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Abstract. We apply new techniques to compute Gerstenhaber brackets on the
Hochschild cohomology of a skew group algebra formed from a polynomial ring
and a finite group (in characteristic 0). We show that the Gerstenhaber brackets
can always be expressed in terms of Schouten brackets on polyvector fields. We
obtain as consequences some conditions under which brackets are always 0, and
show that the Hochschild cohomology is a graded Gerstenhaber algebra under the
codimension grading, strengthening known results.

1. Introduction

We compute brackets on the Hochschild cohomology of a skew group algebra formed
from a symmetric algebra (i.e. polynomial ring) and a finite group in characteristic 0.
Our results strengthen those given by Halbout and Tang [8] and by Shepler and the
second author [17]: The Hochschild cohomology decomposes as a direct sum indexed
by conjugacy classes of the group. In [8, 17] the authors give formulas for Gerstenhaber
brackets in terms of this decomposition, compute examples, and present vanishing
results. Here we go further and show that brackets are always sums of projections of
Schouten brackets onto these group components. As just one consequence, a bracket
of two nonzero cohomology classes supported off the kernel of the group action is
always 0 when their homological degrees are smallest possible. Our results complete
the picture begun in [8, 17], facilitated here by new techniques from [13].

From a theoretical perspective, the category of modules over the skew group algebra
under consideration here is equivalent to the category of equivariant quasi-coherent
sheaves on the corresponding affine space. So the Hochschild cohomology of the skew
group algebra, along with the Gerstenhaber bracket, is reflective of the deformation
theory of this category. This relationship can be realized explicitly through the work
of Lowen and Van den Bergh [11]. The Hochschild cohomology of the skew group
algebra is also strongly related to Chen and Ruan’s orbifold cohomology (see e.g.
[2, 15]).

We briefly summarize our main results. If V is a finite dimensional vector space
with an action of a finite group G, there is an induced action of G by automorphisms
on the symmetric algebra S(V ), and one may form the skew group algebra (also known
as a smash product or semidirect product) S(V )#G. Its Hochschild cohomology H :=
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HH•(S(V )#G) is isomorphic to the G-invariant subspace of a direct sum ⊕g∈GHg,
and the G-action permutes the components via the conjugation action of G on itself.
See for example [4, 7, 14]; we give some details as needed in Section 4.1.

Each space Hg may be viewed in a canonical way as a subspace of S(V )⊗
∧• V ∗,

and we construct canonical projections pg : S(V ) ⊗
∧• V ∗ → Hg. Since the space

S(V ) ⊗
∧• V ∗ can be identified with the algebra of polyvector fields on affine space,

it admits a canonical graded Lie bracket, namely the Schouten bracket (also known
as the Schouten-Nijenhuis bracket), which we denote here by { , }. By way of the
inclusions Hg ⊂ S(V )⊗

∧• V ∗ we may apply the Schouten bracket to elements of Hg,
and hence to elements in the Hochschild cohomology HH•(S(V )#G) = (⊕g∈GHg)

G.
Our main theorem is:

Theorem 5.2.3. Let X =
∑

g∈GXg and Y =
∑

h∈G Yh be classes in HH•(S(V )#G)
where Xg ∈ Hg, Yh ∈ Hh. Their Gerstenhaber bracket is

[X,Y ] =
∑
g,h∈G

pgh{Xg, Yh}.

This result was obtained by Halbout and Tang [8, Theorem 4.4, Corollary 4.11] in
some special cases.

In the body of the text, we assign to each summand Hg its own copy of S(V )⊗
∧• V ∗

and label this copy with a g. So we will write instead S(V ) ⊗
∧• V ∗g, and write

elements in S(V )⊗
∧• V ∗g as Xgg instead of just Xg.

We note that all of the ingredients in the expressions
∑
pgh{Xg, Yh} are canonically

defined. Thus we have closed-form expressions for Gerstenhaber brackets on classes
in arbitrary degree. There are very few algebras for which we have such an under-
standing of the graded Lie structure on Hochschild cohomology, aside from smooth
commutative algebras (over a given base field). For a smooth commutative algebra
R there is the well known HKR isomorphism [9] between the Hochschild cohomol-
ogy of R and polyvector fields on Spec(R), along with the Schouten bracket. The
particular form of Theorem 5.2.3 is referential to this classic result. Having such a
complete understanding of the Lie structure is useful, for example, in the production
of L∞-morphisms and formality results (see [6, 10]).

The proof of Theorem 5.2.3 uses the approach to Gerstenhaber brackets given
in [13], in which we introduced new techniques that are particularly well-suited to
computations. We summarize the necessary material from [13] in Section 2, explaining
how to apply it to skew group algebras. In Sections 3 and 4, we develop further
the theory needed to apply the techniques to the skew group algebra S(V )#G in
particular.

We obtain a number of consequences of Theorem 5.2.3 in Sections 5 and 6. In
Corollary 5.3.4 we recover [17, Corollary 7.4], stating that in case X,Y are supported
entirely on group elements acting trivially on V , the Gerstenhaber bracket is simply
the sum of the componentwise Schouten brackets. In Corollary 5.3.5 we recover
[17, Proposition 8.4], giving some conditions on invariant subspaces under which the
bracket [X,Y ] is known to vanish. Corollary 5.3.8 is another vanishing result that
generalizes [17, Theorem 9.2] from degree 2 to arbitrary degree, stating that in case



LIE BRACKET ON HOCHSCHILD COHOMOLOGY 3

X,Y are supported entirely off the kernel of the group action and their homological
degrees are smallest possible, their Gerstenhaber bracket is 0. In Corollary 5.3.7 we
also show that the Hochschild cohomology HH•(S(V )#G) is a graded Gerstenhaber
algebra with respect to a certain natural grading coming from the geometry of the
fixed spaces V g, which we refer to as the codimension grading. Section 6 consists of
examples and a general explanation of (non)vanishing of the Gerstenhaber bracket
for S(V )#G, rephrasing some of the results of [17].

Let k be a field and ⊗ = ⊗k. For our main results, we assume the characteristic of
k is 0, but this is not needed for the general techniques presented in Section 2. We
adopt the convention that a group G will act on the left of an algebra, and on the
right of functions from that algebra. Similarly, we will let G act on the left of the
finite dimensional vector space V ⊂ S(V ) and on the right of its dual space V ∗.

2. An alternate approach to the Lie bracket

Let A be an algebra over the field k. Let B → A denote the bar resolution of A as
an A-bimodule:

· · · δ3−→ A⊗4
δ2−→ A⊗3

δ1−→ A⊗A µ−→ A→ 0,

where µ denotes multiplication and

δn(a0 ⊗ · · · ⊗ an+1) =
n∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1 (2.0.1)

for all a0, . . . , an+1 ∈ A. The Gerstenhaber bracket of homogeneous functions f, g ∈
HomAe(B,A) is defined to be

[f, g] = f ◦ g − (−1)(|f |−1)(|g|−1)g ◦ f,

where the circle product f ◦ g is given by

(f ◦ g)(a1 ⊗ · · · ⊗ a|f |+|g|−1)

=

|f |∑
j=1

(−1)(|g|−1)(j−1)f(a1 ⊗ · · · ⊗ aj−1 ⊗ g(aj ⊗ · · · ⊗ aj+|g|−1)⊗ · · · ⊗ a|f |+|g|−1),

for all a1, . . . , a|f |+|g|−1 ∈ A, and similarly g◦f . This induces the bracket on Hochschild

cohomology. (Here we have identified HomAe(B,A) with Homk(A
⊗•, A).)

Typically when one computes brackets, one uses explicit chain maps between this
bar resolution B and a more convenient one for computational purposes, navigating
back and forth. Such chain maps are usually awkward, and this way can be inefficient
and technically difficult. In this section, we first recall from [13] an alternate approach,
for some types of algebras, introduced to avoid this trouble. Then we explain how to
apply it to skew group algebras in particular.

2.1. A collection of brackets. Given a bimodule resolution K → A satisfying some
conditions as detailed below, one can produce a number of coarse brackets [ , ]φ on the
complex HomAe(K,A), each depending on a map φ. These brackets are coarse in the
sense that they will not, in general, produce dg Lie algebra structures on the complex
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HomAe(K,A). They will, however, be good enough to compute the Gerstenhaber
bracket on the cohomology H•(HomAe(K,A)) = HH•(A). We have precisely:

Theorem 2.1.1 ([13, Theorem 3.2.5]). Suppose µ : K → A is a projective A-bimodule
resolution of A satisfying the Hypotheses 2.1.2(a)–(c) below. Let FK : K ⊗A K → K
be the chain map FK = µ ⊗ idK − idK ⊗µ. Then for any degree −1 bimodule map
φ : K ⊗AK → K satisfying dKφ+ φdK⊗AK = FK , there is a bilinear operation [ , ]φ
on HomAe(K,A). Each operation [ , ]φ satisfies the following properties.

(1) [f, g]φ is a cocycle whenever f and g are cocycles in HomAe(K,A).
(2) [f, g]φ is a coboundary whenever, additionally, f or g is a coboundary.
(3) The induced operation on cohomology H•(HomAe(K,A)) = HH•(A) is pre-

cisely the Gerstenhaber bracket: [f, g]φ = [f, g] on cohomology.

The bilinear map [ , ]φ is defined by equations (2.1.3) and (2.1.4) below. By [13,
Lemma 3.2.1], such maps φ satisfying the conditions in the theorem always exist. We
call such a map φ a contracting homotopy for FK .

There is a diagonal map ∆B : B → B ⊗A B given by

∆B(a0 ⊗ . . .⊗ an+1) =
n∑
i=0

(a0 ⊗ . . .⊗ ai ⊗ 1)⊗A (1⊗ ai+1 ⊗ . . .⊗ an+1)

for all a0, . . . , an+1 ∈ A. The hypotheses on the projective A-bimodule resolution
K → A, to which the theorem above refers, are as follows.

Hypotheses 2.1.2. (a) K admits a chain embedding ι : K → B that fits into a
commuting diagram

K
ι //

%%

B

yy
A

(b) The embedding ι admits a retract π. That is, there is an chain map π : B → K
such that πι = idK .

(c) The diagonal map ∆B : B → B ⊗A B preserves K, and hence restricts to a
diagonal map ∆K : K → K ⊗A K. Equivalently, ∆Bι = (ι⊗A ι)∆K .

Conditions (a) and (c) together can alternatively be stated as the condition that
K is a dg coalgebra in the monoidal category A-bimod that admits an embedding
into the bar resolution. We denote the coproducts of elements in K using Sweedler’s
notation, e.g.

∆(w) = w1 ⊗ w2, (∆⊗A idK)∆(w) = w1 ⊗ w2 ⊗ w3,

for w ∈ K, with the implicit sum ∆(w) =
∑

i1,i2
wi1 ⊗ wi2 suppressed. Koszul

resolutions of Koszul algebras, as well as related algebras such as universal enveloping
algebras, Weyl algebras, and Clifford algebras, will fit into this framework [1, 12].

Given a resolution K → A satisfying Hypotheses 2.1.2(a)–(c) and a contracting
homotopy φ for FK , we construct the φ-bracket as follows: We first define the φ-circle
product for functions f, g in HomAe(K,A) by

(f ◦φ g)(w) = (−1)|w1||g|f
(
φ(w1 ⊗ g(w2)⊗ w3)

)
(2.1.3)
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for homogeneous w in K, and define the φ-bracket as the graded commutator

[f, g]φ = f ◦φ g − (−1)(|f |−1)(|g|−1)g ◦φ f. (2.1.4)

We will be interested in producing such brackets particularly for a skew group
algebra formed from a symmetric algebra (i.e. polynomial ring) under a finite group
action. We will start with the Koszul resolution K of the symmetric algebra itself

and then construct a natural extension K̃ to resolve the skew group algebra. We will

define a contracting homotopy φ for FK that extends to K̃, and use it to compute
Gerstenhaber brackets via Theorem 2.1.1. We describe these constructions next in
the context of more general skew group algebras.

2.2. Skew group algebras. Let G be a finite group whose order is not divisible by
the characteristic of the field k. Assume that G acts by automorphisms on the algebra
A. Let B = B(A) be the bar resolution of A, and let K = K(A) be a projective A-
bimodule resolution of A satisfying Hypotheses 2.1.2(a)–(c). Assume that G acts on
K and on B, and this action commutes with the differentials and with the maps
ι, π,∆K ,∆B. These assumptions all hold in the case that A is a Koszul algebra on
which G acts by graded automorphisms and K is a Koszul resolution; in particular,
π may be replaced by 1

|G|
∑

g∈G gπg
−1 if it is not a priori G-linear.

Let A#G denote the skew group algebra, that is A ⊗ kG as a vector space, with
multiplication defined by (a ⊗ g)(b ⊗ h) = a(gb) ⊗ gh for all a, b ∈ A and g, h ∈ G,
where left superscript denotes the G-action. We will sometimes write a#g or simply
ag in place of the element a⊗ g of A#G when there can be no confusion.

Let B(A#G) denote the bar resolution of A#G as a k-algebra, and let B̃(A#G)
denote its bar resolution over kG:

· · · δ3−→ (A#G)⊗kG4
δ2−→ (A#G)⊗kG3

δ1−→ (A#G)⊗kG (A#G)
µ−→ A#G→ 0,

with differentials defined as in (2.0.1). Since kG is semisimple, this is a projective
resolution of A#G as an (A#G)e-module. There is a vector space isomorphism

(A#G)⊗kGi ∼= A⊗i ⊗ kG

for each i, and from now on we will identify B̃j(A#G) with A⊗(j+2) ⊗ kG for each j,

and the differentials of B̃ with those of B tensored with the identity map on kG.
Similarly we wish to extend K to a projective resolution of A#G as an (A#G)e-

module. Let K̃ = K̃(A#G) denote the following complex:

· · · d3⊗idkG−−−−−→ K2 ⊗ kG
d2⊗idkG−−−−−→ K1 ⊗ kG

d1⊗idkG−−−−−→ K0 ⊗ kG
µ⊗idkG−−−−→ A#G→ 0.

We give the terms of this complex the structure of A#G-bimodules as follows:

(a#g)(x⊗ h) = a(gx)⊗ gh,
(x⊗ h)(a#g) = x(ha)⊗ hg,

for all a ∈ A, g, h ∈ G, and x ∈ Ki. Then K̃ is a projective resolution of A#G by
(A#G)e-modules.
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Next we will show that K̃ → A#G satisfies Hypotheses 2.1.2(a)–(c) for the algebra

A#G. Let ι̃ : K̃ → B(A#G) be the composition

K̃
ι⊗idkG−−−−→ B̃(A#G)

i−→ B(A#G)

where i(a0⊗· · ·⊗aj+1⊗g) = (a0#1)⊗· · ·⊗(aj#1)⊗(aj+1#g) for all a0, . . . , aj+1 ∈ A
and g ∈ G. Let π̃ : B(A#G)→ K̃ be the composition

B(A#G)
p−→ B̃(A#G)

π⊗idkG−−−−→ K̃

where

p((a0#g0)⊗ (a1#g1)⊗ (a2#g2)⊗ · · · ⊗ (aj#gj)) (2.2.1)

= a0 ⊗ (g0a1)⊗ (g0g1a2)⊗ · · · ⊗ (g0g1···gj−1aj)⊗ g0g1 · · · gj

for all a0, . . . , aj ∈ A and g0, . . . , gj ∈ G. One can check that i and p are indeed chain
maps. Then

π̃ι̃ = (π ⊗ idkG)pi(ι⊗ idkG) = id
K̃

since pi = id
B̃(A#G)

by the definitions of these maps, and πι = idK by Hypothe-

sis 2.1.2(b) applied to K. Therefore Hypotheses 2.1.2(a) and (b) hold for K̃.

Now let ∆
K̃

: K̃ → K̃ ⊗A#G K̃ be defined by ∆
K̃

= ∆K ⊗ idkG, after identifying

K̃i ⊗A#G K̃j = (Ki ⊗ kG) ⊗A#G (Kj ⊗ kG) with (Ki ⊗A Kj) ⊗ kG. One may check
that ∆

K̃
satisfies Hypothesis 2.1.2(c).

Let φK : K ⊗A K → K be a map satisfying dKφK + φKdK⊗AK = FK as in
Theorem 2.1.1. Assume that φK is G-linear. Let

φ
K̃

= φK ⊗ idkG, (2.2.2)

a map from K̃ ⊗A#G K̃ to K̃, under the identification K̃ ⊗A#G K̃ ∼= (K ⊗AK)⊗ kG.
Since φK is G-linear, this map φ

K̃
is an A#G-bimodule map. Further,

d
K̃
φ
K̃

+ φ
K̃
d
K̃⊗AK̃ = (dKφK + φKdK⊗AK)⊗ idkG = FK ⊗ idkG = F

K̃
.

As a consequence, by Theorem 2.1.1, φ
K̃

may be used to define the Gerstenhaber
bracket on the Hochschild cohomology of A#G via (2.1.3) and (2.1.4).

3. Symmetric algebras

Let V be a finite dimensional vector space over the field k of characteristic 0, and
let A = S(V ), the symmetric algebra on V . In this section, we construct a map φ
that will allow us to compute Gerstenhaber brackets on the Hochschild cohomology
of the skew group algebra A#G arising from a representation of the finite group G
on V , via Theorem 2.1.1 and equation (2.2.2).
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3.1. The Koszul resolution. We will use a standard description of the Koszul reso-
lution K of A = S(V ) as an Ae-bimodule, given as a subcomplex of the bar resolution
B = B(A): For all v1, . . . , vi ∈ V , let

o(v1, . . . , vi) =
∑
σ∈Si

sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(i)

in V ⊗i ⊂ A⊗i. Sometimes we write instead

o(vI) = o(v1, . . . , vi),

where I = {1, . . . , i}. Take o(∅) = 1. Let Ki = Ki(A) be the free Ae-submodule

of A⊗(i+2) with free basis all 1 ⊗ o(v1, . . . , vi) ⊗ 1 in A⊗(i+2). We may in this way

identify Ki with A ⊗
∧i V ⊗ A and K with A ⊗

∧• V ⊗ A. The differentials on the
bar resolution, restricted to K, may be rewritten in terms of the chosen free basis of
K as

d(1⊗ o(v1, . . . , vi)⊗ 1)

=

i∑
j=1

(−1)j−1(vj ⊗ o(v1, . . . , v̂j , . . . , vi)⊗ 1− 1⊗ o(v1, . . . , v̂j , . . . , vi)⊗ vj),

where v̂j indicates that vj has been deleted from the list of vectors. Note that the
action of G preserves the vector subspace of Ki spanned by all 1 ⊗ o(v1, . . . , vi) ⊗ 1.
There is a retract π : B → K that can be chosen to be G-linear. We will not need an
explicit formula for π here.

The diagonal map ∆K : K → K ⊗A K is given by

∆K(1⊗ o(vI)⊗ 1) =
∑
I1,I2

±(1⊗ o(vI1)⊗ 1)⊗ (1⊗ o(vI2)⊗ 1) (3.1.1)

where the sum is indexed by all ordered disjoint subsets I1, I2 ⊂ I with I1 ∪ I2 = I,
and ± is the sign of σ, the unique permutation for which {iσ(1), . . . iσ(|I|)} = I1 ∪ I2
as an ordered set. Note that ∆K is G-linear. Letting ι : K → B be the embedding
of K as a subcomplex of B, Hypotheses 2.1.2(a)–(c) now hold. We may thus use
Theorem 2.1.1 and (2.2.2) to compute brackets on HH•(S(V )#G) once we have a
suitable map φ.

3.2. An invariant map φ. We will now define an A-bilinear map φ : K ⊗AK → K
that will be G-linear and independent of choice of ordered basis of V . Compare with
[13, Definition 4.1.3], where a simpler map φ was defined which however depends on
such a choice. At first glance, the map φ below looks rather complicated, but in
practice we find it easier to use when extended to a skew group algebra than explicit
chain maps between bar and Koszul resolutions.

Definition 3.2.1. Assume the characteristic of k is 0. Let φ : K ⊗A K → K be the
A-bilinear map given on ordered monomials as follows:

φ0(1⊗ v1 · · · vt ⊗ 1) =
1

t!

∑
1≤r≤t
σ∈St

vσ(1) · · · vσ(r−1) ⊗ o(vσ(r))⊗ vσ(r+1) · · · vσ(t)
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for all v1, . . . , vt ∈ V . On K0 ⊗A Kz and on Ks ⊗A K0 (s, z > 0), let

φz(1⊗ v1 · · · vt ⊗ o(w1, . . . , wz)⊗ 1)

=
(−1)z

(t+ z)!

∑
1≤r≤t
σ∈St

( z−1∏
i=0

(r + i)
)
vσ(1) · · · vσ(r−1) ⊗ o(w1, . . . , wz, vσ(r))⊗ vσ(r+1) · · · vσ(t),

φs(1⊗ o(u1, . . . , us)⊗ v1 · · · vt ⊗ 1

=
1

(t+ s)!

∑
1≤r≤t
σ∈St

( s∏
i=1

(t− r + i)
)
vσ(1) · · · vσ(r−2) ⊗ o(vσ(r), u1, . . . , us)⊗ vσ(r+1) · · · vσ(t),

for all u1, . . . , us, v1, . . . , vt, w1, . . . , wz ∈ V . When s > 0 and z > 0, let

φs+z(1⊗ o(u1, . . . , us)⊗ v1 · · · vt ⊗ o(w1, . . . , wz)⊗ 1)

=
∑

1≤r≤t
σ∈St

cs,t,zr vσ(1) · · · vσ(r−1) ⊗ o(w1, . . . , wz, vσ(r), u1, . . . , us)⊗ vσ(r+1) · · · vσ(t),

where cs,t,zr =
(−1)sz+z

(s+ t+ z)!

( z−1∏
i=0

(r + i)
)( s∏

j=1

(t− r + j)
)
.

To see that φ is well-defined, one can first construct the corresponding map from
the tensor powers (V ⊗s)⊗ (V ⊗t)⊗ (V ⊗z) (using the universal property of the tensor
product, for example) then note that the given map is Ss × St × Sz-invariant and
hence induces a well-defined map φ on the coinvariants (

∧s V )⊗St(V )⊗(
∧z V ). One

can also see directly that φ is G-invariant. In fact, it is invariant under the action of
the entire group GL(V ). We next state that φ is a contracting homotopy for the map
FK defined in the statement of Theorem 2.1.1.

Lemma 3.2.2. Let φ : K⊗AK → K be the A-bilinear map of Definition 3.2.1. Then
dKφ+ φdK⊗AK = FK .

Proof. In degree 0, we check:

(dφ+ φd)(1⊗ v1 · · · vt ⊗ 1)

= d

 1

t!

∑
1≤r≤t
σ∈St

vσ(1) · · · vσ(r−1) ⊗ o(vσ(r))⊗ vσ(r+1) · · · vσ(t)


=

1

t!

∑
1≤r≤t
σ∈St

(vσ(1) · · · vσ(r) ⊗ vσ(r+1) · · · vσ(t) − vσ(1) · · · vσ(r−1) ⊗ vσ(r) · · · vσ(t))

=
1

t!

∑
σ∈St

(vσ(1) · · · vσ(t) ⊗ 1− 1⊗ vσ(1) · · · vσ(t))

= v1 · · · vt ⊗ 1− 1⊗ v1 · · · vt = FK(1⊗ v1 · · · vt ⊗ 1).

Other verifications are tedious, but similar. �
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4. φ-circle product formula and projections onto group components

We first recall some basic facts about the Hochschild cohomology of the skew group
algebra S(V )#G. The graded vector space structure of the cohomology is well-known,
see for example [4, 7, 14]. We give some details here as will be needed for our bracket
computations. We then derive a formula for φ-circle products (defined in (2.1.3))
on this Hochschild cohomology, and define projection operators needed for our main
results. We assume from now on that the characteristic of k is 0. Then

HH•(S(V )#G) ∼= HH•(S(V ), S(V )#G)G, (4.0.1)

where the superscript G denotes invariants of the action of G on Hochschild cohomol-
ogy induced by its action on complexes (via the standard group action on tensor prod-
ucts and functions). This follows for example from [5]. We will focus our discussions
and computations on HH•(S(V ), S(V )#G), and results for Hochschild cohomology
HH•(S(V )#G) will follow by restricting to its G-invariant subalgebra.

4.1. Structure of the cohomology HH•(S(V ), S(V )#G). Let {x1, . . . , xn} be a
basis for V and {x∗1, . . . , x∗n} the dual basis for its dual space V ∗. The Hochschild
cohomology HH•(S(V ), S(V )#G) is computed as the homology of the complex

HomS(V )e(S(V )⊗
∧• V ⊗ S(V ), S(V )#G) ∼= Homk(

∧• V, S(V )#G)

∼=
⊕
g∈G

S(V )⊗
∧•V ∗g.

The differential on the graded space
⊕

g∈G S(V ) ⊗
∧•V ∗g induced by the above

sequence of isomorphisms is left multiplication by the diagonal matrix

E = diag{Eg}g∈G, Eg =
∑
i

(xi − gxi)∂i,

where ∂i = 1 ⊗ x∗i . So E · (
∑

g Ygg) =
∑

g(EgYg)g. This complex breaks up into a

sum of subcomplexes (S(V )⊗
∧•V ∗g,Eg), and we have

HH•(S(V ), S(V )#G) =
⊕
g∈G

H•(S(V )⊗
∧•V ∗g).

We note that each Eg is independent of the choice of basis, since it is simply the image

of 1g ∈ Homk(
∧0 V, S(V )g) under the differential on Homk(

∧• V, S(V )g).
The right G-action on HomS(V )e(K,S(V )#G) is given by (f · g)(x) = g−1f(gx)g,

for f ∈ HomS(V )e(K,S(V )#G) and g ∈ G, giving it the structure of a G-complex.
This translates to the action(

(a⊗ f1 . . . fl)g) · h =
(
(h
−1
a)⊗ fh1 . . . fhl

)
h−1gh (4.1.1)

on
⊕

g∈G S(V )⊗
∧•V ∗g, where a ∈ S(V ) and fi ∈ V ∗. It will be helpful to have the

following general lemma.

Lemma 4.1.2. Given any G-representation M , and element g ∈ G, there is a canon-
ical complement to the g-invariant subspace Mg, given by (Mg)⊥ = (1− g) ·M . This
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gives a splitting M = Mg⊕(1−g)M of M as a 〈g〉-representation. This decomposition
satisfies

Mg = Mg−1
and (1− g)M = (1− g−1)M

and is compatible with the G-action in the sense that, for any h ∈ G,

h ·Mg = Mhgh−1
and h ·

(
(1− g)M

)
= (1− hgh−1)M.

Proof. The operation (1 − g) · − : M → M has kernel precisely Mg. Furthermore
Mg ∩ (1− g) ·M = 0, since for any invariant element m− gm in (1− g) ·M we will
have

(m− gm) =

∫
g
(m− gm) =

∫
g
m−

∫
g
gm =

∫
g
m−

∫
g
m = 0,

where
∫
g = 1

|g|
∑|g|−1

i=0 gi. We conclude that M = Mg ⊕ (1 − g)M when M is finite

dimensional, by a dimension count. When M is infinite dimensional, the result can
be deduced from the fact that M is the union of its finite dimensional submodules.

The equality Mg = Mg−1
is clear, and the equality (1 − g)M = (1 − g−1)M

follows from the fact that M = −gM . As for the compatibility claim, the identity

h ·Mg = Mhgh−1
is obvious, while the equality h(1 − g)M = (1 − hgh−1)M follows

from the computation

h(1− g)M = h(1− g)h−1M = (hh−1 − hgh−1)M = (1− hgh−1)M.

�

Let us take det⊥g to be the one dimensional 〈g〉-representation:

det⊥g =
∧codimV g((1− g)V )∗g.

We then have the embedding

S(V g)⊗
∧•−codimV g(V g)∗det⊥g −→ S(V )⊗

∧•V ∗g (4.1.3)

induced by the embedding of V g as a subspace of V and a corresponding dual subspace
embedding.

Lemma 4.1.4. For each g ∈ G,

Eg · (S(V g)⊗
∧•−codimV g(V g)∗det⊥g ) = 0

and

(Im(Eg · −)) ∩
(
S(V g)⊗

∧•−codimV g(V g)∗det⊥g

)
= 0.

That is to say, the subspaces S(V g)⊗
∧•−codimV g(V g)∗det⊥g consist entirely of cocycles

and contain no nonzero coboundaries.

Proof. If we choose a basis {x1, . . . , xn} for V such that the first l elements are a basis
for V g, and the remaining are a basis for (1− g)V , then we have

Eg =

n∑
i=1

(xi − gxi)∂i =
∑
i>l

(xi − gxi)∂i,
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since xi = gxi for all i ≤ l. So Eg det⊥g = 0 and, if we let Ig denote the ideal in S(V )
generated by (1− g)V , we have

Eg (S(V )⊗
∧•V ∗g) ⊂ Ig ⊗

∧•V ∗g.
The second statement here implies that the proposed intersection is trivial. �

By the above information, there is an induced map

S(V g)⊗
∧•−codimV g(V g)∗det⊥g −→ H•

(
S(V )⊗

∧•V ∗g)
which is injective. The following is a rephrasing of Farinati’s calculation [4].

Proposition 4.1.5. The induced maps

S(V g)⊗
∧•−codimV g(V g)∗det⊥g −→ H•

(
S(V )⊗

∧•V ∗g)
are isomorphisms for each g ∈ G, and so there is an isomorphism⊕

g∈G

(
S(V g)⊗

∧•−codimV g(V g)∗det⊥g
) ∼=−→ H•

(⊕
g∈G

(S(V )⊗
∧•V ∗g)

)
. (4.1.6)

Recalling that the codomain of (4.1.6) is the cohomology HH•(S(V ), S(V )#G), the
second portion of this proposition gives an identification⊕

g∈G

(
S(V g)⊗

∧•−codimV g(V g)∗det⊥g
)

= HH•(S(V ), S(V )#G). (4.1.7)

In addition to providing this description of the cohomology, the embedding (4.1.3) is
compatible with the G-action in the following sense.

Proposition 4.1.8. (1) For any g, h ∈ G there is an equality(
S(V g)⊗

∧•−codimV g(V g)∗det⊥g
)
· h = S(V h−1gh)⊗

∧•−codimV h−1gh

(V h−1gh)∗det⊥h−1gh

in
⊕

g S(V )⊗
∧•V ∗g.

(2) The sum
⊕

g S(V g) ⊗
∧•−codimV g(V g)∗det⊥g is a G-subcomplex of the sum⊕

g S(V )⊗
∧•V ∗g.

(3) The isomorphism⊕
g∈G

(
S(V g)⊗

∧•−codimV g(V g)∗det⊥g
) ∼=−→ H•

(⊕
g∈G

(S(V )⊗
∧•V ∗g)

)
is one of graded G-modules.

Proof. From Lemma 4.1.2, and the descriptions of (V g)∗ and ((1 − g)V )∗ as those
functions vanishing on (1− g)V and V g respectively, we have

(V g)∗ · h = {functions vanishing on h−1(1− g)V } = (V h−1gh)∗

((1− g)V )∗ · h = {functions vanishing on h−1V g} = ((1− h−1gh)V )∗

and h−1 · S(V g) = S(V h−1gh). This, along with the description (4.1.1) gives the
equality in (1). Statement (2) follows from (1), and (3) follows from (2) and Propo-
sition 4.1.5. �
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4.2. The φ-circle product formula. We will compute first with the complex

HomS(V )e(K,S(V )#G) =
⊕
g∈G

S(V )⊗
∧•V ∗g,

and then restrict to G-invariant elements to make conclusions about the cohomology
HH•(S(V )#G). Letting φK be the map of Definition 3.2.1 and φ

K̃
= φK ⊗ idkG as

in equation (2.2.2), φ := φ
K̃

gives rise to a perfectly good bilinear operation

Xg ◦φ Y h =
(
w 7→ (−1)|w1||Y |Xg(φ(w1 ⊗ Y (w2)⊗ hw3))h

)
,

which need not be a chain map. Here X,Y ∈ S(V )⊗
∧•V ∗, and w ∈ K. We can also

define the φ-bracket in the most naive manner as

[Xg, Y h]φ = Xg ◦φ Y h− (−1)(|X|−1)(|Y |−1)Y h ◦φ Xg.

This operation, again, need not be well behaved at all on non-invariant functions, but
it will be a bilinear map.

In the lemma below, we give a formula for the φ-circle product of special types of
elements. Our formula may be compared with [8, Lemma 4.1] and [17, Theorem 7.2].
Due to the structure of the Hochschild cohomology of S(V )#G stated in Proposi-
tion 4.1.5, this formula will in fact suffice to compute all brackets. To do this, we will
only need to consider G-invariant elements and compute relevant φ-circle products on
summands representing elements in HH•(S(V ), S(V )g) × HH•(S(V ), S(V )h) for all
pairs g, h in G. This we will do in Section 5.

Lemma 4.2.1. Let g, h ∈ G, p ≥ 0, and ωh any generator for
∧codimV h((1− h)V )∗.

Consider any Xi ∈ S(V )⊗ V ∗, Ȳ ∈
∧pV ∗ωh, and Y = v1 . . . vtȲ for vi ∈ V . Then

(X1 . . . Xdg ◦φ Y h) =∑
l,r,σ

ζ l,d,tr,|Y |vσ(1) . . . vσ(r−1)Xl(vσ(r))
gvσ(r+1) . . .

gvσ(t)(X1 . . . Xl−1)Ȳ (Xl+1 . . . Xd)gh

where the sum is over 1 ≤ l ≤ d, 1 ≤ r ≤ t, σ ∈ St, and the coefficients ζ l,d,tr,m are the
nonzero rational numbers

ζ l,d,tr,m = (−1)(m−1)(l−1)
(r + l − 2)!(t− r + d− l)!

(r − 1)!(t− r)!(d+ t+ l − 1)!
.

Proof. Choose bases y1, . . . , ys of (V h)⊥ and ys+1, . . . , yn of V h. Let y∗1, . . . , y
∗
n be the

dual basis of V ∗. Recall the notation ∂j = 1⊗ y∗j . We may write each of the Xi as a

sum of elements of the form f∂l, with f ∈ S(V ), and write Ȳ as a sum of elements of
the form ∂1 . . . ∂s∂J , with J an ordered subset of {s+ 1, . . . , n}. By expanding both
sides of the proposed equality accordingly, one sees that it suffices to prove the result
in the case in which the Xi are of the form fi∂

∗
ji

and Ȳ = ∂1 . . . ∂s∂J . We are free to

reorder indices if necessary so that Ȳ = ∂1 . . . ∂m with m ≥ s.
Let us check the value of the φ-circle product when applied to monomials of the

form o(yjl+1
, . . . , yjd , y1, . . . , ym, yj1 , . . . , yjl−1

), for arbitrary l. If any of the yji are in

(V h)⊥, or if any of the indices are repeated, then the given monomial will be 0. So
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we may assume that each of the yji , for i 6= l, are in V h and that none of the indices
are repeated.

Applying the definition (2.1.3) of the φ-circle product and the diagonal map (3.1.1),
we find

((X1 · · ·Xdg) ◦φ (Y h))
(
o(yjl+1

, . . . , yjd , y1, . . . , ym, yj1 , . . . , yjl−1
)
)

= (−1)(d−l)m(X1 · · ·Xdg)
(
φ(o(yjl+1

, . . . , yjd)⊗ v1 · · · vt ⊗
ho(yj1 , . . . , yjl−1

))h
)
.

Since all the yji are in V h, we may replace ho(yj1 , . . . , yjl−1
) by o(yj1 , . . . , yjl−1

) in the
above expression. Therefore the value of (X1 · · ·Xdg) ◦φ (Y h) on the given monomial
is as follows, using Definition 3.2.1 of φ:

(−1)(d−l)m(X1 · · ·Xdg)
(
φ(o(yjl+1

, . . . , yjd)⊗ v1 · · · vt ⊗ o(yj1 , . . . , yjl−1
)h
)

= (−1)(d−l)m(X1 · · ·Xdg)
( ∑
1≤r≤t
σ∈St

cd−l,t,l−1r vσ(1) · · · vσ(r−1)⊗

o(yj1 , . . . , yjl−1
, vσ(r), yjl+1

, . . . , yjd)⊗ vσ(r+1) · · · vσ(t)h
)

= (−1)(d−l)m
∑

1≤r≤t
σ∈St

cd−l,t,l−1r vσ(1) · · · vσ(r−1)Xl(vσ(r))f1 · · · fl−1fl+1 · · · fdgvσ(r+1) · · · vσ(t)h.

The above argument can also be used to show that the circle product vanishes on all
monomials o(yI) which are not of the form ±o(yj1 , . . . , yjl−1

, y1, . . . , ym, yjl+1
, . . . , yjd)

for some l. To obtain the equality of the theorem, we must reorder the factors in our
initial argument:

o(yjl+1
, . . . , yjd , y1, . . . , ym, yj1 , . . . , yjl−1

)

= (−1)m(l−1)+(d−l)(l−1)+(d−l)mo(yj1 , . . . , yjl−1
, y1, . . . , ym, yjl+1

, . . . , yjd).

Multiply by this coefficient and compare values with those of the function in the
statement of the theorem to see that they are the same. �

4.3. Projections onto group components. For each g ∈ G, we will construct a
chain retraction

pg : S(V )⊗
∧•V ∗g −→ S(V g)⊗

∧•−codimV g(V g)∗det⊥g

onto the subspace S(V g)⊗
∧•−codimV g(V g)∗det⊥g . (The differential on the codomain is

taken to be 0.) Simply by virtue of being a retract of an injective quasi-isomorphism,
each pg will also be a quasi-isomorphism.

In the sections that follow we will often think of the pg as quasi-isomorphisms from
S(V ) ⊗

∧•V ∗g to itself, simply by composing with the embedding. We outline the
construction of pg below.

Construction of pg. From the canonical decomposition V = V g⊕(1−g)V we get an
identification S(V ) = S(V g ⊕ (1− g)V ) and canonical projection p1g : S(V )→ S(V g).
We also get a canonical decomposition of the dual space and its higher wedge powers,

V ∗ = (V g)∗ ⊕ ((1− g)V )∗ and
∧iV ∗ =

⊕
i1+i2=i

(
∧i1(V g)∗) ∧ (

∧i2((1− g)V )∗),
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whence we have a second canonical projection

p2g :
∧•V ∗ → ∧•−codimV g(V g)∗ ∧ (

∧codimV g((1− g)V )∗) =
∧•−codimV g(V g)∗det⊥g .

We now define pg as the tensor product p1g ⊗ p2g,

pg : S(V )⊗
∧•V ∗g −→ S(V g)⊗

∧•−codimV g(V g)∗det⊥g . (4.3.1)

It is apparent from the construction that each pg restricts to the identity on the

subspace S(V g) ⊗
∧•−codimV g(V g)∗det⊥g . Furthermore, since the ideal Ig generated

by (1 − g)V is precisely the kernel of p1g, and left multiplication by Eg has image in

Ig⊗
∧•V ∗, we see that pg(Eg ·−) = 0. This is exactly the statement that pg is a chain

map. Note that, by Proposition 4.1.5, the projections will be quasi-isomorphisms.
Recall that, by Proposition 4.1.8, the subspace⊕

g

S(V g)⊗
∧•−codimV g(V g)∗det⊥g ⊂

⊕
g

S(V )⊗
∧•V ∗g

is a G-subcomplex. These projections pg are compatible with the G-action in the
sense of

Lemma 4.3.2. (1) For any Xg ∈ S(V ) ⊗
∧•V ∗g the projections pg and ph−1gh

satisfy the relation

ph−1gh((Xg) · h
)

= pg(Xg) · h.

(2) The coproduct map

p :
⊕
g

S(V )⊗
∧•V ∗g −→ ⊕

g

S(V g)⊗
∧•−codimV g(V g)∗det⊥g ,

i.e. the map p = diag{pg : g ∈ G}, is a G-linear quasi-isomorphism.
(3) If a sum of elements

∑
gXgg is G-invariant then so is

∑
g pg(Xgg).

Proof. As was the case in the proof of Proposition 4.1.8, (1) follows from the com-
patibilities of the decompositions V = V g ⊕ (1 − g)V with the G-action given in
Lemma 4.1.2. Statements (2) and (3) follow from (1) and the fact that each pg is a
quasi-isomorphism. �

In the following results, we take Ig ⊂ S(V ) to be the ideal generated by (1− g)V ,
as was done above. Given an ordered subset I = {i1, . . . , ij} of {1, . . . , n}, let ∂I =
∂i1 · · · ∂ij in S(V )⊗

∧• V ∗ where ∂i = 1⊗ x∗i as before.

Lemma 4.3.3. Let ωg be an arbitrary generator for
∧codimV g((1−g)V )∗. The kernel

of the projection pg defined in (4.3.1) is the sum

ker(pg) = Ig ⊗
∧•V ∗g + S(V ) · {∂Ig : ωg does not divide ∂I}.

If we choose bases {x1, . . . , xl} of V g and {xl+1, . . . , xn} of (1 − g)V , and take
ωg = ∂l+1 · · · ∂n, the second set can be written as

S(V ) · {∂Ig : {l + 1, . . . , n} is not a subset of I}.
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Proof. Note that, for p1g and p2g as in the above construction of pg, we have

ker(p1g) = Ig and ker(p2g) = k{∂Ig : ωg does not divide ∂I}

So the description of ker(pg) follows from the fact that for any product of vector space
maps σ1⊗σ2 : W1⊗W2 → U1⊗U2, its kernel is the sum ker(σ1)⊗W2+W1⊗ker(σ2). �

5. Brackets

In this section we assume the characteristic of k is 0, and derive a general formula
for brackets on Hochschild cohomology of S(V )#G, using the φ-circle product for-
mula of Lemma 4.2.1 and the projection maps (4.3.1). The Schouten bracket for the
underlying symmetric algebra features prominently. We use our formula to obtain
several conclusions about brackets, in particular some vanishing criteria.

We will use the notation and results of Section 4. In particular, we will express
elements of the Hochschild cohomology HH•(S(V )#G) as G-invariant elements of
HH•(S(V ), S(V )#G) by (4.0.1), and we will use the identification of cohomology,⊕

g∈G
S(V g)⊗

∧•−codimV g(V g)∗det⊥g = HH•(S(V ), S(V )#G)

given by (4.1.7). Elements of cohomology HH•(S(V ), S(V )#G) that are nonzero
only in the component indexed by a unique g in G in the above sum are said to be
supported on g. Elements that are nonzero only in components indexed by elements
in the conjugacy class of g are said to be supported on the conjugacy class of g. The
canonical projections pg : S(V )⊗

∧•V ∗g → S(V g)⊗
∧•(V g)∗det⊥g g, defined in (4.3.1),

will appear in our expressions of brackets on Hochschild cohomology HH•(S(V )#G)
below.

5.1. Preliminary information on the Schouten bracket and group actions.
We let the bracket {X,Y } denote the standard Schouten bracket on S(V )⊗

∧•V ∗ ∼=∧•
S(V )T , where T denotes the global vector fields on Spec(S(V )) (or rather, alge-

bra derivations on S(V )). Gerstenhaber brackets in this case are precisely Schouten
brackets, and we briefly verify that our approach does indeed give this expected result:

Lemma 5.1.1. For any X,Y ∈ S(V )⊗
∧•V ∗,

[X,Y ]φ = {X,Y }.

Proof. By construction, the restriction of φ to K ⊗S(V )K ⊂ K̃⊗S(V )#G K̃ provides a

contracting homotopy for FK . Therefore, for elements in S(V )⊗
∧•V ∗, we will have

[X,Y ]φ = [X,Y ]φ|K⊗S(V )K . So it does make sense to consider the proposed equality

[X,Y ]φ = {X,Y } in S(V )⊗
∧•V ∗ ∼= ∧•S(V )T .

It is shown in [13, §4] that some choice of contracting homotopy ψ is such that
[X,Y ]ψ is the Schouten bracket. By [13, Theorem 3.2.5], for any two choices of
contracting homotopy, the difference in the associated brackets is a coboundary. Since
the differential vanishes on HomAe(K,S(V )) = S(V )⊗

∧•V ∗, we see that [X,Y ]φ =
[X,Y ]ψ = {X,Y }. �
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Under the identification S(V ) ⊗
∧•V ∗ ∼= ∧•

S(V )T , the right action of an element

g ∈ G on S(V )⊗V ∗ is identified with conjugation by the corresponding automorphism,
X · g = Xg = g−1Xg. On higher degree elements the action is given by the standard
formula, (X1 · · ·Xl) · g = (X1 · · ·Xl)

g = Xg
1 · · ·X

g
l . Under the identification⊕

g∈G
(S(V )⊗

∧•V ∗g) ∼=
⊕
g∈G

(
∧•
S(V )Tg),

the action is given by (Xg) ·h = Xhh−1gh, where we can view X either as an element
in S(V )⊗ V ∗ or as a polyvector field.

Lemma 5.1.2. For any X,Y ∈ S(V ) ⊗
∧•V ∗, and g ∈ G, we have {X,Y }g =

{Xg, Y g}.

Proof. We identify S(V ) ⊗
∧•V ∗ with the global polyvector fields

∧•
S(V )T . Then

the lemma follows from the fact that the G-action is simply given by conjugating
by the corresponding automorphism, the fact that the Schouten bracket is given
by composition of vector fields on T , and the Gerstenhaber identity {X,Y1Y2} =
{X,Y1}Y2 ± Y1{X,Y2}. �

Lemma 5.1.3. For any G-invariant elements
∑

gXgg and
∑

h∈G Yhh in the sum⊕
g∈G(S(V )⊗

∧•V ∗g), the element
∑

g,h∈G{Xg, Yh}gh is also G-invariant. Further-

more, for any such
∑

gXgg and
∑

h Yhh, the element
∑

g,h∈G pgh{Xg, Yh}gh will be
a G-invariant cocycle.

Proof. We know an element
∑

g Zgg will be invariant if and only if, for each g, σ ∈ G,
Zσg = Zσ−1gσ. So the Xg and Yh have this property, and it follows that the sum∑
{g,h∈G:gh=τ}{Xg, Yh} will have this property for each τ ∈ G since∑

gh=τ

{Xg, Yh}σ =
∑
gh=τ

{Xσ
g , Y

σ
h } =

∑
gh=τ

{Xσ−1gσ, Yσ−1hσ} =
∑

{g′,h′:g′h′=στσ−1}

{Xg′ , Yh′}.

The last statement now follows directly from Lemma 4.3.2(3). �

5.2. φ-brackets as Schouten brackets. Before we begin, it will be useful to have
the following two lemmas. Recall that Ig is the ideal generated by (1− g)V in S(V ).

Lemma 5.2.1. For any vectors ui1 , . . . , uiν ∈ V and g ∈ G, the element (1−g)(ui1 . . . uiν )
is in Ig.

Proof. We proceed by induction on the number of vectors ν. When ν = 1 the result
is immediate. For ν > 1 we have

(1−g)(ui1 . . . uiν ) = ui1 . . . uiν − gui1 . . .
guiν

= (ui1 . . . uiν−1 − gui1 . . .
guiν−1)uiν + gui1 . . .

guiν−1
(1−g)uiν ,

which is now in Ig by induction. �

Lemma 5.2.2. Suppose c and c′ are invariant cocycles in
⊕

g S(V ) ⊗
∧•V ∗g that

differ by a (possibly non-invariant) coboundary. Then c and c′ differ by an invariant
coboundary.
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Proof. Note that c − c′ is also invariant. Let b be any element with d(b) = c − c′,
where d is the differential d = E · −. Then we have

c− c′ = d(b) ·
∫
G

= d(b ·
∫
G

),

where
∫
G is the standard integral 1

|G|
∑

g∈G g. So b ·
∫
G provides the desired invariant

bounding element. �

We can now give a general formula for the Gerstenhaber bracket on HH•(S(V )#G)
in terms of Schouten brackets. One may compare with [8, Theorem 4.4, Corollary 4.11]
where the authors give similar formulas under some conditions on the group G and
its action on V .

Theorem 5.2.3. Let X =
∑

gXgg and Y =
∑

h Yhh be G-invariant cocycles in

⊕g∈GS(V g)⊗
∧•−codimV g(V g)∗ det⊥g . The sum

∑
g,h∈G pgh{Xg, Yh}gh is a G-invariant

cocycle and, considered as elements of the cohomology HH•(S(V )#G),

[X,Y ] =
∑
g,h∈G

pgh{Xg, Yh}gh.

Proof. By Lemma 5.2.2, it suffices to show that the equality holds up to arbitrary
coboundaries. Note that

p[X,Y ]φ =
∑
g,h

pgh(Xgg ◦φ Yhh)− (−1)(|Y |−1)(|X|−1)
∑
g,h

phg(Yhh ◦φ Xgg).

By considering the group automorphism

G×G→ G×G, (g, h) 7→ (g, ghg−1),

and the equality ghg−1g = gh, we see that we can reindex the second sum to obtain

p[X,Y ]φ =
∑

g,h pgh(Xgg ◦φ Yhh)∓
∑

g,h pgh(Yghg−1ghg−1 ◦φ Xgg)

=
∑

g,h

(
pgh(Xgg ◦φ Yhh)∓ pgh(Yghg−1ghg−1 ◦φ Xgg)

)
.

(5.2.4)

We claim that there is an equality

pgh(Xgg◦φYhh)∓pgh(Yghg−1ghg−1◦φXgg) = pgh[Xg, Yh]φgh = pgh{Xg, Yh}gh (5.2.5)

for each pair g, h ∈ G, where the second equality follows already by Lemma 5.1.1. If
we can establish (5.2.5) then we are done, by the final expression in (5.2.4) and the
fact that the difference [X,Y ]φ − p[X,Y ]φ is a coboundary.

Let us fix elements g, h ∈ G. Write Xg as a sum of elements of the form u1 · · ·usX̄
with the uj ∈ V g, and Yh as a sum of elements v1 · · · vtȲ with the vi ∈ V h. Here

X̄, Ȳ ∈
∧• V ∗. By h-invariance there is an equality gvi = ghvi for each i. For arbitrary

Z in S(V )⊗
∧• V ∗ and elements ai ∈ S(V ), the projection pgh((1−gh)(a1 . . . aq)Zgh)

vanishes by Lemma 4.3.3 and Lemma 5.2.1. So for any r < t and σ ∈ Sn there will
be equalities

pgh
(
g(vσ(r+1) . . . vσ(t))Zgh

)
= pgh

(
gh(vσ(r+1) . . . vσ(t))Zgh

)
= pgh(vσ(r+1) . . . vσ(t)Zgh).

(5.2.6)
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It now follows from the expression for the circle operation given in Lemma 4.2.1 that
there is an equality

pgh(Xgg ◦φ Yhh) = pgh(Xg ◦φ Yh)gh. (5.2.7)

This covers half of what we need.
We would like to show now

pgh(Yghg−1ghg−1 ◦φ Xgg) = pgh(Yh ◦φ Xg).

Simply replacing g and h with ghg−1 and g in (5.2.7), as well as Xg with Yghg−1 and
Yh with Xg, gives

pgh(Yghg−1ghg−1 ◦φ Xgg) = pgh(Yghg−1 ◦φ Xg)gh.

Now G-invariance of Y implies immediately Yghg−1 = Y g−1

h . So we have

pgh(Yghg−1ghg−1 ◦φ Xgg) = pgh(Y g−1

h ◦φ Xg)gh,

whence we need to show pgh(Y g−1

h ◦φ Xg)gh = pgh(Yh ◦φ Xg)gh.
Recall our expressions for Yh and Xg from above, in terms of the vi, uj , Ȳ and X̄.

In the notation of Lemma 4.3.3, we may assume that ωg|X̄, and hence that ωg−1 |X̄ by

Lemma 4.1.2. We write Ȳ as a sum of monomials Y1 · · ·Ye for functions Yi ∈ V ∗. For

each Yi and uj we have Y g−1

i (uj) = Yi(
g−1

uj) = Yi(uj). We also have Y g−1

i X̄ = YiX̄
since ωg−1 |X̄. From these observations and the expression of Lemma 4.2.1, since Yh
is a sum of elements of the form v1 · · · vtY , we deduce an equality

Y g−1

h ◦φ Xg =
∑

g(v1 . . . vt)(Ȳ
g−1

) ◦φ Xg =
∑

g(v1 . . . vt)Ȳ ◦φ Xg.

Finally, by the same argument given for the equality (5.2.6) we find also that∑
pgh
(
g(v1 . . . vt)Ȳ ◦φ Xg

)
=
∑

pgh
(
(v1 . . . vt)Ȳ ◦φ Xg

)
= pgh(Yh ◦φ Xg).

Taking these two sequences of equalities together gives the desired equality

pgh(Y g−1

h ◦φ Xg) = pgh(Yh ◦φ Xg),

establishes (5.2.5), and completes the proof. �

5.3. Corollaries: The codimension grading and some general vanishing re-
sults. We apply the formula in Theorem 5.2.3 to analyze distinct cases. In one case,
we consider brackets with an element X supported on group elements that act triv-
ially on V . In another case, we consider brackets of X and Y supported on elements
that act nontrivially. We will have in this second case some general vanishing results.
The following observation helps in organizing these cases.

Observation 5.3.1. The graded G-module⊕
g∈G

S(V g)⊗
∧•−codimV g(V g)∗det⊥g (5.3.2)
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decomposes as a direct sum of graded G-subspaces D(i), for 0 ≤ i ≤ dim(V ), as does
its G-invariant subspace,⊕

g∈G
S(V g)⊗

∧•−codimV g(V g)∗det⊥g

G

=
⊕

0≤i≤dim(V )

D(i)G. (5.3.3)

The subspace D(i) consists of all sums of elements supported on group elements g for
which codimV g = i. We call the decomposition (5.3.3) the codimension grading for
HH•(S(V )#G).

Said another way, D(i) consists of all summands in (5.3.2) whose first nonzero
cohomology class occurs in degree i. Note that classes in D(0) are supported on only
those group elements which act trivially on V . The brackets between elements in
D(0)G will just be given by the Schouten brackets (cf. [17, Corollary 7.4]):

Corollary 5.3.4. Let X =
∑

gXgg and Y =
∑

h Yhh be G-invariant cocycles in

⊕g∈GS(V g)⊗
∧•−codimV g(V g)∗det⊥g that are supported on group elements acting triv-

ially, i.e. X,Y ∈ D(0). Then in cohomology,

[X,Y ] =
∑
g,h

{Xg, Yh}gh.

Proof. In this case for each g, h with Xg and Yh nonzero we will have V g = V h =

V gh = V and pg = id, ph = id and pgh = id. The result now follows from Theo-
rem 5.2.3. �

We refer directly to Theorem 5.2.3 for information on the bracket between cochains
in D(0)G and D(> 0)G. We next give some conditions under which brackets are 0.
The following corollary was first proved in [17] using different techniques.

Corollary 5.3.5 ([17, Proposition 8.4]). Let g, h ∈ G be such that (V g)⊥ ∩ (V h)⊥

is nonzero and is a kG-submodule of V . Let X,Y be G-invariant cocycles in the

sum ⊕g∈GS(V g) ⊗
∧•−codimV g(V g)∗ det⊥g supported on the conjugacy classes of g, h,

respectively. Then
[X,Y ] = 0.

Proof. The hypotheses imply that (V aga−1
)⊥ ∩ (V bhb−1

)⊥ is nonzero for all a, b ∈ G.
We will argue that Xgg ◦φ Yhh = 0 at the chain level, and similar reasoning will
apply to Xaga−1aga−1 ◦φ Ybhb−1bhb−1 and to Ybhb−1bhb−1 ◦φ Xaga−1aga−1. Consider
the argument o(yj1 , . . . , yjl−1

, y1, . . . , ym, yjl+1
, . . . , yjd) in the proof of Lemma 4.2.1.

This can be nonzero only in case yjl ∈ (V g)⊥ ∩ (V h)⊥, due to linear dependence of
the vectors involved otherwise. Thus the only possible terms in the φ-circle product
formula of Lemma 4.2.1 that could be nonzero are indexed by such l. However then
Xl(vσ(r)) = 0 for all r, σ, since vσ(r) ∈ V h, in the notation of the proof of Lemma 4.2.1.

�

The following corollary was pointed out to us by Travis Schedler.

Corollary 5.3.6. For classes X ∈ D(i)G and Y ∈ D(j)G we have [X,Y ] ∈ D(i+j)G.
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Proof. As was argued in the proof of Corollary 5.3.5 we find thatX ′◦φY ′ = 0 whenever

X ′ ∈ S(V g)⊗
∧•−codimV g(V g)∗det⊥g and Y ′ ∈ S(V h)⊗

∧•−codimV h(V h)∗det⊥h

and (V g)⊥ ∩ (V h)⊥ 6= 0. That is to say, nonvanishing of the element X ′ ◦φ Y ′ implies

(V g)⊥∩(V h)⊥ = 0 and therefore codimV gh = codimV g+codimV h [16, Lemma 2.1]. It
follows that for (even non-invariant) classes X =

∑
gXgg ∈ D(i) and Y =

∑
h Yhh ∈

D(j) we have

[X,Y ]φ =
∑
g,h

[Xgg, Yhh]φ ∈ D(i+ j).

�

Corollary 5.3.7. The Hochschild cohomology HH•(S(V )#G) is a graded Gersten-
haber algebra with respect to the codimension grading.

Proof. We just saw in Corollary 5.3.6 that the Gerstenhaber bracket respects the codi-
mension grading. It has also already been established that the cup product respects
the codimension grading [3], [16, Proposition 8.1, Theorem 9.2]. �

The following corollary generalizes [17, Theorem 9.2], where it was proven in ho-
mological degree 2. The cocycles X,Y in the corollary are by hypothesis of smallest
possible homological degree in their group components.

Corollary 5.3.8. Take any G-invariant cocycles X =
∑

g∈GXgg, Y =
∑

h∈G Yhh in

⊕g∈GS(V g) ⊗ det⊥g that are supported on elements that act nontrivially on V . Then
[X,Y ] = 0 on cohomology.

Proof. We have that X and Y are sums of invariant classes X ′ and Y ′ which are of
minimal degrees in D(i) and D(j) respectively, i.e. degrees i and j. By Corollary 5.3.6
we have [X ′, Y ′] ∈ D(i+j). But now since the Gerstenhaber bracket is homogeneous of
degree −1 we have that [X ′, Y ′] is of degree i+j−1. Since there are no nonzero classes
of degree i+ j − 1 in D(i+ j) we have that all [X ′, Y ′] = 0 and hence [X,Y ] = 0. �

6. (Non)vanishing of brackets in the case (V g)⊥ ∩ (V h)⊥ = 0

With Corollaries 5.3.5 and 5.3.8 we seem to be approaching a general result.
Namely, that for any X and Y supported on group elements that act nontrivially
we will have [X,Y ] = 0. It is even known that such a vanishing result holds in de-
gree 2 by [17, Theorem 9.2]. This is, however, not going to be the case in higher
degrees. The result even fails to hold when we consider the bracket [X,Y ] of elements
in degrees 2 and 3 (see Example 6.1.2 below). We give in this section a few examples
to illustrate this nonvanishing, and (re)establish vanishing in degree 2.

6.1. Some examples for which (V g)⊥ ∩ (V h)⊥ = 0. The following two examples
illustrate, first, the essential role of taking invariants in establishing the degree 2
vanishing result of [17, Theorem 9.2] and, second, an obstruction to establishing a
general vanishing result in the case (V g)⊥ ∩ (V h)⊥ = 0.
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Example 6.1.1. Take G = Z/2Z× Z/2Z and V = k{x1, x2, x3}. Let g and h be the
generators of the first and second copies of Z/2Z, and take the G-action on V defined
by

g · xi = (−1)δi1xi and h · xj = (−1)δj3xj .

So V g = k{x2, x3}, (1 − g)V = kx1, V
h = k{x1, x2}, (1 − h)V = kx3. Obviously,

(1− g)V ∩ (1− h)V = 0. We also have respective generators

ωg = ∂1, ωh = ∂3, and ωgh = ∂1∂3

of the highest wedge powers of
(
(1−g)V

)∗
,
(
(1−h)V

)∗
, and

(
(1−gh)V

)∗
respectively.

Thus det⊥g = kωgg, det⊥h = kωhh, and det⊥gh = kωghgh.
Consider the degree 2 cochains

X = ωg∂2g ∈ S(V g)⊗ (V g)∗det⊥g

and

Y = x2ωh∂2h ∈ S(V h)⊗ (V h)∗det⊥h .

Then one can easily see, directly from Lemma 4.2.1, that applying the bilinear oper-
ation [ , ]φ produces

[X,Y ]φ = ωgωh∂2gh = ωgh∂2gh ∈ S(V gh)⊗ (V gh)∗det⊥gh.

This would appear to contradict the degree 2 vanishing result of [17], but it actually
does not! The point is that neither X nor Y is invariant. In fact, X ·

∫
G = Y ·

∫
G = 0.

Example 6.1.2. Let G = Z/NZ× Z/MZ for integers N,M > 1. We assume k = k̄,
or that M = N = 2. Let σ and τ be the generators of Z/NZ and Z/MZ respectively.
Take W = k{x1, x2, x3, x4, x5} and embed G in GL(W ) by identifying σ and τ with
the diagonal matrices

σ = diag{ζ, ζ−1, 1, 1, 1}, τ = diag{1, 1, 1, ϑ−1, ϑ},
where ζ and ϑ are primitive Nth and Mth roots of 1 in k.

We have

(1− σ) = diag{(1− ζ), (1− ζ−1), 0, 0, 0}, (1− τ) = diag{0, 0, 0, (1− ϑ−1), (1− ϑ)},
and these are both rank 2 matrices. More specifically, (1 − σ)W = k{x1, x2} and
(1− τ)W = k{x4, x5}. So (W σ)⊥ ∩ (W τ )⊥ = 0. Similarly we have

στ = diag{ζ, ζ−1, 1, ϑ−1, ϑ}, (1−στ) = diag{(1− ζ), (1− ζ−1), 0, (1−ϑ−1), (1−ϑ)},

(1− στ)W = k{x1, x2, x4, x5}.
We take

ωσ = ∂1∂2, ωτ = ∂4∂5, ωστ = ∂1∂2∂4∂5,

and X = ωσ∂3σ, Y = x3ωττ . In this case X and Y are G-invariant, and hence repre-
sent classes in HH•(S(V )#G). One then produces via Theorem 5.2.3 the nonvanishing
Gerstenhaber bracket

[X,Y ] = ωστστ ∈ HH4(S(V )#G).

This example can be generalized easily to produce nonzero brackets in higher degree.
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6.2. Vanishing of brackets in degree 2. Consider the subcomplex

D(1) ⊂
⊕
g

S(V g)⊗
∧•−codimV g(V g)∗ det⊥g

consisting of all summands corresponding to group elements g with codimV g = 1.
This subcomplex is stable under the G-action. It was seen already in [4, 17] that
D(1)G = 0. So actually, after we take invariance, we have

HH•(S(V )#G) =
(⊕

g

S(V g)⊗
∧•−codimV g(V g)∗ det⊥g

)G
= D(0)G ⊕D(> 1)G.

where in D(> 1) we have all summands corresponding to g with codimV g > 1.
It follows that, after we take invariants and restrict ourselves to considering only

elements in degree 2, the only situations that can occur when taking brackets in
D(> 0)G = D(> 1)G are covered by Corollary 5.3.8. Hence when we apply the
Gerstenhaber bracket we get[(

D(> 0)2
)G
,
(
D(> 0)2

)G]
= 0.

This rephrases the argument given in [17, Theorem 9.2].
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