Q; of the unit in rep(Vire)as.

One similarly argues that the image K(P;) of the projective cover of each sim-
ple Vi in repSL(2), is the projective cover of the corresponding simple £; s in
rep(Vire)asm, for 1 < s < p. For the projective simples V,, and £4 ,, we have already
established that K(V},) = £, at Lemma 10.6.

Now, for the remaining indecomposable projectives we have Q, s = L,.1 ® Q1 5
in rep(Vir.)ag [66, Theorem 5.9], so that K(L(rpa/2) @ Ps) = Q, s by the above
calculations and Lemma 10.6. We note finally that each product L(rpa/2) ® Ps in
rep SL(2), is the projective cover of the simple L(rpa/2) ® Vs [12, Lemma 4.1] to
complete the proof. O

As we saw in the proof, Proposition 10.8 implies that K sends the projective
cover of a given simple in rep SL(2), to the projective cover of the corresponding
simple in rep(Vir.)as.
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10.5. The proof of Theorem 10.1.

Proof of Theorem 10.1. By Proposition 10.8 all projectives in rep(Vir.).g are in the
image of K. By considering projective resolutions, we see that K is fully faithful, and
also essentially surjective, if and only if its restriction to the additive subcategory
of projectives in rep SL(2), is fully faithful. Rather, K is an equivalence if and only
if its restriction to the subcategory of projectives is fully faithful.

As any tensor functor is faithful [28, Proposition 1.19], we already know that K
is faithful. So we need only establish an equality of dimensions

dim¢ Homgy, (o), (P, P') - dim¢ Homyy,, (Q, Q'), (19)

for indecomposable projectives P and P’ in rep SL(2), with images Q and Q' in
rep(Vire)ag. But now, for the corresponding simple L so that P is the projective
cover of L, the dimension of the above Hom space is just the multiplicity of the
simple L in the composition series for P’,

dim@ HOmSL(Q)q (P, Pl) = [L, Pl].

Similarly Homy, (Q, Q") = [£, Q']. Since K induces an isomorphism at the level of
Grothendieck rings, by Corollary 10.7, we observe that [L, P] = [£, 9], as desired.
O

Remark 10.9. As a consequence of Theorem 10.1 we obtain a calculation of the
Miiger center for the affine module category

rep PSL(2) = Zuiig(rep SL(2) ) = Zuiig (rep(Vire)ast)- (20)

This calculation is also obtainable via the theory of compact group actions on vertex
operator algebras provided in [65, Corollary 4.8]. See in particular the proof of [66,
Theorem 4.3], where the equivalence (20) is obtained modulo the determination
of a certain 3-cocyle. This cocycle can furthermore be shown to vanish since the
triplet algebra is a VOA, rather than a super VOA or some more general type of
algebra.

11. CATEGORIES OF MODULES FOR THE SINGLET ALGEBRA

We describe the (affine) representation category for the singlet vertex operator
algebra M,. As with the Virasoro VOA, the singlet is not Cs-cofinite (hence
not strongly-finite). The singlet algebra sits between the triplet algebra and the
Virasoro Vir. C M, C W,; in particular, M, is the invariant subalgebra (orbifold)
in W, of a maximal torus C* in Aut(W,) = PSL(2,C) (a subgroup isomorphic to
St also works, but C* is more natural from our perspective). Going in the other
direction, W, is obtained from M, by extending by an infinite order simple current
(invertible simple) which generates Rep C* = Z.

Our presentation is based on work of Creutzig, McRae, and Yang [22], but we
provide further elaborations on the behaviors of induction, both from the Virasoro
to the singlet, and from the singlet to the triplet. We also provide a Tannakian
(group theoretic) description of the Miiger center of the affine representation cate-
gory rep(My,)as. We discuss subsequent relationships between singlet modules and
representations of quantum SL(2) in Section 12.
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11.1. Categories of singlet modules. The singlet algebra M, has simple mod-
ules M, labeled by arbitrary functions A € h* = Ca [l, §5]. We are particu-
larly interested in the “integral” (atypical) simples M, s, which are labeled by
an arbitrary integer r and s € {1,...,p}. Each module M, , appears as the
Mj-socle in the corresponding Fock module F,,, , with Heisenberg weight a,. s =
L(1—r) = 11— s))ypa b [25, §2].

We consider, first, the category rep(Mp)in of finite length grading-restricted
M -modules with composition factors among the integral simples M, ;. It is shown
in [22] that the category rep(M,)int admits a rigid vertex tensor structure, and we
have the tensor subcategory rep(Mp)ag in rep(M,)ins generated by the simples
{M,s:reZ,1<s<p}.

Remark 11.1. The categories rep(M,,)ine and rep(M,,)ag above are the categories
Cam(p) and CJO\A(p) of [22], respectively.

According to the fusion rules of [22, Theorem 3.2.6], the category rep(M,)as
is alternatively generated by the distinguished simple M >. For yet another inter-
pretation, the category rep(M,)aq is the centralizer of the algebra object W, =
OnezMant1,1 in rep(M,)ine [22, §1.1 vs. §5.1].

Each simple M, s in rep(M,)as admits a decomposition as a product M, ; =
M, 1 ® M s, and the simple modules M, ; are all invertible with tensor inverse
M7y = M_;421. The simples {M; 1 : r € Z} provide a complete list of invertible
objects in rep(M,)ag, and they satisfy the fusion rule M, 1 @ M1 = M,4,_11
[22, Theorem 5.2.1].

We consider the tensor subcategory (M3 1) in rep(M,,)as generated by the object
M3 1, in the sense of Section 2.4. By the above information, the simple objects in
(Ms,1) are precisely those of the form M, 1, with r odd.

Lemma 11.2. There are no extensions Ext}\,[p (M1, M, 1) =0 when r and v’ are
odd. Furthermore, when p > 2, there are no extensions between M, and M, 1 at
arbitrary v,v’ € 7.

Proof. Suppose p > 2. It suffices to show that the extensions Ext}vlp(l,M,}l)
vanish, via duality. We have the projective resolution of the unit P®* = --- —
Pyp—1®Pp_1 — P — 0, where the P, are the projective covers of the simples
M, s, and P; is the projective cover of the unit [22, Theorem 5.1.3]. In particular,
there are no nonzero maps from the degree —1 portion of the resolution P~! to any
M, 1. Hence the subquotient Ext}wp(l,M,«,l) of Hom,, (P~*, M,.1) vanishes.

At p = 2 the above projective resolution of the unit is still valid, but now appears
as - — Pp1@®P>1 — Pi = 0. So we see that there are no such extensions between
1 and M, ; when r is odd. O

We note that at p = 2 there are in fact non-vanishing classes in Ext}\/(p(l7 Mo 1)

and Ext}\,lp(l, Ms.1), provided by the length 2 quotients of the projective cover Py
of the unit. In any case, the above lemma implies the following.

Corollary 11.3. The tensor subcategory (Ms 1) generated by M3 1 in rep(M,)an is
semisimple, closed under the formation of extensions in rep(M,y)as, and has simple
objects {M,1 : r odd}.
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11.2. Induction from the Virasoro. As a Virasoro module, the algebra M,
decomposes as the sum of simples M, = ®,>0L2n+1,1- Hence M, lies in the affine
representation category rep(Vir.)as, or rather its Ind-category Rep(Vir.)ags (see
Section 10.1). We therefore have the induction functor

I =TI crep(Vire)ag — Rep(M,), £ M, ® L, (21)

which has image in the braided monoidal category of M -modules whose restriction
to Vir. lies in Rep(Vire)ag [19, Theorem 1.2, Theorem 2.67]. Since rep(Vir.)ag is
rigid, the functor I is exact (see Appendix A).

Lemma 11.4. There are isomorphisms I(L31) = Ms1®M116M_11 and I(L1,2) =
Ml,g.

Proof. We have the adjunction
Homg, (1(£3,1), My1) = Homyyr, (L£3,1, My1)

and the Virasoro decompositions M; 1 = ®n>0Lon+1,1, M31 = M_11 = Bn>0L2n+3,1-
In particular, there is a unique-up-to-scaling nonzero map L312, — M, 1 over the
Virasoro, for » = 3, 1, —1. So, by the above adjunction, we have a nonzero
map I(L31) — M, for each such r, and this nonzero map must be a surjec-
tion since each M, is simple. We therefore have the product map I(L3:1) —
Ms3 1®M; 1®&M_1 1, which must also be surjective since each simple in the codomain
is distinct.

Note that the above surjection of M,-modules is also a surjection of modules
over the Virasoro VOA. Since the decompositions of I(L3 1) and M3 1SM; 1&M_1 1
into simple Virasoro modules agree

I(L31) = Mp®L31 = (Bn>0L2n+1,1) @(@n202'£2n+3,1) =M1 &M 1M 1,

this surjection must be an isomorphism.

Similarly, we consider the decomposition M; o = @,,>0L2n+1,2 to see that there is
a surjection I(Lq2) — Mi 2. This surjection must, again, be an isomorphism since
these two objects have the same decompositions into simples over the Virasoro

I(L12) =My R L1222 Bp>0Lont1,2 = My .
O

Of course, the significance of the object £ o is that it is the distinguished ten-
sor generator for the affine representation category rep(Vire).g. Similarly, the
object L3 generates the Miiger center in rep(Virc)ag. This just follows from
the fact that it is the image £31 = K (L(pa)) of the central generator L(pa) in
rep PSL(2) C rep SL(2),, under the equivalence of Theorem 10.1. One can see in
particular Lemma 10.6. The previous lemma and the aforementioned generating
property for £, 2 provide the following.

Corollary 11.5. The induction functor I has image in the affine subcategory
rep(My)as, and restricts to a surjective, ribbon, tensor functor

I :rep(Vire)ag — rep(Mp)asr. (22)

Proof. Let Rep(M,,) denote the braided monoidal category of M,-modules which
restrict to objects in Rep(Vir.)as, along the inclusion Vir. — M, by an abuse of
notation. We note that all of the simples M, ; in rep(My)aq lie in this category
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Rep(M,,) [16, §2.3], and that the induction functor I is an ezact braided monoidal
functor, via rigidity of rep(Vir.)ag-

We have the (rigid) tensor subcategory rep(My)ag in Rep(M,,) which is closed
under taking subquotients, and is tensor generated by the simple M; 5. Since
rep(Vire)am is tensor generated by the simple £4 2, and I(£;2) = M;j 2 by Lemma
11.4, we see that I restricts to a surjective, braided, tensor functor as in (22).
Compatibility of I with the twist follows by the same arguments given in the proof
of Lemma 10.4. |

11.3. The Miiger center in rep(Mj)a.g. As a module over the singlet algebra,
we have W, = @nezMany1,1. In particular, W, lies in the Ind-category of affine
representations for the singlet M,, and we have the braided monoidal functor
I' : rep(M,) = Rep(W,) provided by induction. The following basic description of
induction is deduced from Creutzig, McRae, and Yang [22] (see also Lemma A.3).

Proposition 11.6 ([22, Proposition 3.2.5]). Induction restricts to a surjective,
braided tensor functor

I' : rep(Mp)asr — rep(W,),
and furthermore satisfies I' (M, s) = X" with e(r) = (=1)" L
One can use this result to determine the Miiger center in rep(My)ag.

Lemma 11.7. The Miger center of rep(Mp)ag is precisely the tensor subcategory
(Ms.1) generated by the invertible simple Ms 1.

Proof. Since the induction functor I : rep(Virc)ag — rep(M,)an is surjective and
braided, it must send the Miiger center in rep(Vir).s into the Miiger center in
rep(My)ag. By Lemma 11.4 we have that Ms; is in the surjective image of the
Miiger center of rep(Vir.)ams, and hence the Miger center contains (Ms1). By
Corollary 11.3, the category (M3 1) is the subcategory of all objects in rep(My)an
with composition factors (only) among the M, 1, with 7 odd. To see that no other
simples in rep(M,,).s are central, we simply apply the braided monoidal functor
I : rep(M,)agr — rep(W,) and note that I'(M, ) = X< centralizes I'(M; 5) =
X2+ if and only if r is odd and s = 1, by Theorem 4.7. (Il

We provide a further analysis of the Miiger center in rep(M,,)aq, and its behav-
iors under induction both from the Virasoro and to the triplet algebra.

Lemma 11.8. The induction functor I : rep(Vire)ag — rep(M,)ag restricts to a
surjective, symmetric tensor functor

Intiig (rep(Vire)ag) = Zniig (tep(Mp)ast) -

Proof. Surjectivity of the induction functor I implies that I sends the Miiger center
in rep(Vir.)ag to the Miiger center in rep(Mp)ag. So the result follows from the
computation I(L31) = M3 1 @& My1 @ M_1; of Lemma 11.4, the fact that Ms;
generates the Miiger center in rep(M,)am, and the fact that L31 = K(L(pa)) is
Miiger central in rep(Vire)as- O

Via Theorem 10.1, and Section 3.3, we understand that the Miiger center in
rep(Vir.)ag is equivalent to the representation category of PSL(2). We have a
corresponding group theoretic interpretation of the center in rep(M,)as.
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Proposition 11.9. The induction functor I' : rep(Mp)ag — rep(W,) restricts
to a symmetric fiber functor Zniig (rep(Mp)asr) — Vect. Furthermore, there is a
symmetric tensor equivalence

Ft’ i rep Gy, = Zntisg (rep(My )asr) - (23)

For the unfamiliar reader, G,,, denotes the multiplicative group C*, considered as
an affine algebraic group, and the category rep G,, is identified with the symmetric
tensor category of Z-graded vector spaces. This is the group Z of simple currents,
with which we extend the VOA M, to obtain W,.

Proof. Take 2 = Zniig (rep(Mp)ag). Since I' is a braided, surjective, tensor func-
tor, it sends the Miiger center in rep(M,)aq to the Miiger center in rep(WV,). But
the Miiger center in rep(WV,) is trivial, by Theorem 4.7, so that I’ restricts to a
symmetric fiber functor from the Miiger center in rep(M, )ag, as claimed. It follows
now, by Tannakian reconstruction [28, Theorem 2.11], that there is an algebraic
group G which admits a symmetric tensor equivalence rep G = 2.

By our understanding of & provided by Corollary 11.3 and Lemma 11.7, G has
an invertible representation C, which generates rep G and admits no extensions
from its various tensor powers. This representation therefore specifies a surjective
map of algebraic groups

G — GL(C,) =G,
for which the restriction functor rep G,, — repG & % is fully faithful and essen-
tially surjective. This functor is therefore an equivalence, so that 2 = rep G,,,. O

Remark 11.10. As was the case with the Virasoro, the calculation of the center
(23) can also be deduced from [65].

12. THE SINGLET ALGEBRA AND TORUS EXTENDED u,(sls)

In this section we establish a quantum group equivalence for the affine represen-
tation category of the singlet vertex operator algebra M,. We compare the singlet
to the “torus extended” small quantum group u,(sly) of [64, §36.2.1], at the given
parameter ¢ = exp(mi/p). We prove the following analog of Theorems 9.5 and 10.1
for the singlet (see Section 11.1).

Theorem 12.1. There is an equivalence ¥ : rep(1,(sl2))™" = rep(My,)an of rib-
bon tensor categories which fits into a (2-)diagram

rep(u,(slz))™" rep(My)ag
res“’i \LWP®_
rep(uq(sla))™ _° . repWV,).

The proof of Theorem 12.1 relies in essential ways on notions of equivariantization
and de-equivariantization for tensor categories, relative to a given algebraic group
action. We recall the relevant constructions in Appendix B.

Remark 12.2. As remarked in the introduction, a quantum group equivalence for
the singlet was conjectured in [24, 14]. The works [24, 14] conjecture, specifically,
an equivalence between representations of the so-called unrolled quantum group
ul/(slz) and a certain extension rep (M) [23] of rep(M,)az by the category
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of C/Z-graded vector spaces. The category of ué{ (slp)-representations is just the
category of h*-graded representations of u,(slz), as opposed to those graded by the
character lattice A C h*. So the above theorem differs, to some degree, from the
precise conjectures of [24, 14].

12.1. The category of 1u,(sl;)-representations. We understand the algebra u,(slz)
directly through its representations. A representation of i, (sl2) is a finite-dimensional
A= %Za—graded vector space V which comes equipped with p-nilpotent linear endo-
morphisms E, F': V — V which (a) shift the degree by o and —a, respectively, and
(b) satisfy the quantum group relations of [63]. So, the construction of rep(u,(sl2))
is completely analogous to the construction of rep SL(2), given in Section 3.1, where
we simply forget about the additional operators E®) and F®),

The expected coproduct A(E) = EQ1+K®E,and A(F)=FK '+1®F,
provides the category rep(u,(slz)) with a rigid tensor structure. Furthermore, the
R-matrix and twist from 3.1 define a (unique) ribbon structure on the category
rep(t,(slz)) so that the forgetful functor rep SL(2), — rep(i,(slz)) is a ribbon
tensor functor. This is the standard ribbon structure on the category of u,(sls)-
representations, and in the statement of Theorem 12.1 we consider rep(i,(sl2))
with its reversed braiding and inverted twist, relative to this standard structure.

As in the previous sections, we omit the superscript (—)™V from our analysis,
and take for granted that we are considering the category of u,(sls)-representations
with the reversed braiding and inverted twist.

12.2. Triplet modules via (de-)equivariantization. We let Rep(M,,).a denote
the Ind-category of rep(M,,)as, which we define as in Section 10.1.

The equivalence Fr’ from rep G,, to the Miiger center of rep(M,).¢ sends the
algebra object €(G,,) to a commutative algebra object A in the Miiger center of
Rep(My)am which, as an M,,-module, is of the form

A= BnezMony11 =W, (24)
We have the following little lemma.

Lemma 12.3. There is a unique commutative algebra structure on the My-module
PnezMany1,1 under which it becomes a simple module over itself, i.e. admits no
non-trivial ideals.

Proof. Via the equivalence of Proposition 11.9, it suffices to show that the vector
space 0 = C[t,t7!] = PpezCt™ admits a unique commutative, graded algebra
structure for which deg(¢™) = n and for which ¢ admits no graded ideals. Under
any such algebra structure on &, the grading forces t to act as amap t-—|g, : O —
Or+1 on each homogeneous degree. Now, the image of the action map t-—: & — &
is a graded ideal which contains ¢, and so must be all of & by simplicity. Since each
graded component &), is of dimension 1, it follows that ¢-— must be an isomorphism.
After rescaling the basis elements ¢” if necessary, we then have ¢-t" = t"*! and in
particular ¢-t~! = 1. Associativity forces the general calculation t"-¢t™ = t"*™_ So
0 is identified with the expected localization of the polynomial ring, & = 0(G,,),
as a graded algebra. (Il

Since both &(G,,,) and W, are simple modules over themselves, and the functor
Ft’ is an equivalence, the above lemma tells us that the identification of M,,-modules
(24) implies an identification of algebras A = Fr’ (G,,) =2 W, in Rep(M,)as-
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The following is obtained almost immediately from [19, Theorem 3.65].

Lemma 12.4. Restriction rep(W,) = Rep(M,,)ast, and any choice of algebra iso-
morphism W, = A, identifies rep(W,) with the (braided tensor) category of finitely
generated A-modules in Rep(M,,)ag. Furthermore, any finitely generated A-module
is finitely presented.

To be clear, by a finitely generated A-module X we mean one which admits an
A-module surjection A®V — X from a free module, with V' in rep(M))a.g. By a
finitely presented module we mean one which admits an exact sequence A @ W —
A®V — X — 0, where W and V are in rep(Mp)ag.

Proof. We understand from [19, Theorem 3.65] that the forgetful functor Rep(WV,)asr —
Rep(My)am provides an identification between Rep(W,)ax and the category of (ar-
bitrary) W,-modules in Rep(M,)ag, as braided monoidal categories. By restrict-

ing along any algebra isomorphism A 5 W, we then get an identification between
Rep(Wp)asr and the category of arbitrary A-modules in Rep(M,,)ag. So the claim
here is that the finite length property for objects in Rep(W,)ag corresponds to the
finitely presented property for W,-modules in Rep(M,)asg-

Now, Lemma 11.6 implies that any free module I'(V) = W, ® V is, in particular,
a finite length W,-module in Rep(M)ag. Hence any quotient W, @ V. — X of
a free module is a finite length WW,-module. So we see that any finitely generated
Wy-module is of finite length, and so lies in rep(W,,). Conversely, since the category
rep(M, ). has enough projectives, surjectivity of the induction functor I’ (Lemma
11.6) is equivalent to the claim that any finite length W,-module X admits a
surjection from a free module W, ® V' — X, and so is finitely generated. Finally,
since the kernel of such a surjection W, ® V. — X is also of finite length, we
observe that any finitely generated module is also finitely presented. This shows
that rep(W,) is identified with the category of finitely presented W,-modules in
Rep(M)ag under restriction, as claimed. O

In the language of Section 3.5, and Appendix B.4, we have an identification of
braided tensor categories

1 S W/
rep(W,) = (rep(M,)at)c,, = { finitely presented A = Fr’ 6(G,,) }

modules in Rep(M,)as

between finite length Wy-modules and the de-equivariantization of rep(M,) along
the central functor rep G,, — rep(My). By a general result [9, 69], it follows that
there is a categorical action of G, on rep(W,) for which we have an equivalence

rep(Wp)G’" = rep(Mp)as (25)

between the category of G,,-equivariant objects in rep(W,) and the affine repre-
sentation category of M, [69, Proposition A.2].

Remark 12.5. The equivalence (25) was first observed in [66, Section 7.2], where
the authors proceed via the theory of Lie group actions on vertex operator algebras.

Let us explain the equivalence (25) in more tangible terms. As explained above,
the restriction functor rep(W,) — Rep(M,,)aq identifies finite length modules over
the triplet algebra with finitely generated A-modules in Rep(M,,)ag. The algebra
A can be written as W, =& A = M,[t,t7!] where ¢ is the invertible object Mj;
and t~1 = M3, = M_y,. Furthermore, the translation action of G,, on A =
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Ft' 0(G,,) corresponds precisely to the Z-grading on A-and also W,-specified by
taking deg(t) = 1, deg(t™1) = —1.

With the above framing in mind, a G,-equivariant object in rep(W,) is just a
W,-module X in Rep(M,)ag with a compatible Z-grading so that t¥1- X = Xj41.
We are claiming at (25) that the map

rep(W,) 5™ = W,-mod” — rep(M,)arr, X — Xo (26)

is an equivalence of categories, and has inverse provided by induction. One can see
directly (or abstractly as above) that this is indeed the case. The functor (26) is
furthermore an equivalence of ribbon tensor categories, as its inverse (induction) is
compatible with the ribbon tensor structure.

12.3. Principles for Theorem 12.1. As recalled in Appendix B, the equivalence
(rep SL(2)4)psr(2) = rep(ug(slz)) of Theorem 3.4 induces a PSL(2)-action on the
category of u,(sly)-representations. We have the standard torus G, = T C PSL(2)
of diagonal matrices, and we can restrict the action of PSL(2) to an action of the
torus on rep(uq(slz)).

Given this torus action on rep(uq(slz)), we can consider the non-full tensor sub-
category rep(uq(slz))” C rep(uy(sle)) of T-equivariant representations. One should
view objects in rep(uq(sle))T as ugy(slz)-representations equipped with a compat-
ible rational T-action, although this is an oversimplification. This subcategory is
identified with the category of 1,(sl2)-representations via restriction.

Proposition 12.6 ([69, Proposition 9.1] [9]). There is an equivalence rep(uy(sly))T
rep(,(slz)) of ribbon tensor categories.

We consider the above theorem in parallel with the equivalence (26) for the
singlet. We claim at this point that (after some error correction if necessary) the
equivalence © : rep(uy(sl2)) = rep(W,) of Theorem 9.5 commutes with the G-
actions on these categories, where we act on rep(uy(slz)) via the torus G,, = T and
we act on rep(W,) in the manner prescribed in Section 12.2. One then obtains an
induced equivalence on the subcategories of G,,-equivariant objects

rep(i1g(slz)) = rep(ug(slz))” rep(Wp)®m 22 rep(M,),

T:=0bm
which provides the claimed result.

12.4. The proof of Theorem 12.1. We use the calculus of equivariantization
and de-equivariantization in the proof. One can see the original texts [9, 26, 69],

and/or Appendix B for a review of the topic. (See also [32].) When needed, we
reference specific results from the appendix in to the proof of Theorem 12.1.

Proof of Theorem 12.1. We have the (2-)diagram of braided tensor functors

rep SL(2), = rep(Vire)as rep(Mp)as repWV,)
FrT Fr'T unitT
rep PSL(2) L::;;Clt\ rep G, Pr(:;:'” Vect,

I
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where I and I’ are the appropriate induction functors. By Tannakian reconstruc-
tion, and surjectivity of the map

I|ieppsi(2) : 1ep PSL(2) — 1ep Gy,

we have that I, psp(2) is isomorphic to restriction res, : rep PSL(2) — rep G,
along a group embedding « : G, — PSL(2) [74, Theorem 2.3.2] [28, Proposition
2.21]. So the above diagram can be replaced with a (2-)diagram

rep(Vire)ast rep(Myp)ag L rep(W,) (27)
FrT Fr'T unitT
rep PSL(2) B rep G,, _fiber  yrect.

Furthermore, the induction functors provide equivalences

(rep(Virc)ast)psL(z) = rep(W,) and (rep(My)ast),, = rep(Wp),

by Theorems 9.5 and 10.1, and Lemma 12.4 (see also Lemma B.6). These equiva-
lences provide rational actions of PSL(2) and G,, on rep(W,) [9] [69, §A.1], respec-
tively, and there is a unique equivalence of ribbon tensor categories

[ i (rep(Vire)ag)psriz) — (rep(Mp)aft)G,.

which fits into a diagram over rep(W,). The above diagram (27) implies that f is
G-equivariant (Lemma B.9), where G, acts on (rep(Vire)as)psr(2) by restricting
the natural PSL(2)-action along the group embedding « : G,,, — PSL(2). This is to
say, the G,,-action on rep(W,) deduced from singlet de-equivariantization agrees
with the G,,-action deduced from Virasoro de-equivariantization and the map a.

Via the diagram of Theorem 10.1, we understand that the the equivalence © :
rep(ugq(slz)) — rep(W,) of Theorem 9.5 is PSL(2)-equivariant (Lemma B.5), where
PSL(2) acts on rep(W,) as above. We can therefore restrict these PSL(2)-actions
along a : G, — PSL(2), and equivariantize, to obtain an equivalence of braided
monoidal categories

QCnm . rep(uq(slg))G’” 5 rep(Wp)G’" (28)

(Lemma B.1).

Now, the map «a : G, — PSL(2) identifies G,, with a maximal torus in PSL(2),
and all maximal tori are conjugate. So there is an element (closed point) « € PSL(2)
under which conjugation

Ad, : PSL(2) — PSL(2)
sends a(G,,) to the standard torus T = {diag{a,a"'} : @ € C*} C PSL(2). It
follows that the action of = on rep(u,(slz)) provides a braided monoidal equivalence
x - — :rep(ug(sla))” 5 rep(ugy(sl))®m,
and we find from (28) an equivalence rep(uy(sl2))T = rep(W,)¢=. We recall that

the equivariantization of rep(uq(slz)) by the torus of diagonal matrices is the rep-
resentation category rep(ug(slz)) [69, Proposition 9.1] to observe finally

rep(1,(slz)) = rep(ugy (5[2))T = rep(Wp)Gm = rep(Mp)as-
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Compatibility with the ribbon structure follows from the diagram

rep(itg(s12)) — > rep(uq(sly))” — 2o rep(W),)Cm <~ rep(M,,)

Nrget \L \L forget/

e
rep(uq(slz)) > rep(Wp)
and the fact that all of the functors present, save for possibly the induced map in
question, are (faithful) ribbon tensor functors. O

Remark 12.7. In the proof we’ve employed a PSL(2)-action on rep(W,) deduced
from the central embedding rep PSL(2) — rep(Vir¢)ag and the induction functor
(see Remark 10.9). We do not claim that this PSL(2)-action is identified with the
categorical action induced by the known PSL(2)-action on W, by VOA automor-
phisms [38] [3, Section 7] [2, Section 2]. However, we certainly expect that this is
the case.

APPENDIX A. INDUCTION FOR VOA EXTENSIONS

We recall some information regarding extensions of vertex operator algebras and
induction. The original references for the following materials are [57, 47, 19].

A.1. Vertex algebra extensions and induction. Consider V a vertex operator
algebra with rep(V)qist a full subcategory of distinguished objects in the category of
finite length V-modules. We suppose additionally that the subcategory rep(V)aist is
closed under taking subquotients, and that this subcategory admits a vertex tensor
structure as described in Section 2.6. We let Rep(V)qist denote the associated Ind-
category of distinguished modules, which one can describe as in Section 10.1. In
this setting, the category Rep(V)aist inherits a unique braided monoidal structure
for which the product ® commutes with colimits. Furthermore, this monoidal
structure is specified by intertwining operators [21, §6].

Consider rep(V)aqist as above, and suppose we have a vertex operator algebra
extension V — W with W lying in Rep(V)aist, as a V-module. Then the vertex
algebra structure on W gives it the structure of a commutative algebra object in
Rep(V)aist [47, Theorem 3.2] [21, Theorem 7.5]. In such a setting we let Rep(W)aist
denote the abelian category of W-modules which restrict to V-modules in Rep(V)qist
along the extension ¥V — W. We let rep(W)aist denote the full, exact subcategory
of finite length W-modules in Rep(W)qist -

Consider now a general commutative algebra object A in Rep(V)aist- Recall
that an A-module M is called local if the action map act : A® M — M is such
that act o 01247M = act, where c4 s is the braiding for Rep(V)aist. In this way any
local A-module admits an unambiguous A-bimodule structure, and the category
of local A-modules inherits a braided monoidal structure under the product ® 4
[72, Theorem 2.5] (see also [57]). We let Rep”(A) denote the category of all local
A-modules in Rep(V)gist, and let rep?(A) denote the exact subcategory of finite
length modules.

Remark A.1. We note that objects in the categories Rep(W)aist and Rep”(A) are
not, a priori, unions of their finite length subobjects. So our use of “Rep” here
deviates slightly from its earlier uses in Section 10.1. However, in all cases which
are of interest to us, all object in Rep(W)aist and RepO(A)diSt will in fact be unions
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of their finite length submodules, and these categories will be identified with the
Ind-categories of their small counterparts (cf. Lemma A.3 below).

We have the following essential results of Creutzig, Kanade, McRae, and Yang,
and also Huang, Kirillov, and Lepowsky.

Theorem A.2 ([47, Theorem 3.4], [19, Theorem 3.65]). Consider rep(V)aist as
above, and an extension of vertex operator algebras v : V — W with W lying in
Rep(V)aist- Let A denote W, considered as an algebra object in Rep(V)aist. Then
the category Rep(W)aist admits a vertex tensor structure, and restriction along t
provides an identification of braided monoidal categories Rep(W)aist = Rep(A).

Having fixed a commutative algebra object A in Rep(V)gist, we let Rep” (V) gist
denote the Miiger centralizer of A in Rep(V)gist. We then have the free module
functor A ® — : RepO(V)dist — Rep”(A). This functor is braided monoidal, and
is left adjoint to the restriction functor Rep’(A4) — Rep(V)aist [57, Theorems 1.6].
Taking this fact, and Theorem A.2 into account, we observe a braided monoidal
functor

1Y =W —: Rep’(V)aise — Rep(W)aist (29)
to the category of W-modules, for any VOA extension ¥V — W with W in Rep(V)qist -

Note that when the category rep(V)aist is rigid, the tensor product ® is neces-
sarily biexact and commutes with colimits [10, Proposition 2.1.8]. It follows that
the induction functor IEV is exact in this case.

Lemma A.3. Consider V and W as above. Suppose that W lies in the Miger
center of Rep(V)aist, that the category rep(V)aist s rigid, and that the free modules
W ® L are of finite length over W for each simple module L in rep(V)aist. Then

(1) All modules in Rep(W)aisy are unions of their finite length submodules.
(2) Induction restricts to an exact braided monoidal functor

1Y rep(V)aise — rep(V) dist (30)
which is left adjoint to restriction.

Proof. We first prove (2) then return to (1). (2) Given that I}V is exact, and that
I]‘jv (L) is of finite length for each simple L, we have by induction on the lengths
of objects that I}V restricts to a functor (30) between the subcategories of finite
length objects.

(1) Any module M in Rep(W)aist admits a surjection from its corresponding
free module I}V(M) = W ® M — M. Here @ denotes the product on Rep(V)aist
and the aforementioned surjection is the action map for M. It therefore suffices
to show that any free module W ® M, with M in Rep(V)dist, is a colimit of finite
length modules over W. We therefore write M as a colimit M = ligqa M, of finite
length modules over V and consider the formula

WM=W® (hﬂMa) &= @(W@MQ) = h_n;lIL/V(Ma)
to observe that W ® M is in fact a colimit of finite length W-modules. O

This should be contrasted with the more familiar case where both V and W are
strongly-finite. In this case, YW won'’t lie in the Miiger center in Rep(V) (unless
W =), and induction lands in Rep(A) rather than its subcategory Rep®(A).
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APPENDIX B. RATIONAL (DE-)EQUIVARIANTIZATION, AGAIN

We elaborate on the presentation of [69, Appendix A}, which itself is an elab-
oration on the presentations of [9, 26], in order to clarify some of the mechanics
involved in the proof of Theorem 12.1. We are generally concerned with equivari-
antization and de-equivariantization operations under algebraic group actions, and
the stability of these operations under isomorphisms and restriction. For the VOA
theorist, equivariantization and de-equivariantization are the two steps which, when
combined, capture tensor-categorically the orbifold construction of VOAs.

B.1. Equivariantization and equivariant tensor functors. Throughout this
section we understand that a linear category is, by definition if one likes, an additive
category with a specified action of Vect. Here Vect denotes the symmetric monoidal
category of finite-dimensional vector spaces, and Ind Vect denotes its Ind-category
of generally infinite-dimensional vector spaces. For a linear category € we let
®c : Vect x € — € denote the implicit action map. We note that when % is
furthermore monoidal, this Vect-action can be identified with the action induced
by the unit structure Vect — €.

For an arbitrary algebra R in Ind Vect and a linear category € the base change
©r is the category of finitely presented R-modules in Ind & (cf. [69, Definition 6.1]).
Given an algebra map t : R — S we have the restriction functor t* : ¥ — Ind
and its left adjoint ¢, : ¥r — %5, which is given by base change t, = S ®pr —.

We consider an affine algebraic group G and write R = €(G) for the algebra of
global functions on G, viewed as a Hopf algebra in Ind Vect with comultiplication A
and counit e. We recall, from [9, 26, (9], that a rational action of an affine algebraic
group G on a tensor category %, or more generally C-linear monoidal category, is
a triple ¢ = (¢,V,e) of an exact monoidal functor ¢ : € — € equipped with
natural transformations V : ¢ — A*¢? and ¢ : ¢ — €* whose adjoint maps provide

isomorphisms A,¢ — ¢2 and e, ¢ — ide [69, §8.1]. We write
¢: G — Aut (%) (31)

for a particular choice of G-action on . From the above description we see that
an action of G on % is a choice of a particularly structured comonad ¢ for &, or
more precisely for Ind % .

An isomorphism between two actions ¢, ¢' : G = Auty, (¢) is a natural isomor-

phism of monoidal functors 7 : ¢ 5 @' which forms the appropriate diagrams with
the structure maps V, V', ¢, and &’. Also, given two categories ¢ and 2 equipped
with actions ¢ : G — Auty (%) and ¢ : G — Auty (%), a G-equivariant structure
on a tensor functor F': € — 2 is a choice of an isomorphism of monoidal functors
7 : F¢ — ¢ F which again forms the appropriate diagrams with the structure maps
for ¢ and .

Recall, finally, that the equivariantization €¢ = €%? of a tensor category,
relative to some G-action ¢, is the non-full subcategory of objects V' in € which are
equipped with coassociative, counital, coaction p : V' — ¢(V'). Rather, this is the
category of comodules over the comonad ¢. We have the following basic lemma.

Lemma B.1. (a) If two actions ¢,¢’ : G = Autg (€) on a tensor category € are

isomorphic, via some isomorphism n : ¢ — @', then n induces an equivalence of
categories 1y : CEd 5 g6
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(b)) If F: € — 2 is a G-equivariant tensor functor, with comparison transfor-

mation 7 : Fo 5 Y F, then there is an induced monoidal functor between equivari-
antizations

FC:¢% = 9% (V,p)— (FV,7Fp).

Furthermore, if F is an equivalence then F® is an equivalence.

Proof. (a) The equivalence 7, sends a ¢-comodule (V,py) to the ¢’-comodule
(V,nvpv). One similarly constructs the inverse n; ! via n=1. (b) We only speak to
the second point, and so assume F' is an equivalence. It is clear that fully faith-
fulness of F implies fully faithfulness of F®. Similarly, essential surjectivity of F'
implies essential surjectivity of F¢. Indeed, if an object W in 2 is isomorphic
to some F(V), and W admits a ¢-comodule structure py, then F(V) admits an
isomorphic -comodule structure, which then induces a corresponding ¢-comodule
structure on V' via 7. So we see that (W, py/) is in the essential image of F®. O

B.2. Restricting group actions. Consider a map of algebraic groups a : T — G.
Let R and S be the algebras in Ind Vect associated to €(G) and €(T), respectively.
Then we have the map of algebras & : R — S determined by «, and base change
along @ provides a monoidal functor &, = S ®g — : €r — €. The restriction

Qﬁ"]r T — MQ@(%)

of a G-action (31) along « is defined as the composite functor ¢|t := @,¢: € — Cs
with its induced structure maps. For example, the structure map V|t : ¢|lp —
A*(¢p|1)? is identified under (A, A*)-adjunction by the the isomorphism

Asdlr = Ay = (@ ® @) A — (@ ® )b = (8]7)%

We note that any G-equivariant functor F' : 4 — & inherits a T-equivariant struc-
ture, under the restricted actions on ¢ and 2, via base change.

B.3. Actions by ribbon and braided automorphisms. Let ¥ be a ribbon
tensor category. Then the braiding and twist on % induces a unique braiding and
twist on the base change %k so that the base change functor R ®c — : € — %r
is braided monoidal functor which commutes with the twist. We say an action
G — Auty (%) is an action by ribbon automorphisms if the associated monoidal
functor ¢ : € — € is braided and commutes with the twist. Note that preservation
of the ribbon structure, for a given action, is a property not an additional structure.

One can check that, when G acts by ribbon automorphisms the equivariantization
¢© admits a unique ribbon structure so that the forgetful functor €¢ — % is a
map of ribbon tensor categories. One also observes that the class of ribbon actions
G — Auty (%) is closed under isomorphism.

Of course, we can omit the twist to obtain the appropriate notion of a rational
group action by braided automorphisms. If a group acts G — Aut, (%) by braided
automorphisms then the equivariantization €€ inherits a unique braiding so that
the forgetful functor is a braided tensor functor.

B.4. De-equivariantization. We again follow [9, 26, 69]. Consider a braided
tensor category € with a Miiger central tensor functor i : rep G — €, where G is
an affine algebraic group. We have the regular (co)representation &(G) in Rep G =
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Corep 0(G) and the corresponding algebra object & = i0(G) in Ind €. The de-
equivariantization 6z = %, is, by definition, the category of finitely presented
O-modules in Ind €.

The de-equivariantization % is an exact C-linear monoidal category, with prod-
uct ®¢, and exact structure induced by the faithful inclusion g — Ind . In most
cases, the de-equivariantization % is actually an abelian subcategory in Ind %.
Rigidity of the monoidal structure, however, should only hold when ¢ is an embed-
ding, i.e. when the image of repG in % is closed under taking subquotients (see
[69, §5.1, §5.2]).

For a Miiger central functor ¢ : rep G — % as above we have the de-equivariantization
functor, or free module functor dF : € — %5, V — 0 ® V. The category %65 ad-
mits a unique braiding so that the de-equivariantization map is a map of braided
monoidal categories. When % is additionally ribbon, and the twist acts trivially
on the image of rep G, then 4 also inherits a twist. This twist gives % a ribbon
structure, in the event that the de-equivariantization is indeed rigid.

In the statement of the following lemma, by “the” fiber functor for rep G we
mean the forgetful functor repG — Vect. We note that there is only one fiber
functor for rep G up to isomorphism, in any case [28].

Lemma B.2. Given any Miger central tensor functor repG — €, the composite
rep G — € — 6g factors through the fiber functor repG — Vect — €6g.

By factoring through the fiber functor, we mean that the two maps to % are
isomorphic as monoidal functors.

Proof. The unit Vect — % sends a vector space V to the free module & ®@ V.
The composite rep G — %5 factors through the de-equivariantization map rep G —
(rep G)g for rep G itself. By the fundamental theorem of Hopf modules [67, Theo-
rem 1.9.4] the de-equivariantization map for rep G is isomorphic to the composite
repG — Vect — (repG)g of the forgetful functor and the unit morphism for
(rep G)g. O

Remark B.3. One could more generally consider de-equivariantization along cen-
tral tensor functors from rep G to an arbitrary tensor category %, in the sense of
[32, Definition 4.15]. We stick to the braided setting for simplicity.

B.5. The rational G-action on %3, and rep G-linear functors. As in the pre-
vious section, we consider a Miiger central tensor functor i : repG — ¥ into a
braided tensor category %, and fix & = i0(G).

Take R to be the image of (G) in Ind Vect under the forgetful functor Rep G —
Ind Vect. We have the unit map Ind Vect — Rep G so that R is also an algebra
object in Rep G. Comultiplication provides an R-comodule algebra structure A :
0(G) - R® O(G) on the underlying algebra &(G) in Rep G, and we apply i to
obtain an iR-comodule algebra structure on &.

Now, the group G acts naturally on the de-equivariantization 6 by braided au-
tomorphisms, and ribbon automorphisms when in the ribbon context. This action
is specified by the functor ¢(M) := iR ® M, where M is an &-module in Ind %
and € acts on iR ® M via the coaction A : i0 — iR ® i€. Coassociativity of the
R-coaction on ¢, and the counit, provide the necessary transformations ¢ — A*$?
and ¢ — €*. The following lemma is straightforward.
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Lemma B.4. Consider two Miiger central embeddings i,i’ : repG — €, and the
associated algebras € = i0(G) and 0" = i'O(G) in Ind €. If i and i’ are iso-
morphic, with a chosen monoidal isomorphism n : i — ', then restricting along
the algebra isomorphism n : € — O’ provides a G-equivariant braided monoidal
equivalence
(g@,i/ — Cg@,i, M — M|ﬁ.

G-equivariance of the restriction functor is realized by the natural isomorphism
NRid: p(M)=iRM — 'R M = ¢'(M).

Let us call a braided category %, with a fixed central tensor functor i : rep G —
%, a tensor category over rep G. By a map of tensor categories over rep G we mean
a tensor functor F': ¥ — 2 and a specific choice of natural isomorphism of tensor

functors [ : j = Fi which makes the diagram

repG
% a 2

(2-)commute. In this case we have immediately a G-equivariant functor between
the de-equivariantizations

ch — QG,Fiy M — FM,

and Lemma B.4 provides a G-equivariant equivalence Zg r; =Y Pg,;. Hence we
have the following.

Lemma B.5. Given a map F = (F,l) : € — 2 of braided tensor categories
over rep G, there is an induced G-equivariant braided monoidal functor between the
de-equivariantizations Fg : 6 — Yg.

We have the following general, and slightly stronger version of Proposition 9.2.

Lemma B.6. Suppose a tensor category 2 is equipped with the trivial rep G struc-
ture, repG — Vect — 2, and i : repG — € is an arbitrary tensor category over
repG. Then for any map F : € — 2 of tensor categories over rep G, there is a
right exact monoidal functor f : € — P which fits into a (2-)diagram

4 (32)

N

(g@,?@

The functor f is unique up to isomorphism, is braided when F is braided, and is
exact when 6 is a tensor category.

Proof. The existence of f, and its conditional exactness and/or braidedness, are
established as in Proposition 9.2. Below we let R denote the algebra of functions
O0(G), considered as an algebra object in Ind Vect, and & = i0(G).

To recall, we have FO = ynit(R) in Ind 2 and the counit for R provides an
algebra map FF& — 1. We then take f = 1®pg F, where F' denotes the restriction
of the given functor F': ¥ — 2 to a functor between the non-full subcategories of
modules

% = {fin pres O-modules in Ind €} — {fin pres F¢@-modules in Ind 7},
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by abuse of notation.

As for uniqueness, we first claim that the monoidal functor 1QugedFE : 65 — %
is isomorphic to the identity. Explicitly, dE0 = ¢ ® € and the counit for R
corresponds to the algebra map dEC = 6 ® ¢ — € = 1 given by multiplication.
For any M in %g, dE(M) = ¢ ® M is the € ® 0-module in Ind %, with each
copy of & acting on its respective factor, and the module structure map dE(M) =
ORM — M is a natural morphism of dE ¢-modules, where dE & acts on M via the
counit/multiplication map dE¢ — ¢ = 1. One can check that this map reduces
to a natural isomorphism

1 ®qpe dE(M) =V
The above isomorphism provides the claimed natural isomorphism of monoidal
functors 1 Qg dE = id.
Consider again F': € — 2 as above, and take f = 1 ® F. Then for any right
exact monoidal functor f': ¥ — 2 which fits into a diagram (32) we have
2 fo(1®rdE)21®g (f odE)X1®gF = f.
O
Remark B.7. If we identify Vect with the category of &(G)-modules in Rep G,

then Lemma B.G is in line with various categorical base change formulae in the
literature. One can compare with [31] and [61, Theorem 4.8.4.6], for example.

B.6. Some relative results.

Lemma B.8. Consider a map of algebraic groups a: T — G, and a 2-diagram of

braided tensor functors
resq

rep G repT (33)
i-—jre;:\\\\ %//;/
9 .

Suppose that i and j have Miiger central image. Then, for 0’ = jO(T) and O =
i0(G), the braided monoidal functor 0’ ®¢ — : D5 — Dr admits a natural T-
equivariant structure.

Let us clarify a few points here. First, the de-equivariantizations g and %y are
defined via the central maps 7 and j respectively. Second, the base change operation
0’ ®¢ — is defined via the algebra map

0 =i0(G) = jres, 0(G) 2% jO(T) = 0,

where the first isomorphism is provided by the natural isomorphism implicit in the
diagram (33) and @ : res, €(G) — O(T) is the algebra map dual to the map of
affine group schemes «. Third, the T-action on Zg is defined via restriction along
«, as described in Section B.2 above. We continue with the proof.

Proof. Take res = res,. By Lemma B.4 we may replace i with j o res to assume
that the 2-diagram (33) strictly commutes, i.e. that ¢ = j ores. So we consider
such a strict diagram, take & = i0(G) and ¢’ = jO(T), and let R and S to be the
corresponding Hopf algebras in Ind Vect.

The algebraic group map « : T — G specifies a dual Hopf algebramap a: R — S
and, at the level of T-representations, & : res 0(G) — O(T) is a map of S-comodule
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algebras in Rep T. Here the S-coaction on &(T) is provided by comultiplication,
and the S-coaction on €(G) is provided by corestricting the R-coaction along &.
(Geometrically, we are restricting the translation action of G on itself along «.)

We apply j to recover the morphism j& : & — &’ along which we’ve changed
base to define the functor ¢’ ®¢ — : Y5 — Pr. The map ja is a map of j5-
comodule algebras in . As we explain below, compatibility of j& with the given
jS-comodule structures provides the functor ¢’ ® o — with its natural T-equivariant
structure.

To say things precisely, we are in search of a natural isomorphism

7:0' @6 (jS®M) > jS® (0 ®6 M)
of 78 ® 0’-modules, where & acts on each product 55 ® X via the coaction &' —
jS® 0', and O acts on the product 75 ® M similarly. We consider the two natural
maps in g

n:0'"®@(GSOM)— jS®(OC'"@M) and ~v:jS®(0'@M) — 0' @ (jS® M)

which are obtained by applying j(—)® M to the isomorphism ¢(T)®S5 — S®O(T),
f®s—= fis® fa, and its inverse S ®@ O(T) — O(T) ® S, s® f — fo ® S(f1)s,
respectively. The maps 1 and v are mutually inverse, and the fact that & : & — &’
is jS-colinear implies that the composites with the projections

0'® (jS© M) —— jS® (0" © M)

proj

v v
0' @¢ (jS®M) "> jS® (0" ©p M)
and
iS® (0" ® M) 0' @ (jS® M)
proj
\

JS® (60" @ M) 7> 0" 26 (jS ® M)

are appropriately O-bilinear, and hence induce mutually inverse natural isomor-
phisms on the quotients

7:0 @6 (jS®M) S jS® (0 06 M), 7:jS& (0 ®6 M) S 0' ®6 (jS @ M).

The fact that 77 commutes with the structure maps AQ — : jS®— = jSRS®—
for the T-actions on g and Zr follows from the comodule algebra axioms for 0”.
Specifically, this compatibility follows from the equality of the two maps

OT@S—=S55e0(T), fea= Alfia)® fo=fia @ faa® fi

The natural isomorphism 77 hence realize T-equivariance of the base change functor,
as a functor between non-monoidal T-linear categories.

Having established the existence of the above natural isomorphism, we note that
7] is in fact the unique jS ® &’-linear map which fits into a diagram

M

N

0" @p (jS® M) —— jS @ (0" ©¢ M).
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Similarly, the isomorphisms providing the monoidal structures on the functors M
jS® M and M — 0’ @5 M are the unique jS-linear and &’-linear maps fitting

into diagrams

(jS® M) ®jsee (1S ® N) jS® (M ®g N)
and
(0'®6 M)®e (6" @0 N) 0' Qe (M®g N),

respectively. One can use these uniqueness properties to check that 7 is indeed
compatible with the monoidal structure on the functor 0’ ®4 —. O

We now consider a 2-diagram of braided tensor functors

rep G —2> rep T (34)
zl J{j
¢ —" =2,

where the functor res, is restriction along an algebraic group map o : T — G. We
assume that ¢ and j are Miiger central and that the de-equivariantization Zr is a
tensor category.” The composition ¢ — 2 — P then annihilates rep G, and so by
Lemma B.6 there is a unique right exact monoidal functor f : g — Zr which fits
into a 2-diagram

A (35)
s — > D,

Lemma B.9. In the above setting, the induced map f : 65 — Pr inherits a natural
T-equivariant structure.

Proof. Take 6 =i0(G) and 0’ = jO(T). The map f : 6z — Pr is, by definition,
the composition

f=[% RN {fin pres F'¢-modules in Ind 2} = Z;
7org- {fin pres ¢’-modules in Ind 2} = Zr |.

The first map Fg in this composite is known to be G-equivariant and hence T-
equivairiant, by Lemma B.5 above. The second map is T-equivariant by Lemma
B.8. We conclude that the composite f is T-equivariant as well. (Il

2The assumption that Zr is a tensor category is unnecessary. It suffices to assume Zr is
abelian, for example.
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