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CRIS NEGRON

Abstract. Stefan and Guichardet have provided Lyndon-Hochschild-Serre type spectral sequences which
converge to the Hochschild cohomology and Ext groups of a smash product. We show that these spectral

sequences carry natural multiplicative structures, and that these multiplicative structures can be used to

calculate the cup product on Hochschild cohomology and the Yoneda product on an Ext algebra.

1. Introduction

Let k be a field of arbitrary characteristic, and take ⊗ = ⊗k. Fix a (k-)algebra A and a Hopf algebra
Γ acting on A. We assume that the antipode on Γ is bijective, and that the action of Γ on A gives it the
structure of a Γ-module algebra [11, Definition 4.1.1]. We can then form the smash product algebra A#Γ,
which is the vector space A⊗ Γ with multiplication

(a⊗ γ)(a′ ⊗ γ′) :=
∑
i

a(γi1 · a′)⊗ γi2γ′,

where ∆(γ) =
∑
i γi1 ⊗ γi2 . In the case that Γ is the group algebra of a group G we use the notation A#G

as a shorthand for the smash product A#kG.
Smash products have appeared in a number of different contexts in the literature. Under certain con-

ditions, the smash product can serve as a replacement for the invariant algebra AΓ [11, Section 4.5] [1] [5,
Proposition 5.2]. Smash products have also appeared as a means of untwisting, or unbraiding, certain twisted
structures. For example, one can untwists a twisted Calabi-Yau algebra with a smash product [12, 6], or
unbraid a braided Hopf algebra [3, Section 1.5]. In a more classical context, smash products have played an
integral role in a classification program proposed by Andruskiewitsch and Schneider, which began at [2].

In this paper we equip some known spectral sequences, which converge to the Hochschild cohomology and
Ext groups of a smash product, with multiplicative structures. These spectral sequences, with their new
multiplicative structures, can then be used to compute the products on these cohomologies. Specifically, we
provide spectral sequences which converge to the Hochschild cohomology HH(A#Γ, B), along with the cup
product, and the extension algebra ExtA#Γ-mod(M,M), along with the standard Yoneda product. Here we
allow M to be any (left) A#Γ-module and B to be any algebra extension of the smash product, i.e. any
algebra equipped with an algebra map A#Γ→ B.

Recall that the Hochschild cohomology HH(R,M) = ⊕i HHi(R,M) of an algebra R, with “coefficients”
in a R-bimodule M , is defined to be the graded Ext group HH(R,M) = ExtR-bimod(R,M). In the case that
M is an algebra extension of R, the Hochschild cohomology HH(R,M) carries a natural product called the
cup product. The definition of the cup product is reviewed in Section 5.

The Hochschild cohomology ring HH(R,R) is known to be an invariant of the derived category Db(R)
[13]. In addition to providing a relatively refined derived invariant, the cup product can also help us to
analyze the module category of a given algebra. Snashall and Solberg have put forward a theory of support
varieties for Artin algebras by way of the Hochschild cohomology ring HH(R,R). They assign to an Artin
algebra R, and any pair of R-modules, a subvariety of the maximal ideal spectrum of (a subalgebra of) the
Hochschild cohomology. The cup product can also help us get a handle on some of the additional structures
on Hochschild cohomology, such as the Gerstenhaber bracket. The applications of Hochschild cohomology
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rings are, however, limited by a scarcity of examples and by the fact that the cup product can be difficult
to compute in general.

In the theorem below, by a multiplicative spectral sequence we mean a spectral sequence E = (Er)
equipped with bigraded products Er ⊗ Er → Er which are compatible with the differentials and structural
isomorphism Er+1

∼= H(Er). (One can refer to Section 6 for a more precise definition.) We say that a
multiplicative spectral sequence converges to a graded algebra H if H carries an additional filtration and
there is an isomorphism of bigraded algebras E∞ ∼= grH. One of our main result is the following.

Theorem 1.1 (Corollary 6.8). For any algebra extension B of the smash product A#Γ, there are two
multiplicative spectral sequences

E2 = ExtΓ-mod(k,HH(A,B))⇒ HH(A#Γ, B)

and
′E1 = ExtΓ-mod(k,RHomA-bimod(A,B))⇒ HH(A#Γ, B)

which converge to the Hochschild cohomology as an algebra.

To be clear, we mean that there is some Γ-module algebra structure on HH(A,B) and that the second
term E2 is the bigraded algebra ExtΓ-mod(k,HH(A,B)). Similarly, for the term ′E1, we mean there is some
particular model for RHomA-bimod(A,B)) which is a Γ-module (dg) algebra and that ′E1 is the given Ext
algebra. We also provide a version of the above theorem for the cohomology rings ExtA#Γ-mod(M,M).

Theorem 1.2 (Corollary 7.7). For any A#Γ-module M , there are two multiplicative spectral sequences

Ē2 = ExtΓ-mod(k,ExtA-mod(M,M))⇒ ExtA#Γ-mod(M,M)

and
′Ē1 = ExtΓ-mod(k,RHomA-mod(M,M))⇒ ExtA#Γ-mod(M,M)

which converge to ExtA#Γ-mod(M,M) as an algebra.

In the text it is shown that all four of the above spectral sequences exist as explicit isomorphism at the
level of cochains. Let us explain what is meant by this statement in the case of Hochschild cohomology.

Let B be an algebra extension of A#Γ, as in Theorem 1.1. For a free A-bimodule resolution K → A,
equipped with a Γ-action satisfying certain natural conditions, and any resolution L → k of the trivial
Γ-module, we produce a dg algebra structure on the double complex

HomΓ-mod(L,HomA-bimod(K,B)). (1.1)

From this data we also produce a A#Γ-bimodule resolution K of A#Γ, and dg algebra structure on the
associated complex HomA#Γ-bimod(K, B). The dg algebra structure is chosen so that the homology of
HomA#Γ-bimod(K, B) is the Hochschild cohomology HH(A#Γ, B) with the cup product.

In Theorem 6.5, which can be seen as a lifting of Theorem 1.1 to the level of cochains, we show that there
is an explicit isomorphism of dg algebras

HomA#Γ-bimod(K, B)
∼=→ HomΓ-mod(L,HomA-bimod(K,B)).

It follows then that the Hochschild cohomology ring of the smash product can be computed as the homology
of the double complex HomΓ-mod(L,HomA-bimod(K,B)). We get Theorem 1.1 as an easy corollary of this
fact.

The full power of Theorem 6.5 is employed to compute some examples in a follow up paper. Let us discuss
just one example here. Suppose k is of characteristic 0 and let q ∈ k be a nonzero scalar which is not a root
of unity. Let kq[x, y] denote the skew polynomial ring in 2-variables,

kq[x, y] =
k〈x, y〉

(yx− qxy)
.

This algebra is twisted Calabi-Yau. If we let Z = 〈φ〉 act on kq[x, y] by the automorphism φ : x 7→ q−1x,
y 7→ qy, then, according to [12, Proposition 7.3] and [6], the smash product kq[x, y]#Z will be Calabi-Yau.
By way of Theorem 6.5, we can provide the following computation.
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Theorem 1.3. Let λ, ε, ξi, ζ, and ηi be a variables of respective degrees 0, 1, 1, 2, and 2. Then there is an
isomorphism of graded algebras

HH(kq[x, y]#Z) ∼=
k[ε, λ, ξ1, ξ2, ζ]

(λζ − ξ1ξ2, ζ2)
×k[ε]

k[ε, ηi : i ∈ Z− {−1}]
(η2
i , ηiηj)

.

Furthermore, there is a natural embedding of graded algebras HH(kq[x, y]) → HH(kq[x, y]#Z) identifying
HH(kq[x, y]) with the subalgebra generated by ξ1, ξ2, and η0.

In the statement of the above theorem k[X1, . . . , Xn] denotes the free graded commutative algebra on
graded generators Xi, k[X1, . . . , Xn] = k〈X1, . . . , Xn〉/(XiXj − (−1)|Xi||Xj |XjXi).

1.1. Relation to the work of Stefan, Guichardet, and others. As suggested in the abstract, Theorems
1.1 and 1.2 can be seen as a refinement of results of Stefan and Guichardet given in [18] and [8] respectively.
However, both Stefan and Guichardet work with classes of algebras that are slightly different than general
smash products. Guichardet provides spectral sequences

ExtkG-mod(k,HH(A,M))⇒ HH(A#αG,M)

for crossed product algebras A#αG, where G is a group, while Stefan provides spectral sequences

ExtΓ-mod(k,HH(A,M))⇒ HH(E,M)

for Hopf Galois extensions A → E. Guccione and Guccione extend the results of Guichardet to allow for
crossed products with arbitrary Hopf algebras in [7]. None of these spectral sequences carry any multiplicative
structures. For definitions of these different classes of algebras one can see [11]. Let us only mention that
there are strict containments

{Smash Products} ( {Crossed Products} ( {Hopf Galois Extensions}.
So these more limited results (taken together) do apply to larger classes of algebras.

Let us mention here that Guccione and Guccione also provide spectral sequences for Ext groups in [7],
by way of a standard relation [19, Lemma 9.1.9]. Also, some results involving multiplicative structures are
given by Sanada, in a rather constrained setting, in [14]. Further analysis of the situation can be found in
[4].

The main point of comparison here is that our spectral sequences can be used to compute the cup
product, while those of Stefan, Guichardet, and Guccione-Guccione can not (at least after restricting to the
case of smash products). However, there are also differences in the methods used in the three sources. As a
consequence, the usefulness of the results vary in practice. For example, Stefan produces his spectral sequence
as a Grothendieck spectral sequence, whereas those of Guccione and Guccione are derived from filtrations on a
certain (rather large) complex. Guichardet shows that the Hochschild cohomology of a crossed product can be
computed by the double complex C(G,C(A,M)), where C denotes the standard Hochschild cochain complex.
Indeed, Guichardet provides quasi-isomorphisms of chain complexes C(G,C(A,M)) � C(A#αG,M). It
does not appear that either of the given maps are dg algebra maps, and so the cup product remains obscured.

The spectral sequences produced in this paper are those associated to the first quadrant double complex
(1.1), which may in some cases be chosen to be relatively small. Our methods are most closely related those
of Guichardet. In fact, by standard techniques, one may move from Guichardet’s double Hochschild cochain
complex to our double complex(es). To summarize the situation, we have the following chart

Class of algebras for which

the spectral sequences apply
Type of spectral sequences

Accounts for the

cup/Yoneda product

Stefan Hopf Galois extensions Grothendieck No

Guichardet
Crossed products

with groups
Double complex No

Guccione-Guccione Crossed products Filtration No

Present paper Smash products Double complex Yes

Of the works discussed, Theorems 4.3, 6.5, and 7.5 below provide the most computationally accessible
approach to the cohomology of a smash product, irrespective of the cup product. Grothendieck spectral
sequences, for example, require the use of injective resolutions, which are very difficult to come by in gen-
eral. The methods used here are also more natural than those given in [7] in the sense that many of the
constructions we employ are functorial.
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1.2. Contents. Throughout we consider a Hopf algebra Γ acting on an algebra A. In Section 2 we produce
a resolution of the Hopf algebra Γ which carries enough structure to admit a smash product construction.
In particular, we construct a complex of projective Γ-bimodules with an additional (compatible) coaction,
and quasi-isomorphism to Γ which preserves the given structure. We call such a resolution a Hopf bimodule
resolution.

In Section 3 we propose a smash product construction for complexes of Hopf bimodules and complexes
of, so called, equivariant bimodules over A (Definition 3.1). This smash product construction for complexes
is used to produce, from the Hopf bimodule resolution of Section 2 and an equivariant resolution of A,
a bimodule resolution of A#Γ. In Section 4 we use the aforementioned bimodule resolution of A#Γ to
construct an explicit isomorphism

Ξ : RHomA#Γ-bimod(A#Γ,M)
∼=→ RHomΓ-mod(k,RHomA-bimod(A,M))

for any complex M of A#Γ-bimodules.
In Section 5 we review the products on both the domain and codomain of the above isomorphism Ξ (when

evaluated at an algebra extension of A#Γ), and in Section 6 we show that the map Ξ is an isomorphism
of dg algebras when appropriate. Theorem 1.1 is also proved in this section. Finally, in Section 7 we give
versions of our main theorems for the Ext algebras ExtA#Γ-mod(M,M), for arbitrary M .

Acknowledgments. I would like to thank Jiafeng Lu, Xuefeng Mao, Xingting Wang, and James Zhang for
offering many valuable suggestions and corrections during the writing of this paper.

Conventions

For any coalgebra Γ, the coproduct of an element γ ∈ Γ will always be expressed using Sweedler’s notation

γ1 ⊗ γ2 = ∆(γ).

(So “γ1 ⊗ γ2” is a symbol representing a sum of elements
∑
i γi1 ⊗ γi2 in Γ ⊗ Γ.) Given Γ-modules M and

N the tensor product M ⊗N is taken to be a Γ-module under the standard action

γ(m⊗ n) := (γ1m)⊗ (γ2n).

As mentioned previously, a Hopf algebra will always mean a Hopf algebra with bijective antipode. Let Γ be
a Hopf algebra and A be a Γ-module algebra. Following [15], we denote the action of Γ on A by a superscript
γa := γ ·a. Elements in the smash product A#Γ will be denoted by juxtaposition aγ := a⊗γ ∈ A#Γ = A⊗Γ.
Hence, the multiplication on A#Γ can be written (aγ)(bγ′) = a(γ1b)γ2γ

′. For an algebra A we let Ae denote
the enveloping algebra Ae = Aop ⊗ A. All modules are left modules unless stated otherwise. We do not
distinguish between the category of A-bimodules and the category of (right or left) Ae-modules.

In computations, all elements in graded vectors spaces are chosen to be homogenous. For homogeneous
x, in a graded space X, we let |x| denote its degree. For any algebra A and A-complexes X and Y we
let HomA(X,Y ) denote the standard hom complex. Recall that the nth homogenous piece of the hom
complex consists of all degree n maps f : X → Y , and for any f ∈ HomA(X,Y ) the differential is given by
f 7→ dY f − (−1)|f |fdX .

2. A Hopf bimodule resolution of Γ

Let Γ be a Hopf algebra. We have the canonical algebra embedding

∆tw : Γ→ Γe = Γop ⊗ Γ
γ 7→ S(γ1)⊗ γ2.

This map will be referred to as the twisted diagonal map. The twisted diagonal map gives Γe a left Γ-module
structure. On elements, this left action is given by δ · (γ ⊗ γ′) = γS(δ1)⊗ δ2γ′, for δ ∈ Γ, γ ⊗ γ′ ∈ Γe.

Note that, since the antipode of Γ is bijective, there is an isomorphism of left Γ-modules S⊗id : Γe → Γ⊗Γ.
The module Γ⊗ Γ is known to be free over Γ. (One can use the fundamental theorem of Hopf modules [11,
Theorem 1.9.4] to show this, for example.) So we get the following

Lemma 2.1. The enveloping algebra Γe is a free, and hence flat, left Γ-module.
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Note that the left action of Γ on Γe is compatible with the standard (outer) bimodule structure on
Γe = ΓΓ⊗ΓΓ. Indeed, the module structure induced by the twisted diagonal map utilizes the inner bimodule
structure ΓΓ⊗ΓΓ exclusively. So we see that Γe is a (Γ-Γe)-bimodule, and that the induced module M⊗Γ Γe

of a right Γ-module M is a Γ-bimodule. To be clear, the left and right actions of Γ on M ⊗Γ Γe are given by

δ · (m⊗Γ (γ ⊗ γ′)) := m⊗Γ (δγ ⊗ γ′)
and

(m⊗Γ (γ ⊗ γ′)) · δ := m⊗Γ (γ ⊗ γ′δ)
respectively, where δ ∈ Γ and m⊗Γ (γ ⊗ γ′) ∈M ⊗Γ Γe. The same analysis holds when we replace M with
a complex of right Γ-modules.

Notation 2.2. Given any right Γ-module (resp. complex) M , we let we let M↑ denote the induced module
(resp. complex) M ⊗Γ Γe.

The following result is proven, in less detail, in [17, Section 3]. However, as we will be needing all the
details, a full proof is given here.

Lemma 2.3. Let ξ : L→ k be a resolution of the trivial right Γ-module k = Γ/ ker ε.

(1) The induced complex L↑ is a complex of projective Γ-bimodules.
(2) The map ξ↑ : L↑ → Γ, `⊗Γ (γ ⊗ γ′) 7→ ξ(`)γγ′, is a quasi-isomorphism of complexes of Γ-bimodules.

Statements (1) and (2) together say that L↑ is a projective bimodule resolution of Γ.

Proof. In each degree i we have the adjunction

HomΓe(Li ⊗Γ Γe,−) = HomΓ(Li,HomΓe(Γe,−)).

Whence the functor on the left is seen to be exact. So L↑ is a complex of projective bimodules.
As an intermediate step in proving (2), let us consider the Γ-bimodule map

ϕ : k⊗Γ Γe → Γ
1⊗Γ (γ ⊗ γ′) 7→ γγ′.

For any γ ∈ Γ we have ϕ(1⊗Γ (1⊗ γ)) = γ. So ϕ is surjective. Also, the computation

1⊗Γ (γ ⊗ γ′) = 1⊗ (γ1ε(γ2)⊗ γ′)
= ε(γ2)⊗Γ (γ1 ⊗ γ′)
= 1 · γ2 ⊗Γ (γ1 ⊗ γ′)
= 1⊗Γ (γ1S(γ2)⊗ γ3γ

′)
= 1⊗Γ (ε(γ1)⊗ γ2γ

′)
= 1⊗Γ (1⊗ γγ′)

(2.1)

makes it clear that any element in k⊗ΓΓe is of the form 1⊗Γ(1⊗γ) for some γ. Whence ϕ is seen to be injective
as well, and therefore an isomorphism of bimodules. Now, for (2), simply note that ξ⊗Γ Γe : L↑ → k⊗Γ (Γe)
is a quasi-isomorphism, since ξ is a quasi-isomorphism and Γe is flat over Γ, and that ξ↑ can be given as the
composition of the isomorphism ϕ with the quasi-isomorphism ξ ⊗Γ Γe. �

Definition 2.4. Given any right Γ-module M , we define the left Γ-comodule structure ρM on M↑ by

ρM : M↑ → Γ⊗M↑
m⊗Γ (γ ⊗ γ′) 7→ (γ1γ

′
1)⊗ (m⊗Γ (γ2 ⊗ γ′2)).

(2.2)

Following the standard notation, for any m ∈M↑, we denote the element ρM (m) by m−1 ⊗m0.

There is something of a question of whether or not this coaction is well defined. Certainly we can define
a coaction on the k-tensor product

ρ̃M : M ⊗ Γe → Γ⊗ (M ⊗Γ Γe)

by the same formula as (2.2). A direct computation shows that ρ̃M
(
mδ ⊗ (γ ⊗ γ′)−m⊗ δ(γ ⊗ γ′)

)
= 0, i.e.

that ρ̃M vanishes on the relations for the tensor product M ⊗Γ Γe = M↑. Whence the coaction ρM can be
given as the map induced on the quotient M↑ = M ⊗Γ Γe.
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Definition 2.5. By a Hopf bimodule we will mean a Γ-bimodule N equipped with a left Γ-coaction N →
Γ⊗M which is a map of Γ-bimodules (where Γ acts diagonally on the tensor product Γ⊗N). Maps of Hopf
bimodules are maps that are simultaneously Γ-bimodule maps and Γ-comodule maps.

The algebra Γ itself becomes a Hopf bimodule under the regular bimodule structure and coaction given
by the comultiplication. In the notation of [11, Section 1.9], a Hopf bimodule is an object in the category
Γ
ΓMΓ.

Proposition 2.6. Let M and N be right Γ-modules and f : M → N be a morphism of Γ-modules . For any
m ∈M↑ and γ ∈ Γ the following equations hold:

(1) ρN (f↑(m)) = m−1 ⊗ f↑(m0)
(2) ρM (m · γ) = m−1γ1 ⊗m0γ2

(3) ρM (γ ·m) = γ1m−1 ⊗ γ2m0.

Said another way, (−)↑ is a functor from mod-Γ to the category of Hopf bimodules.

The reader should be aware that we will be using the ↑ notation on maps in a slightly more flexible manner
throughout the paper. We will be generally be looking at the induced map composed with some convenient
isomorphism.

Proof. These can all be checked directly from the definitions. For example, for (1), we have

ρM (f↑(m⊗Γ (γ ⊗ γ′))) = ρM (f(m)⊗Γ (γ ⊗ γ′))
= γ1γ

′
1 ⊗ f(m)⊗Γ (γ2 ⊗ γ′2) = γ1γ

′
1 ⊗ f↑(m⊗Γ (γ2 ⊗ γ′2)).

�

Corollary 2.7. For any complex X of right Γ-modules the induced complex X↑ is a complex of Hopf bimod-
ules.

Proof. This follows from part (1) of the pervious proposition and the fact that the differentials on X are
Γ-linear. �

Proposition 2.8. The quasi-isomorphism ξ↑ : L↑ → Γ of Lemma 2.3 is a quasi-isomorphism of complexes
of Hopf bimodules.

Proof. This can be checked directly from the definition of ξ↑ and the definitions of the coactions on L↑ and
Γ. �

3. Bimodule resolutions of A#Γ via a smash product construction

Let Γ be a Hopf algebra and A be a Γ-module algebra. We recall here that a k-linear map M → N
of (right or left) A#Γ-modules is A#Γ-linear if and only if it is A-linear and Γ-linear independently. The
following definition was given by Kaygun in [9].

Definition 3.1. A vector space M is called a Γ-equivariant A-bimodule if it is both a Γ-module and A-
bimodule, and the structure maps A ⊗M → M and M ⊗ A → M are maps of Γ-modules. Morphisms of
Γ-equivariant A-bimodules are maps which are Ae-linear and Γ-linear independently. The category of such
modules will be denoted EQΓA

e-mod. We define Γ-equivariant Ae-complexes similarly.

To ease notation we may at times write “equivariant bimodule” instead of the full Γ-equivariant A-
bimodule. One example of an equivariant bimodule is A itself. One can think of an equivariant bimodule as
an A-bimodule internal to the monoidal category (Γ-mod,⊗).

Kaygun has shown that the category EQΓA
e-mod is actually the module category of a certain smash prod-

uct Ae#Γ [9, Lemma 3.3]. Whence EQΓA
e-mod is seen to be abelian with enough projectives. Additionally,

EQΓA
e-mod comes equipped with restriction functors (forgetful functors) to Ae-modules and Γ-modules.

Since Ae#Γ is free over both Ae and Γ, one can verify that these restriction functors preserve projectives.
In this section we produce a projective bimodule resolution of A#Γ via the smash product construction

outlined below.
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Definition 3.2. Let X be any Γ-equivariant Ae-complex and let Y be any complex of Hopf bimodules. The
smash product complex X#Y is defined to be the tensor complex X⊗Y with the left and right A#Γ-actions

a · (x⊗ y) := (ax)⊗ y, γ · (x⊗ y) := (γ1x)⊗ (γ2y), (x⊗ y) · a := x(y−1a)⊗ y0

and
(x⊗ y) · γ := x⊗ (yγ),

for x ∈ X, y ∈ Y , a ∈ A and γ ∈ Γ.

Obviously, we can define the smash product of an equivariant bimodule with a Hopf bimodule by consid-
ering them to be complexes concentrated in degree 0. The smash product construction is (bi)functorial in
the sense of the following

Lemma 3.3. If f : X → X ′ and g : Y → Y ′ are maps of complexes of Γ-equivariant A-bimodules and
complexes of Hopf bimodules respectively, then the product map f ⊗ g : X#Y → X ′#Y ′ is a map of
complexes of A#Γ-bimodules.

Proof. Left A-linearity of f ⊗ g follows from left A-linearity of f and right Γ-linearity follows from right
Γ-linearity of g. Left Γ-linearity of f ⊗ g follows from the fact that both f and g are left Γ-linear. Finally,
right A-linearity of f ⊗ g follows from right A-linearity of f and Γ-colinearity of g. �

Now, let K be a projective resolution of A as an A-bimodule, with quasi-isomorphism τ : K → A. We
will assume that K has the following additional properties:

(I) there is a Γ-action on K giving it the structure of a complex of Γ-equivariant A-bimodules, and the
quasi-isomorphism τ : K → A is Γ-equivariant.

(II) K is free over Ae on a graded base space K̄ ⊂ K which is also a Γ-submodule.

An example of a resolution of A satisfying the above conditions is the bar resolution

BA = · · · → A⊗A⊗2 ⊗A→ A⊗A⊗A→ A⊗A→ 0,

with its standard differential

b⊗ a1 ⊗ . . .⊗ an ⊗ b′ 7→
ba1 ⊗ . . .⊗ b′ + (−1)nb⊗ . . .⊗ anb′

+
∑n−1
i=1 (−1)ib⊗ . . .⊗ aiai+1 ⊗ . . .⊗ b′.

(3.1)

We give BA the natural diagonal Γ-action

γ · (b⊗ a1 ⊗ . . .⊗ an ⊗ b′) = γ1b⊗ γ2a1 ⊗ . . .⊗ γn+1an ⊗ γn+2b
′.

In this case, BA will be the graded subspace BA =
⊕

n k ⊗ A⊗n ⊗ k. One can also use the reduced bar
complex or, if A is a Koszul algebra and Γ acts by graded endomorphisms, we can take K to be the Koszul
resolution.

For any K satisfying (I) and (II), and any resolution L of the trivial right Γ-module k, we can form the
smash product complex K#L↑ using the coaction on L↑ defined in the previous section. We will see that
the smash product complex K#L↑ provides a projective resolution of A#Γ.

Lemma 3.4. Suppose τ : K → A is a bimodule resolution of A satisfying (I) and (II), and let ξ : L→ k be
any projective resolution of the trivial right Γ-module. Let ξ↑ : L↑ → Γ be the quasi-isomorphism of Lemma
2.3. Then the product map τ ⊗ ξ↑ : K#L↑ → A#Γ is a quasi-isomorphism of (A#Γ)e-complexes.

Proof. The fact that τ ⊗ ξ↑ is a quasi-isomorphism follows from the facts that both τ and ξ↑ are quasi-
isomorphisms, and that the tensor product of any two quasi-isomoprhisms (over a field) is yet another
quasi-isomorphism. It is trivial to check that τ ⊗ ξ↑ respects the left A-action and right Γ-action. One can
simply use the definition of the A and Γ-actions on K#L↑ given in Definition 3.2. For the left Γ-action we
have, for any x ∈ K, l ∈ L↑, and γ ∈ Γ,

(τ ⊗ ξ↑)(γ · (x⊗ l)) = τ(γ1x)ξ↑(γ2l)
= γ1τ(x)γ2ξ

↑(l)
= γ(τ(x)ξ↑(l))
= γ ·

(
(τ ⊗ ξ↑)(x⊗ l)

)
.

So τ ⊗ ξ↑ is a map of left Γ-complexes.
7



Recall that, by Proposition 2.8, the quasi-isomorphism ξ↑ : L↑ → Γ is one of Hopf bimodules. Hence
l−1 ⊗ ξ↑(l0) = ξ↑(l)1 ⊗ ξ↑(l)2 for all l ∈ L↑. Thus, for any a ∈ A we have

(τ ⊗ ξ↑)((x⊗ l) · a) = τ(x(l−1a))ξ↑(l0)

= τ(x(ξ
↑(l)1a))ξ↑(l)2

= τ(x)(ξ
↑(l)1aξ↑(l)2) (A-linearity of τ)

= (τ(x)ξ↑(l))a
=
(
(τ ⊗ ξ↑)(x⊗ l)

)
a.

This verifies that τ ⊗ ξ↑ is a map of right A-complexes and completes the proof that τ ⊗ ξ↑ is a quasi-
isomorphism of (A#Γ)e-complexes. �

Theorem 3.5. Let K be a bimodule resolution of A satisfying conditions (I) and (II), and let L be any
projective resolution of the trivial right Γ-module k. Then the smash product K#L↑ is a projective A#Γ-
bimodule resolution of A#Γ.

The proof of the theorem will be clear from the following lemma.

Lemma 3.6. Let M be a Γ-equivariant bimodule which is free on a base space M̄ ⊂M satisfying ΓM̄ = M̄ ,
and suppose N is a projective right Γ-module. Then the smash product module M#N↑ is projective over
A#Γ.

Proof. Suppose that N is free on some base N̄ ⊂ N . Then we have (bi)module isomorphisms A⊗M̄⊗A ∼= M
and N̄ ⊗ Γ ∼= N given by restricting the action maps A⊗M ⊗A→M and N ⊗ Γ→ N . We will also have
Γ ⊗ N̄ ⊗ Γ ∼= N↑. Now the restriction of the action map on M#N ∼= (A ⊗ M̄ ⊗ A)#(Γ ⊗ N̄ ⊗ Γ) provides
an isomorphism

A#Γ⊗ (M̄ ⊗ N̄)⊗A#Γ→M#N↑

with inverse
M#N↑ ∼= (A⊗ M̄ ⊗A)#(Γ⊗ N̄ ⊗ Γ)→ A#Γ⊗ (M̄ ⊗ N̄)⊗A#Γ
(a⊗m⊗ a′)⊗ (γ ⊗ n⊗ γ′) 7→ aγ2 ⊗ (S−1(γ1)m⊗ n)⊗ S(γ3)a′γ′.

So the smash product is a free A#Γ-bimodule.
In the case that N is not free, we know that N is a summand of some free module N . This will imply

that N↑ is a summand of N ↑ as a Hopf bimodule. It follows that M#N↑ is a summand of the free module
M#N ↑, and hence projective. �

Proof of Theorem 3.5. We already know that there is a quasi-isomorphism of (A#Γ)e-complexes K#L↑ →
A#Γ, by Lemma 3.4. So we need only show that the smash product complex is projective in each degree.
We have chosen K so that each Ki is an equivariant bimodule satisfying the hypotheses of Lemma 3.6,
and each Lj is projective by choice. So each Ki#(Lj)↑ = Ki#(L↑)j is projective by Lemma 3.6. Now,
projectivity of the smash product K#L↑ in each degree follows from the fact that each (K#L↑)n is a finite
sum of projective modules Ki#(L↑)j . �

Remark 3.7. The resolution of A#Γ constructed above is one of a number resolutions that have appeared
in the literature. In [7], Guccione and Guccione provide a resolution X of the smash A#Γ which is the tensor
product of the bar resolution of A with the bar resolution of Γ, along with some explicit differential. In the
case that Γ is a group algebra, Shepler and Witherspoon have provided a class of resolutions of the smash
product [16, Section 4]. Our resolution K#L↑ is a member of their class of resolutions (up to isomorphism).
The reader should be aware that the construction given in [16] is somewhat different than the one given here.

4. Hochschild cochains as derived invariants

Let Γ be a Hopf algebra and A be a Γ-module algebra.

Definition 4.1. Let M be a complex of A#Γ-bimodules and let X be a complex of Γ-equivariant A-
bimodules. We define a right Γ-module structure on the set of homs HomAe(X,M) by the formula

f · γ(x) := S(γ1)f(γ2x)γ3,

where f ∈ HomAe(X,M), γ ∈ Γ, and x ∈ X.
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This action was also considered in [7], and similar actions have appeared throughout the literature (see
for example [10, Section 5]). The first portion of the action, S(γ1)f(γ2x), assures that f · γ preserves left
A-linearity. The additional right action is necessary to preserve right A-linearity.

Lemma 4.2. Let M be a complex of A#Γ-bimodules and X be a complex of Γ-equivariant A-bimodules.
The Γ-module structure on HomAe(X,M) given in Definition 4.1 is compatible with the differential on the
hom complex. That is to say, HomAe(X,−) is a functor from A#Γ-complexes to Γ-complexes.

Proof. Recall that the differential on the hom complex is given by d : f 7→ dMf ± fdX . So Γ-linearity of the
differential on the hom complex follows by Γ-linearity of dM and dX . �

Let L be a projective resolution of the trivial right Γ-module k, and K be a bimodule resolution of A
satisfying conditions (I) and (II) of the previous section. For a complex of A#Γ-bimodules M , any map
θ ∈ Homk(K#L↑,M), and any l ∈ L↑, we let θ(−⊗ l) denote the k-linear map

K →M
x 7→ (−1)|x||l|θ((l−1x)⊗ l0).

Before giving the main theorem of this section let us highlight some points of interest. First, note that
there is an embedding of chain complexes L → L↑, ` 7→ ` ⊗Γ 1. This map becomes Γ-linear if we take the
codomain to be L↑ with the adjoint action. It is via this map that we view L as a subcomplex in L↑. Second,
note that for any l ∈ L ⊂ L↑ we have ρ(l) = 1 ⊗ l. Therefore, for all l ∈ L ⊂ L↑, θ(− ⊗ l) is just the map
x 7→ (−1)|x||l|θ(x⊗ l).

Theorem 4.3. Let L be a projective resolution of the trivial right Γ-module k, and K be a bimodule resolution
of A satisfying conditions (I) and (II). Then for any complex M of A#Γ-bimodules the map

Ξ : Hom(A#Γ)e(K#L↑,M)→ HomΓ(L,HomAe(K,M))
θ 7→ (l 7→ θ(−⊗ l))

is a natural isomorphism of chain complexes.

In light of Theorem 3.5, we are claiming that there is an explicit natural isomorphism of derived functors

RHom(A#Γ)e(A#Γ,−)
∼=→ RHomΓ(k,RHomAe(A,−)).

Proof. To distinguish between the action of Γ on L as a subcomplex in L↑, and the action of Γ on L itself,
we will denote the action of Γ on L↑ by juxtaposition, and the action of Γ on L by a dot ·. So, for l ∈ L ⊂ L↑
and γ ∈ Γ, we have

l · γ = S(γ1)lγ2.

It is straightforward to check that Ξ is a map of chain complexes, and we omit the computation. We need
to check that, for each θ, the map Ξ(θ) is a right Γ-linear, that each θ(− ⊗ l) is Ae-linear, and that Ξ is
bijective.

Fix a homogeneous A#Γ-bimodule map θ : K#L↑ → M . Since the coaction on L↑ restricts to a trivial
coaction on L, the map θ(−⊗ l) : K →M is seen to be Ae-linear for any l ∈ L. Furthermore, for any γ ∈ Γ,
l ∈ L, and x ∈ K, Γ-linearity of θ on the left and right gives the sequence of equalities

θ(−⊗ l · γ)(x) = (−1)|l||x|θ(x⊗ l · γ)
= (−1)|l||x|θ(x⊗ S(γ1)lγ2)
= (−1)|l||x|θ((S(γ2)γ3x)⊗ S(γ1)lγ4)
= (−1)|l||x|S(γ1)θ((γ2x)⊗ l)γ3

= (θ(−⊗ l) · γ)(x).

So we see that Ξ(θ) is in fact a right Γ-linear map L→ HomAe(K,M).
To see that Ξ is an isomorphism we provide an explicit inverse. By a computation similar to (2.1), one

can check that L↑ is generated as a right Γ-complex by the subcomplex L ⊂ L↑. Using this fact, we define,
for any Γ-linear map

χ : L→ HomAe(K,M),

a graded vector space map Φ(χ) : K#L↑ →M . For l ∈ L, γ ∈ Γ, and x ∈ K take

Φ(χ)(x⊗ lγ) := (−1)|x||l|χ(l)(x)γ. (4.1)
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Let us assume for the moment that Φ(χ) is well defined. We will return to this point at the end of the proof.
The fact that Φ(χ) is left A-linear and right Γ-linear is clear. Right A-linearity follows from right A-

linearity of χ(l) and the fact that coaction on L↑ restricts to a trivial coaction on L. For left Γ-linearity, let
x ∈ K, l ∈ L ⊂ L↑, and γ ∈ Γ. We have

Φ(χ)(γ(x⊗ l)) = Φ(χ)(γ1x⊗ γ2l)
= Φ(χ)

(
γ1x⊗ (l · S−1(γ3))γ2

)
= (−1)|x||l|χ(l · S−1(γ3))(γ1x)γ2

= (−1)|x||l|γ5χ(l)(S−1(γ4)γ1x)S−1(γ3)γ2 (Γ-linearity of χ)
= (−1)|x||l|γ3χ(l)(S−1(γ2)γ1x)
= (−1)|x||l|γχ(l)(x)
= γΦ(χ)(x⊗ l).

We can use right Γ-linearity of Φ(χ) to extend the above computation to all of K#L↑ = K ⊗ LΓ. Whence
we see that Φ(χ) is a A#Γ-bimodule map for arbitrary χ : L→ HomAe(K,M). The equalities Φ(Ξ(θ)) = θ
and Ξ(Φ(χ)) = χ follow by construction. So Φ = Ξ−1 and Ξ = Φ−1.

Now, let us deal with the question of whether or not Φ(χ) is well defined. In the case that L is free on a
subspace L̄, we will have L↑ = Γ⊗ L̄⊗Γ. We can then define the k-linear map K#L↑ = K⊗Γ⊗ L̄⊗Γ→M
on monomials by

x⊗ γ ⊗ l̄ ⊗ γ′ 7→ x⊗ l̄ ⊗ S−1(γ2)⊗ γ1 ⊗ γ′ 7→ (−1)|x||l̄|χ(l̄ · S−1(γ2))(x)γ1γ
′.

In the case that γ ⊗ γ′ = S(γ1) ⊗ γ2, i.e. in the case that γ ⊗ l̄ ⊗ γ′ is in L ⊂ L↑, the image of this map is

(−1)|x||l̄|χ(l̄ · γ)(x). So we see that we have recovered Φ(χ) as defined at (4.1), and it follows that Φ(χ) is
well defined. We can deal with the general case, in which L is simply projective in each degree, by noting
that L will be a summand of a free resolution. �

Corollary 4.4. Let L and K be as in Theorem 4.3, and M be a A#Γ-bimodule. Then we have a graded
isomorphism

HH(A#Γ,M) ∼= H
(
HomΓ(L,HomAe(K,M))

)
.

Proof. This follows from Theorem 4.3 and the fact that the Hochschild cohomology is given by the homology
of the complex Hom(A#Γ)e(K#L↑,M), since K#L↑ is a projective bimodule resolution of the smash product
A#Γ. �

We can, in fact, replace our resolution K with any equivariant Ae-projective resolution of A. Let P → A
be any Γ-equivariant A-bimodule resolution of A which is projective over Ae. By a straightforward process,
we can produce an equivariant complex Q admitting equivariant quasi-isomorphisms P → Q and K → Q.
First, take d0 to be the coproduct map K0 ⊕ P 0 → A. Then we construct Q inductively as the complex

Q = · · · → K2 ⊕ (A⊗ ker d1 ⊗A)⊕ P 2 d2

→ K1 ⊕ (A⊗ ker d0 ⊗A)⊕ P 1 d1

→ K0 ⊕ P 0 → 0,

where Γ acts diagonally on the summands (A ⊗ ker di ⊗ A). Note that Q is a complex of Γ-equivariant
bimodules, and that each Qi is projective over Ae. The map d0 : Q → A is a quasi-isomorphism by
construction. Whence we see that the two inclusions iK : K → Q and iP : P → Q are equivariant quasi-
isomorphisms. Taking

X = HomΓ(L,HomAe(Q,M))

then gives the following corollary.

Corollary 4.5. Let L and K be as in Theorem 4.3, and M be a complex of A#Γ-bimodules. Let P → A be an
equivariant bimodule resolution of A which is projective over Ae. The complex X admits quasi-isomorphisms

Hom(A#Γ)e(K#L↑,M)
∼←X

∼→ HomΓ(L,HomAe(P,M)).

Proof. Since L is a bounded above complex of projectives, the functor HomΓ(L,−) preserves quasi-isomorphisms.
Whence the proposed quasi-isomorphisms can be given by

HomΓ(L,HomAe(Q,M))
(i∗K)∗→ HomΓ(L,HomAe(K,M)) ∼= Hom(A#Γ)e(K#L↑,M)
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and

HomΓ(L,HomAe(Q,M))
(i∗P )∗→ HomΓ(L,HomAe(P,M)).

�

For L and K as above, and any A#Γ-bimodule M , the complex HomΓ(L,HomAe(K,M)) is the total
complex of the first quadrant double complex

.

.

.

.

.

.

0 // Hom(L0,Hom(K−1,M))
dL
∗
//

OO

Hom(L−1,Hom(K−1,M)) //

OO

· · ·

0 // Hom(L0,Hom(K0,M))
dL
∗
//

±(d∗K )∗

OO

Hom(L−1,Hom(K0,M)) //

±(d∗K )∗

OO

· · ·

0

OO

0

OO

.

(4.2)

It follows that there are two spectral sequences converging to the Hochschild cohomology of A#Γ with
coefficients in M . Filtering by the degree on L produces a spectral sequence

E2 = ExtΓ(k,HH(A#Γ,M)).

The existence of this spectral sequence is well known. It first appeared in the work of Stefan as a
Grothendieck spectral sequence in the setting of a Hopf Galois extension [18], and then in a paper by
Guccione and Guccione [7, Corollary 3.2.3]. Since these results are well established, we do not elaborate on
the details here. We will show in Section 6 that both of these spectral sequences can be used to calculate
the cup product on Hochschild cohomology when appropriate. All necessary details will be given there.

Notation 4.6. The filtration induced by the degree of L on the cohomology

HH(A#Γ,M) = H(HomΓ(L,HomAe(K,M)))

will be denoted FΓ. The filtration induced by the degree on K will be denoted FA. The associated graded
spaces with respect to these filtrations will be denoted

grΓHH(A#Γ,M) =
⊕
i

FΓ
i

(
HH(A#Γ,M)

)
FΓ
i−1

(
HH(A#Γ,M)

)
and

grAHH(A#Γ,M) =
⊕
i

FAi
(
HH(A#Γ,M)

)
FAi−1

(
HH(A#Γ,M)

)
respectively.

5. Reminder of the cup products on Hochschild cohomology and derived invariant
algebras

The following general approach to the cup product on Hochschild cohomology follows [17]. Let R be any
algebra and let B be an algebra extension of R, i.e. an algebra equipped with an algebra map R → B.
Let P be a projective R-bimodule resolution of R with quasi-isomorphism ϕ : P → R. Then P ⊗R P is
also a projective resolution of R with quasi-isomorphism ϕ ⊗R ϕ : P ⊗R P → R. Whence there exists a
quasi-isomorphism ω : P → P ⊗R P which fits into a diagram

P
ω //

ϕ
��

P ⊗R P

ϕ⊗Rϕ{{
R

(5.1)
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and is unique up to homotopy. From this we get a product map

HomRe(P,B)⊗HomRe(P,B)→ HomRe(P,B)
f ⊗ g 7→ µB(f ⊗R g)ω,

and subsequent dg algebra structure on HomRe(P,B). One can check that any choice of ω results in the
same product on the cohomology HH(R,B). We call this product the cup product. Note that the dg algebra
HomRe(P,B) need not be associative, but it will be associative up to a homotopy.

Suppose now that Γ is a Hopf algebra and L is a projective resolution of kΓ = Γ/ ker ε. Let B be a
right Γ-module dg algebra. (We do not require that B is strictly associative.) Since Γ ⊗ Γ is free over
Γ, the diagonal action on L ⊗ L makes it into a projective resolution of k as well. So, again, we have a
quasi-isomorphism σ : L → L ⊗ L which is unique up to homotopy and fits into a diagram analogous to
(5.1). Hence, we get a similarly defined product on the derived invariants

HomΓ(L,B)⊗HomΓ(L,B)→ HomΓ(L,B)
f ⊗ g 7→ µB(f ⊗ g)σ.

This product is unique on cohomology and gives HomΓ(L,B) the structure of a (not-necessarily-associative)
dg algebra.

6. Hochschild cohomology as a derived invariant algebra

Let Γ be a Hopf algebra and A be a Γ-module algebra. We also fix a bimodule resolution τ : K → A
which satisfies conditions (I) and (II) of Section 3, and a projective resolution ξ : L→ k of the trivial right
Γ-module. From here on out we assume K also satisfies

(III) there is a quasi-isomorphism ω : K → K ⊗A K of complexes of Γ-equivariant A-bimodules.

As was stated in the previous section, there will always be some quasi-isomorphism ω of Ae-complexes. The
content of condition (III) is that we may choose ω to be Γ-linear.

In the case of the bar resolution

BA = · · · → A⊗A⊗2 ⊗A→ A⊗A⊗A→ A⊗A→ 0

the map ω is given by

ω : b⊗ a1 ⊗ . . .⊗ an ⊗ b′ 7→
∑

0≤i≤n

(b⊗ a1 ⊗ . . .⊗ ai ⊗ 1)⊗A (1⊗ ai+1 ⊗ . . .⊗ an ⊗ b′) (6.1)

We will denote the image of ω using a Sweedler’s type notation, as if ω were a comultiplication. Specifically,
on elements we take ω1(x) ⊗A ω2(x) = ω(x), with the sum suppressed. In this notation, Γ-linearity of ω is
equivalent to the equality ω1(γx)⊗A ω2(γx) = γ1ω1(x)⊗A γ2ω2(x), for all γ ∈ Γ and x ∈ K.

Let us also fix a quasi-isomorphism σ : L→ L⊗L. As with ω and K, we denote the image of l ∈ L under
σ by σ1(l)⊗ σ2(l). In this notation Γ-linearity appears as σ1(l · γ)⊗ σ2(l · γ) = σ1(l) · γ1 ⊗ σ2(l) · γ2.

Proposition 6.1. For any algebra extension B of A#Γ, the complex HomAe(K,B), with the product of
Section 5 and Γ-action of Definition 4.1, is a right Γ-module dg algebra.

Proof. Let us denote the multiplication on HomAe(K,B) by juxtaposition. We need to show that for func-
tions f, g ∈ HomAe(K,M), and γ ∈ Γ, the formula (fg) · γ = (f · γ1)(g · γ2) holds. Let us simply check on
elements. We have, for any x ∈ K,

((fg) · γ)(x) = S(γ1)(fg)(γ2x)γ3

= ±S(γ1)f(γ2ω1(x))g(γ3ω2(x))γ4 (by Γ-linearity of ω)
= ±

(
S(γ1)f(γ2ω1(x))γ3

)(
S(γ4)g(γ5ω2(x))γ6

)
= (f · γ1)(ω1(x))(g · γ2)(ω2(x))
=
(
(f · γ1)(g · γ2)

)
(x).

�

According to this proposition, and the material of Section 5, the double complex HomΓ(L,HomAe(K,B))
will now cary a natural dg algebra structure.

We now seek to extend the diagonal map σ on L to a diagonal map on the induced complex L↑. One can
verify that the obvious map L⊗ L→ L↑ ⊗Γ L

↑ is an embedding, since the statement holds when L is free.
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In this way we view L⊗L as a subcomplex of L↑⊗Γ L
↑. The complex L↑⊗Γ L

↑ is taken to be a Γ-comodule
under the standard tensor Γ-comodule structure l ⊗Γ l

′ 7→ (l−1l
′
−1) ⊗ (l0 ⊗Γ l

′
0). Since L↑ is itself a Hopf

bimodule over Γ, this coaction gives L↑ ⊗Γ L
↑ the structure of a Hopf bimodule as well. Before giving the

next result we also note that, on elements, commutativity of the diagram

L
σ //

ξ ��

L⊗ L

ξ⊗ξ
||

k

produces the equality ξ(l) = ξ(σ1(l))ξ(σ2(l)) for each l ∈ L.

Lemma 6.2. The map σ : L → L ⊗ L ⊂ L↑ ⊗Γ L
↑ extends uniquely to a quasi-isomorphism of chain

complexes of Hopf-bimodules σ↑ : L↑ → L↑ ⊗Γ L
↑.

Proof. Let · denote the right action of Γ on L and juxtaposition denote the action of Γ on the bimodule L↑.
Take l ∈ L ⊂ L↑ and γ, γ′ ∈ Γ. We extend σ to all of L↑ according to the formula

σ↑(γlγ′) := γσ1(l)⊗Γ σ2(l)γ′.

Recall that l · γ = S(γ1)lγ2. To see that σ↑ is well defined, we first define the Γe-linear map

Σ : L⊗ Γe = Γ⊗ L⊗ Γ→ L↑ ⊗Γ L
↑

by the same formula Σ(γ ⊗ l ⊗ γ′) = γσ1(l)⊗Γ σ2(l)γ′. The computation

Σ(S(γ1)⊗ l ⊗ γ2) = S(γ1)σ1(l)⊗Γ σ2(l)γ2

= S(γ1)σ1(l)γ2 ⊗Γ S(γ3)σ2(l)γ4

=
(
σ1(l) · γ1

)
⊗Γ

(
σ2(l) · γ2

)
= σ1(l · γ)⊗Γ σ2(l · γ) (by Γ-linearity of σ)
= Σ(1⊗ (l · γ)⊗ 1)

shows that σ↑ respects the necessary relations to induce a map on the quotient L↑ = L⊗Γ Γe. This recovers
our original map σ↑, and shows that it is in fact well defined.

Recall that σ : L → L⊗ L was chosen so that ξ(l) = ξ(σ1(l))ξ(σ2(l)) for all l ∈ L, and that ξ↑ : L↑ → Γ
is defined by γlγ′ 7→ γξ(l)γ′. So we will have the commutative diagram

L↑
σ↑ //

ξ↑ ��

L↑ ⊗Γ L
↑

ξ↑⊗Γξ
↑

{{
Γ .

The fact that σ↑ is a quasi-isomorphism follows from commutativity of the above diagram and the fact that
ξ↑ and ξ↑ ⊗Γ ξ

↑ are quasi-isomorphisms. As for colinearity of σ↑, by the definition of the coaction on the
induced complex L↑ given in Definition 2.4, we have

(σ↑(γlγ′))−1 ⊗ (σ↑(γlγ′))0 =
(
γσ1(l)⊗ σ2(l)γ′

)
−1
⊗
(
γσ1(l)⊗ σ2(l)γ′

)
0

= (γ1γ
′
1)⊗ (γ2σ1(l)⊗ σ2(l)γ′2)

= (γ1γ
′
1)⊗ σ↑(γ2lγ

′
2)

= (γlγ′)−1 ⊗ σ↑((γlγ)0).

�

Now we have a quasi-isomorphism ω : K → K ⊗A K and have produced a quasi-isomorphism σ↑ : L↑ →
L↑ ⊗Γ L

↑ from the given map σ : L → L ⊗ L. We would like to use this information, along with some
twisting, to produce an explicit quasi-isomorphism

K#L↑ → (K#L↑)⊗A#Γ (K#L↑).

The next lemma offers the “twisting” portion of the proposed construction.
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Lemma 6.3. The isomorphism of k-complexes

(K ⊗A K)⊗ (L⊗ L)→ (K ⊗ L)⊗A (K ⊗ L)
(x⊗A y)⊗ (l ⊗ l′) 7→ (−1)|l||y|(x⊗ l)⊗A (y ⊗ l′)

extends uniquely to an isomorphism φ : (K ⊗A K)#(L↑ ⊗Γ L
↑) → (K#L↑) ⊗A#Γ (K#L↑) of complexes of

A#Γ-bimodules.

Proof. The map φ is given by

φ : (x⊗A y)⊗ (l ⊗Γ l
′) 7→ (−1)|l||y|(x⊗ l0)⊗A#Γ (S−1(l−1)y ⊗ l′),

for x, y ∈ K, l, l′ ∈ L↑. The fact that φ is well defined follows by standard manipulations, which we do not
reproduce here. The fact that φ is a chain map can be verified by using the Γ-linearity and Γ-colinearity of
the differentials on K and L↑ respectively.

In order to show that φ is an A#Γ-bimodule map, the only non-trivial things to check are left Γ-linearity
and right A-linearity. For left Γ-linearity we have, for any γ ∈ Γ,

φ(γ((x⊗A y)⊗ (l ⊗Γ l
′))) = φ((γ1x⊗A γ2y)⊗ (γ3l ⊗Γ l

′))
= ±(γ1x⊗ γ4l0)⊗A#Γ (S−1(γ3l−1)γ2y ⊗ l′)
= ±(γ1x⊗ γ4l0)⊗A#Γ (S−1(l−1)S−1(γ3)γ2y ⊗ l′)
= ±(γ1x⊗ γ2l0)⊗A#Γ (S−1(l−1)y ⊗ l′)
= ±γ

(
(x⊗ l0)⊗A#Γ (S−1(l−1)y ⊗ l′)

)
= γφ((x⊗A y)⊗ (l ⊗Γ l

′)).

For right A-linearity we have, for any a ∈ A,

φ(((x⊗A y)⊗ (l ⊗Γ l
′))a) = φ((x⊗A y(l−1l

′
−1a))⊗ (l0 ⊗Γ l

′
0)

= ±(x⊗ l0)⊗A#Γ (S−1(l−1)(y(l−2l
′
−1a))⊗ l′0)

= ±(x⊗ l0)⊗A#Γ ((S−1(l−1)y)(S
−1(l−2)l−3l

′
−1a))⊗ l′0)

= ±(x⊗ l0)⊗A#Γ ((S−1(l−1)y)(l
′
−1a))⊗ l′0)

= ±
(
(x⊗ l0)⊗A#Γ (S−1(l−1)y ⊗ l′0)

)
a

= φ((x⊗A y)⊗ (l ⊗Γ l
′))a.

The inverse to φ is the map

(x⊗ l)⊗A#Γ (y ⊗ l′) 7→ (−1)|l||y|(x⊗A l−1y)⊗ (l0 ⊗Γ l
′).

�

Proposition 6.4. Let φ be the isomorphism of Lemma 6.3, and σ↑ : L↑ → L↑⊗ΓL
↑ be the quasi-isomorphism

of Lemma 6.2. Then the map

φ(ω ⊗ σ↑) : K#L↑ → K#L↑ ⊗A#Γ K#L↑

is a quasi-isomorphism of (A#Γ)e-complexes.

Proof. Since σ↑ is a map of complexes of Hopf bimodules by Lemma 6.2, and ω is a map of complexes of
equivariant A-bimodules by choice, ω ⊗ σ↑ is (A#Γ)e-linear, by Lemma 3.3. Also, the product map ω ⊗ σ↑
is a quasi-isomorphism since ω and σ↑ are themselves quasi-isomorphisms. Now, since φ is an isomorphism
of (A#Γ)e-complexes, the claim follows. �

For any algebra extension A#Γ→ B, we define the cup product on Hom(A#Γ)e(K#L↑, B) by way of the

diagonal map K#L↑ → K#L↑ ⊗A#Γ K#L↑ given in Proposition 6.4.
The following are the hypotheses for Theorem 6.5: K is a bimodule resolution of A equipped with a

diagonal map ω : K → K ⊗A K satisfying conditions (I)-(III), and L is a projective resolution of the trivial
right Γ-module k with a quasi-isomorphism σ : L→ L⊗L. We give K#L↑ the diagonal quasi-isomorphism
of Proposition 6.4.

Theorem 6.5. For any algebra extension B of the smash product A#Γ, the isomorphism

Ξ : Hom(A#Γ)e(K#L↑, B)
∼=→ HomΓ(L,HomAe(K,B))

of Theorem 4.3 is one of (not-necessarily-associative) dg algebras.
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Let us note that, if K and L are chosen appropriately, the dg algebra HomΓ(L,HomAe(K,B)) will be
associative. It follows, by the theorem, that Hom(A#Γ)e(K#L↑, B) will also be associative in this case. For
example, one can always take K to be the bar resolution BA of A and L to be the bar resolution k⊗Γ BΓ
of k to get this property.

Proof. We want to verify commutativity of the diagram

Hom(K#L↑, B) ⊗ Hom(K#L↑, B)
Ξ⊗Ξ //

mult

��

Hom(L,Hom(K,B)) ⊗ HomΓ(L,Hom(K,B))

mult

��
Hom(K#L↑, B)

Ξ // Hom(L,Hom(K,B)).

(6.2)

There are three multiplications we need to deal with here. For the purpose of this proof we will denote the
products on

Hom(A#Γ)e(K#L↑, B), Hom(L,HomAe(K,B)), and HomAe(K,B)

by a dot ·, an asterisk ∗, and juxtaposition respectively. Let θ and θ′ be functions in Hom(A#Γ)e(K#L↑, A#Γ)

and fix arbitrary x ∈ K and l ∈ L ⊂ L↑.
Following around the top of (6.2) sends θ ⊗ θ′ to the function Ξ(θ) ∗ Ξ(θ′) ∈ HomΓ(L,HomAe(K,B)).

This function sends l ∈ L to the map

(−1)|θ
′||σ1(l)|θ(−⊗ σ1(l))θ′(−⊗ σ2(l))

in HomAe(K,B), where θ(−⊗ σ1(l)) and θ′(−⊗ σ2(l)) are as defined in the paragraphs preceding Theorem
4.3. Since the coaction on L↑ restricts to the trivial coaction on L, the above function evaluated at x is the
element

(−1)εθ (ω1(x)⊗ σ1(l)) θ′ (ω2(x)⊗ σ2(l)) ∈ B,
where

ε = |θ′||σ1(l)|+ |ω1(x)|(|θ′|+ |σ2(l)|+ |σ1(l)|) + |ω2(x)||σ2(l)|
= |θ′||σ1(l)|+ |ω1(x)|(|θ′|+ |l|) + |ω2(x)||σ2(l)|.
= |θ′|(|σ1(l)|+ |ω1(x)|) + |ω1(x)||l|+ |ω2(x)||σ2(l)|.

Following around the bottom row sends θ ⊗ θ′ to the function Ξ(θ · θ′) ∈ HomΓ(L,HomAe(K,B)), which
takes our element l ∈ L to (θ · θ′)(− ⊗ l) ∈ HomAe(K,B). Evaluating at x ∈ K produces the element
(−1)|x||l|(θ · θ′)(x⊗ l) ∈ B. Recalling the diagonal map on K#L↑ given in Proposition 6.4, the formula for
φ|(K ⊗A K)⊗ (L⊗ L) given in Lemma 6.3, and the fact that σ↑|L = σ, we have the equality

(−1)|x||l|(θ · θ′)(x⊗ l) = (−1)ε
′
θ (ω1(x)⊗ σ1(l)) θ′ (ω2(x)⊗ σ2(l)) ,

where
ε′ = |x||l|+ |σ1(l)||ω2(x)|+ |θ′|(|ω1(x)|+ |σ1(l)|)

= (|ω1(x)|+ |ω2(x)|)|l|+ |σ1(l)||ω2(x)|+ |θ′|(|ω1(x)|+ |σ1(l)|)
= |ω1(x)||l|+ |ω2(x)||l|+ |ω2(x)||σ1(l)|+ |θ′|(|ω1(x)|+ |σ1(l)|)
= |ω1(x)||l|+ |ω2(x)|(|σ1(l)|+ |σ2(l)|) + |ω2(x)||σ1(l)|+ |θ′|(|ω1(x)|+ |σ1(l)|)
≡ |ω1(x)||l|+ |ω2(x)||σ2(l)|+ |θ′|(|ω1(x)|+ |σ1(l)|) mod 2
= ε.

So following around the top or bottom of (6.2) produces the same function. �

Corollary 6.6. Let B be an algebra extension of A#Γ, and take K and L as in Theorem 6.5. Then there
is an isomorphism of algebras

HH(A#Γ, B) ∼= H (HomΓ(L,HomAe(K,B))) .

Proof. This is an immediate consequence of Theorem 6.5 and the fact that

HH(A#Γ, B) = H
(
Hom(A#Γ)e(K#L↑,M)

)
as an algebra. �

As was the case with Theorem 4.3, we can drop condition (II) on K.
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Corollary 6.7. Let K, L, and B be as in Theorem 6.5. Let P → A be a Γ-equivariant bimodule res-
olution of A which is projective over Ae in each degree. Suppose additionally that P admits a diagonal
quasi-isomorphism P → P ⊗A P which is Γ-linear. Then there is third dg algebra A which admits quasi-
isomorphisms

Hom(A#Γ)e(K#L↑, B)
∼→ A

∼← HomΓ(L,HomAe(P,B)) (6.3)

which are all algebra maps up to a homotopy.

Let η denote any of the maps of (6.3). The main point is that for any cycles f and g in the domain, the
difference η(fg)− η(f)η(g) will be a boundary. So all of the maps of (6.3) become algebra isomorphisms on
homology. The proof of this result is a bit of distraction, and has been relegated to the appendix.

As was discussed in the introduction, a spectral sequence E is called multiplicative if it comes equipped

with a bigraded products Epqr ⊗Ep
′q′

r → E
(p+p′)(q+q′)
r , for each r, such that each differential dr : Er → Er is a

graded derivation and each isomorphism Er+1
∼= H(Er) is one of algebras. The spectral sequence associated

to any filtered dg algebra will be multiplicative, for example. For any multiplicative spectral sequence E,
the limiting term E∞ has the natural structure of a bigraded algebra [19, Multiplicative Structures 5.4.8].
We say that a multiplicative spectral sequence converges to a graded algebra H if H carries an additional
filtration and we have an isomorphism of bigraded algebras E∞ = grH.

Recall the filtrations FA and FΓ on HH(A#Γ, B) given in Notation 4.6. Since the multiplication on the
double complex HomΓ(L,HomAe(K,B)) is bigraded, both the row and column filtrations (i.e. the filtrations
induced by the degrees on K and L) give it the structure of a filtered dg algebra. It follows that both of the
associated spectral sequences are multiplicative. It also follows that FA and FΓ are algebra filtrations on
the Hochschild cohomology.

Corollary 6.8. For any algebra extension B of the smash product A#Γ, there are two multiplicative spectral
sequences

E2 = ExtΓ(k,HH(A,B))⇒ HH(A#Γ, B)

and
′E1 = ExtΓ(k,RHomA-bimod(A,B))⇒ HH(A#Γ, B)

which converge to the Hochschild cohomology as an algebra.

Proof. These spectral sequences are induced by the row and column filtrations on the (first quadrant)
double complex HomΓ(L,HomAe(K,B)). Since the product on HomΓ(L,HomAe(K,B)) respects both of
these filtrations, and its homology is the Hochschild cohomology ring HH(A#Γ, B), both of the spectral
sequences are multiplicative and converge to the Hochschild cohomology.

Filtering by the degree on K produces the spectral sequence with ′E1 = ExtΓ(k,RHomAe(A,B)), where
we take RHomAe(A,B) = HomAe(K,B). Filtering by the degree on L produces a spectral sequence with
E1 = HomΓ(L,HH(A,B)), since each HomΓ(Li,−) is exact and hence commutes with homology. Since the
differentials on E1 are given by d∗L, it follows that the E2 term is as described. �

In the language of Notation 4.6, the E∞-terms of these spectral sequences are the bigraded algebras
grΓHH(A#Γ, B) and grAHH(A#Γ, B) respectively.

Corollary 6.9. If the global dimension of Γ is ≤ 1 then we have an isomorphism of algebras

grΓHH(A#Γ, B) ∼= ExtΓ(k,HH(A,B)).

Proof. In this case E2 = E∞. �

7. Algebras of extensions as derived invariant algebras

The main purpose of this section is to give some multiplicative spectral sequences converging to the algebra
ExtA#Γ(M,M), for any A#Γ-module M . As was the case with Hochschild cohomology, we will derive our
spectral sequences from some explicit isomorphism at the level of cochains. Some related spectral sequences
for groups of extensions, without multiplicative structures, were given in [7, Section 3.2.6].

For any algebra R and R-modules M and N , there is a natural bimodule structure on Homk(M,N)
induced by the left R-actions on M and N . In the case that M = N , the bimodule structure is induced by
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the associated representation R → Endk(M). Since the representation R → Endk(M) is an algebra map,
the endomorphism algebra of any R-module has the structure of an algebra extension of R.

The Yoneda product on ExtR(M,M) is defined in the following manner: first take a projective resolution
Q → M , then define ExtR(M,M) as the homology algebra of the endomorphism dg algebra EndR(Q).
An alternate approach to the Yoneda product will be given in Corollary 7.3. Recall that, for any bimodule
resolution P of R, the tensor product P⊗RM provides a projective resolution ofM . This fact is a consequence
of Künneth’s spectral sequence.

Proposition 7.1 ([19, Lemma 9.1.9]). Let R be any algebra, P be a projective R-bimodule resolution of R,
and M and N be any modules over R. The ⊗-Hom adjunction gives an isomorphism of complexes

HomRe(P,Homk(M,N))
∼=→ HomR(P ⊗RM,N).

In the case that M = N , and P is the bar resolution P = BR, there is a quasi-isomorphisms of dg algebras

HomRe(P,Endk(M))
∼→ EndR(P ⊗RM).

Strictly speaking, only the first portion of this proposition is given in Weibel’s text. The compatibility of
the cup product with the Yoneda product, in the case that M = N , should certainly also be well known.
One simply verifies that the map sending f ∈ HomB(P,Endk(M)) to the function

r ⊗ r1 ⊗ . . .⊗ rn ⊗m
7→ (−1)|f |(n−|f |)r ⊗ r1 ⊗ . . .⊗ rn−|f | ⊗ f(1⊗ r|n|−|f |+1 ⊗ . . .⊗ rn ⊗ 1)(m)

in EndR(P⊗RM) is a morphism dg algebras. The fact that the proposed map is a quasi-isomorphism follows
by commutativity of the diagram

EndR(P ⊗RM)

∼

((
HomRe(P,Endk(M))

66

∼= // HomR(P ⊗RM,M).

Corollary 7.2. There is a canonical isomorphism of graded vector spaces HH(R,Homk(M,N)) ∼= ExtR(M,N)
and isomorphism of graded algebras HH(R,Endk(M)) ∼= ExtR(M,M).

Note that, for any projective bimodule resolution P → R with diagonal quasi-isomorphism ω : P →
P ⊗R P , the dg algebra structure on HomRe(P,End(M)) induces a dg algebra structure on the com-
plex HomR(P ⊗R M,M) by way of the adjunction isomorphism of Proposition 7.1. For functions f, g ∈
HomR(P ⊗RM,M), the product fg ∈ HomR(P ⊗RM,M) will be given by

fg : x⊗R m 7→ (−1)|g||ω1(x)|f(ω1(x)⊗A g(ω2(x)⊗A m)),

where the notation ω(x) = ω1(x)⊗A ω2(x) is as in Section 6.

Corollary 7.3. Let M be any R-module, P be any projective R-bimodule resolution over R, and ω : P →
P ⊗R P be any Re-linear quasi-isomorphism. Give HomRe(P ⊗R M,M) the dg algebra structure outlined
above. Then

ExtR(M,M) ∼= H(HomR(P ⊗RM,M))

as an algebra.

Proof. The algebra structure on HomRe(P,End(M)) is defined so that the isomorphism HomRe(P,End(M))
∼=→

HomR(P ⊗RM,M) is one of dg algebras. In the case that P is the bar resolution, there is an isomorphism
of algebras

H(HomR(P ⊗RM,M)) ∼= H(HomRe(P,End(M))) ∼= ExtR(M,M)

by Proposition 7.1. The result now follows from the fact that the cup product on H(HomRe(P,End(M))) =
HH(R,Endk(M)) can be computed using any resolution and any quasi-isomorphism ω : P → P ⊗A P . �
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Let us return to our analysis of the cohomology of smash products. We fix a Hopf algebra Γ and Γ-module
algebra A. Before giving the main results let us clarify a possible point of confusion.

For any A#Γ-modules M and N there is a standard way to endow RHomA(M,N) with a right Γ-module
structure. One simply takes a A#Γ-complex Q which is a projective resolution of M over A and defines the
action on RHomA(M,N) = HomA(Q,N) by

f · γ(q) := S(γ1)f(γ2q).

We would like to know that this Γ-module structures agree with the Γ-module structure on RHomAe(A,Endk(M,N))
given in Section 4.

Lemma 7.4. Let M and N be modules over A#Γ and K be a projective bimodule resolution of A satisfying
conditions (I) and (II). Then the complex K ⊗AM is a A#Γ-complex under the diagonal Γ-action and the
quasi-isomorphism K ⊗AM →M is Γ-linear. Furthermore, the isomorphism

HomAe(K,Homk(M,N))
∼=→ HomA(K ⊗AM,N).

is one of complexes of right Γ-modules.

Since this lemma is not essential to the remainder of the paper, the proof is deferred to the appendix. We
now give the main results of the section.

Theorem 7.5. Let M and N be A#Γ-modules, L be a projective resolution of the trivial right Γ-module k,
and K be a projective A-bimodule resolution of A satisfying (I) and (II). Then there is an isomorphism of
chain complexes

HomA#Γ(K#L↑ ⊗A#Γ M,N)
∼=→ HomΓ(L,HomA(K ⊗AM,N)).

When the hypotheses of Theorem 6.5 are satisfied, the isomorphism

HomA#Γ(K#L↑ ⊗A#Γ M,M)
∼=→ HomΓ(L,HomA(K ⊗AM,M))

is one of (non-necessarily-associative) dg algebras.

In the above statement, HomA#Γ(K#L↑⊗A#Γ M,M) and HomA(K ⊗AM,M) are supposed to have the
algebra structures of Corollary 7.3.

Proof. From Proposition 7.1, Theorem 4.3, and the previous lemma, we get a sequence of isomorphisms of
chain complexes

HomA#Γ(K#L↑ ⊗A#Γ M,N) ∼= Hom(A#Γ)e(K#L↑,Homk(M,N))
∼= HomΓ(L,HomAe(K,Homk(M,N))
∼= HomΓ(L,HomA(K ⊗AM,N)).

Suppose now that N = M and that the hypotheses of Theorem 6.5 are met. Then the second isomorphism

Hom(A#Γ)e(K#L↑,Homk(M,N)) ∼= HomΓ(L,HomAe(K,Homk(M,N))

is one of dg algebras by Theorem 6.5. The isomorphisms

HomA#Γ(K#L↑ ⊗A#Γ M,N) ∼= Hom(A#Γ)e(K#L↑,Homk(M,N))

and

HomAe(K,Homk(M,N)) ∼= HomA(K ⊗AM,N)

are isomorphisms of dg algebras by the definition of the multiplicative structures considered in Corollary
7.3. It follows that the final isomorphism

HomΓ(L,HomAe(K,Homk(M,N)) ∼= HomΓ(L,HomA(K ⊗AM,N))

is one of dg algebras as well. Taking this all together gives the proposed result. �

In the complex HomΓ(L,HomA(K ⊗A M,N)), we may replace K ⊗A M with any Γ-linear A-projective
resolution Q → M . The proof of this fact is the similar to the one given for Corollary 4.5. In the entire
statement of Theorem 7.5 we could have also replaces K with any Ae-projective Γ-equivariant resolution
P → A with an equivariant diagonal, by Corollary 6.7.
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Corollary 7.6. Let M and N be modules over A#Γ, and K and L be as in Theorem 6.5. Then there is an
isomorphism of graded vector spaces

ExtA#Γ(M,N) ∼= H
(
HomΓ(L,HomA(K ⊗AM,N))

)
and an isomorphism of graded algebras

ExtA#Γ(M,M) ∼= H
(
HomΓ(L,HomA(K ⊗AM,M))

)
.

Proof. This follows by the isomorphism of dg algebras

HomA#Γ(K#L↑ ⊗A#Γ M,M)
∼=→ HomΓ(L,HomA(K ⊗AM,M))

of Theorem 7.5 and the fact that

ExtA#Γ(M,M) = H
(
HomA#Γ(K#L↑ ⊗A#Γ M,M)

)
as an algebra, by Corollary 7.3. �

Of course, from the Theorem we can also derive some multaplicative spectral sequences converging to the
Ext algebra ExtA#Γ(M,M). We define the filtrations FΓ and FA on each ExtA(M,M) in the same manner
as was done at Notation 4.6.

Corollary 7.7. For any A#Γ-module M , there are two multiplicative spectral sequences

E2 = ExtΓ-mod(k,ExtA-mod(M,M))⇒ ExtA#Γ-mod(M,M)

and
′E1 = ExtΓ-mod(k,RHomA-mod(M,M))⇒ ExtA#Γ-mod(M,M)

which converge to ExtA#Γ-mod(M,M) as an algebra. In the case that the global dimension of Γ is ≤ 1 we
have

grΓExtA#Γ(M,M) = ExtΓ(k,ExtA(M,M))

as an algebra.

Proof. The two spectral sequences arise from considering the row and column filtrations on the double
complex HomΓ(L,HomA(K ⊗AM,M)). The details are the same as those given in the proofs of Corollaries
6.8 and 6.9. �

This corollary can be seen as a generalization of the Lyndon-Hochschild-Serre spectral sequence in the
following sense: if N and G are groups, and G acts on N by automorphisms, we get an action of Γ = kG on
A = kN . We then have A#Γ = k(N oG), where N oG denotes the semi-direct product. When M = k is
the trivial N oG module, the multiplicative spectral sequence

ExtΓ(k,ExtA(M,M)) = H(G,H(N,k))⇒ ExtA#Γ(k,k) = H(N oG,k)

of Corollary 7.7 is simply the Lyndon-Hochschild-Serre spectral sequence.

Appendix

Proof of Corollary 6.7. Let P → P be a projective resolution of P as a complex in EQΓA
e-mod. Since the

restriction functor EQΓA
e-mod→ Ae-mod preserves projectives, P will be a projective bimodule resolution

of A as well. The tensor product of the quasi-isomorphism P → P then produces a quasi-isomorphism
P ⊗A P → P ⊗A P and we get a diagram

P ⊗A P // P ⊗A P

P

OO

//

h 	

P,

OO
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which commutes up to a Γ-equivariant homotopy h : P → P ⊗AP [1]. The existence of this homotopy follow
by projectivity of P and the fact that the diagram commutes on homology. We will then have a diagram

HomAe(P,B)⊗HomAe(P,B)

��

//

��
mult

((

HomAe(P, B)⊗HomAe(P, B)

��
mult

vv

HomAe(P ⊗A P,B) //

��

HomAe(P ⊗A P, B)

��
HomAe(P,B) //

h∗ 	

HomAe(P, B),

where the top square commutes and the bottom square commutes up to the Γ-linear homotopy

h∗ : HomAe(P ⊗A P,B)→ HomAe(P, B)[1].

To be clear, the top most vertical maps take a product of functions f⊗g to the function sending a monomial
x⊗A y in P ⊗AP , or P⊗AP, to (−1)|x||g|f(x)g(y). It follows that the map HomAe(P,B)→ HomAe(P, B)
is an algebra map, up to a homotopy, as is the induced map

HomΓ(L,HomAe(P,B))→ HomΓ(L,HomAe(P, B)).

Since P and P are projective A-bimodule resolutions of A, both of these maps are also seen to be quasi-
isomorphisms.

Repeat the process with K to get a resolution K → K and quasi-isomorphism

HomΓ(L,HomAe(K,B))→ HomΓ(L,HomAe(K , B))

which is an algebra map up to a homotopy. Finally, since both K and P are projective resolutions of A in
EQΓA

e, there is a Γ-equivariant quasi-isomorphism K → P. We repeat the above argument a third time
to deduce a quasi-isomorphism

HomΓ(L,HomAe(P, B))→ HomΓ(L,HomAe(K , B))

which is an algebra map up to a homotopy. Taking A = HomΓ(L,HomAe(K , B)) then provides the desired
result. �

Proof of Lemma 7.4. The first claim follows from the fact that K is a left A#Γ-complex itself. Now, for
any f in HomA(K ⊗A M,N) let fHom denote its image in HomAe(K,Homk(M,N)) under the adjunction
isomorphism of Proposition 7.1. Then we have, for any γ ∈ Γ, x ∈ K, and m ∈M ,(

(fγ)Hom(x)
)
(m) = fγ(x⊗A m)

= S(γ1)f(γ2x⊗A γ3m)
= S(γ1)fHom(γ2x)(γ3m)
=
(
S(γ1)fHom(γ2x)γ3)(m)

= (fHomγ(x))(m).

So fγ maps to fHomγ under the adjunction isomorphism of the proof of Theorem 7.1 and, consequently, the
isomorphism

RHomAe(A,Homk(M,N))
∼=→ RHomA(M,N)

is Γ-linear. �
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