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Abstract. We consider quantum group representations for a semisimple al-

gebraic group G at a complex root of unity q. Here q is allowed to be of any
order. We revisit some fundamental results of Parshall-Wang and Andersen-

Polo-Wen from the 90’s. In particular, we show that the category Rep(Gq)

of quantum group representations has enough projectives and injectives, and
that a Gq-representation is projective (resp. injective) if and only if its restric-

tion to the small quantum group is projective (resp. injective). Our results

reduce to an analysis of the Steinberg representation in the simply-connected
setting, and are well-known at odd order q via works of the aforementioned

authors. The details at arbitrary q have, to our knowledge, not appeared in
the literature up to this point.

1. Introduction

Let k be an algebraically closed field of characteristic 0. For a semisimple alge-
braic group G and a choice of nonzero parameter q in k, we have the associated
category of quantum group representations Rep(Gq). Equivalently, we consider the
category of integrable, appropriately graded representations for Lusztig’s divided
power quantum enveloping algebra [43]. We are especially interested in the case
where q is a root of unity.

The main point of this paper is to recover some well-known phenomena for
quantum groups, but now at arbitrary quantum parameters. Specifically, we want
to study projective and injective representations in Rep(Gq), restrictions of such
representations to the small quantum group, and the behaviors of induction from
the small quantum group to the big quantum group. Our analyses hinge on a study
of the Steinberg representation in Rep(Gq) for simply-connected G.

To place things in their proper historical context; in the late 80’s and early 90’s
there were a number of papers which established the fundamental behaviors of
quantum group representations at odd order quantum parameters, or parameters
of odd prime power order. One can see, for example, works of Andersen-Polo-Wen,
Parshall-Wang, and Lusztig from this time period [41, 49, 4, 5, 2].

In the current mathematical and physical landscape however, we find ourselves
in need of a deeper understanding of quantum group representations, specifically at
even order parameters. This is due to recent developments in logarithmic conformal
field theory and, what one might call, non-compact topological field theory. From
a mathematical perspective, the logarithmic, or non-compact modifier indicates
a non-semisimplicity in the theory. For appearances of quantum groups in such
conformal and topological settings one can see the essentially-random samplings
[23, 50, 28, 10, 26, 24, 55, 31] and [12, 13, 32, 52, 16, 11], respectively. For a specific
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point of reference, one can consider the type A claims from the work [13] and the
implications such claims have for quantum group representations at a 2p-th root of
1 (see also [35, 29, 25]).

In the present paper we recover many of the results from the foundational texts
[41, 49, 4, 5, 2], now at completely general q and completely general G. To begin,
we have the following.

Theorem (10.12, 11.3). Consider a semisimple algebraic group G at an arbitrary
root of unity q.

(1) The category Rep(Gq) has enough projectives and injectives, as does its
subcategory rep(Gq) of finite-dimensional representations.

(2) An object in rep(Gq) is projective (resp. injective) if and only if it is pro-
jective (resp. injective) in Rep(Gq).

(3) Rep(Gq) is Frobenius, in the sense that its projectives and injectives agree.

Furthermore, when G is simply-connected, the Steinberg representation St = L(ρl)
is projective and injective in Rep(Gq).

Here the Steinberg representation St is the distinguished simple representation
of highest weight ρl =

1
2

∑
γ∈Φ+(lγ − 1)γ, where lγ = ord q(γ,γ). This represen-

tation has proved fantastically useful in studies of both quantum and modular
representation theory, and our work is no exception. Indeed, one establishes points
(1)–(3) above by first considering the behaviors of the Steinberg representation in
the simply-connected setting.

We note that the results of Theorems 10.12 and 11.3 first appeared in works of
Parshall-Wang and Andersen-Polo-Wen [49, 4], at odd order q, and are deducible
by experts at arbitrary q [3, 1].

Now, at this point, we would like to make a seemingly benign assertion. Namely,
we propose that the Steinberg representation restricts to a simultaneously projec-
tive, injective, and simple representation over the small quantum group. However,
both for this statement and for the mathematics which precedes it, one first has to
decide what the small quantum group actually is, or should be, at arbitrary q.

Addressing this point is another implicit goal of this work, as well as its prede-
cessor [47] and successor [46].

The answer to this question is a little complicated, as there doesn’t seem to
be one small quantum group, but a family of small quantum groups which are
parametrized by central subgroups in G, or more precisely by central subgroups in
Lusztig’s dual group G∗ from [44]. Here we work with the smallest version of the
small quantum group, which we refer to as the “smallest quantum algebra”1

ūq = ū(Gq).

At odd order q and simply-connected G the algebra ūq is just Lusztig’s original
finite-dimensional Hopf algebra from [42, 43]. At even order q, ūq is some variant
of Arkhipov and Gaitsgory’s small quantum group from [7], and across all q one
recovers the representation category Rep(ūq) uniformly as the fiber of Rep(Gq)
along quantum Frobenius. (See Section 1.1 for more details on this point.)

In terms of its formal structures, there is a surjective map from the quantum
function algebra to the dual O(Gq)→ ū∗q which makes ū∗q into a right O(Gq)-module

1Most of our results for ūq will hold for any reasonable version of the small quantum group, at
arbitrary q. See Section 1.1 for some discussion.
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coalgebra. Equivalently, at the level of categories, Rep(ūq) has the structure of a
module category over Rep(Gq) and the restriction map

res−q : Rep(Gq)→ Rep(ūq)

has the structure of a Rep(Gq)-module category functor. The kernel of this functor
is precisely the image of Lusztig’s quantum Frobenius Fr : Rep(G∗

ε)→ Rep(Gq).
Descriptions of ūq in terms of its generators, dimension, triangular decomposi-

tion, braid group action, etc., can be found in Sections 5 and 6 below. Relations
with quantum Frobenius are discussed in Section 7.

Our choice of ūq, as the “cokernel” of Lusztig’s quantum Frobenius functor,
facilitates a Steinberg decomposition for simple representations over Gq.

Theorem (8.7/8.8). Suppose G is simply-connected. Then every simple represen-
tation L(λ) in Rep(Gq) admits a unique decomposition

L(λ) = L(λ′)⊗ L(λ′′),
where L(λ′) is a simple representation which is in the image of quantum Frobenius
and L(λ′′) is a simple representation which has simple restriction to Rep(ūq).

This result is known at odd order parameters through work of Lusztig [41], and
has its origins in modular representation theory [54]. We also have the following,
which generalizes results from Andersen-Polo-Wen [5].

Theorem (10.12/11.3). An object in Rep(Gq) is projective (equivalently injective)
if and only if its restriction to Rep(ūq) is projective (equivalently injective).

In establishing the findings of Theorems 10.12 and 11.3 we also show that the in-
duction functor from Rep(ūq) to Rep(Gq) is exact and faithful. This result appears
in Theorem 10.4 below.

For a more elaborate historical accounting of the findings herein, and their many
predecessors in the literature, we invite the reader to see Section 11.3 at the con-
clusion of the text. We conclude the introduction with a short discussion of the
smallest quantum algebra and its relation to “the” small quantum group, as con-
structed in the works [14, 27, 47, 31, 46] for example.

1.1. The smallest quantum algebra vs. the small quantum group. The
small quantum group for G at q, whatever it might be [7, 14, 27, 30, 47, 46], is
represented by an algebra uq which fits into an exact sequence

k → ūq → uq → kΣ→ k.

Here uq is a flat extension of ūq, Σ is a finite abelian group, and the final map

induces an isomorphism k ⊗ūq
uq = uq ⊗ūq

k
∼→ kΣ. From this sequence one sees

that the representation theory, and the homological algebra, for uq are generically
identified with that of ūq. For example, a uq-representation is injective if and only
if it has injective restriction to ūq. In this way the conclusions of Theorem 11.3
transfer immediately from ūq to uq. However, highly refined structural results, such
as the Steinberg decomposition from [41] or Theorem 8.7, only hold for ūq.

From a categorical perspective, the small quantum group represents the fiber

Vect⊗Rep(Ǧ) Rep(Gq)
∼−→ Rep(uq) (1)

of Rep(Gq) along a central map Fr : Rep(Ǧ) → Rep(Gq) which identifies the

Tannakian center in Rep(Gq) with representations of a dual group Ǧ [7, 30, 46].
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This fiber construction annihilates the Tannakian center in Rep(Gq), and real-
izes Rep(uq) as the unique (super-)modularization of the braided category of Gq-
representations. This makes uq a natural object to study from the perspective of
quantum algebra or quantum topology.

On the other hand, representations for the smallest quantum algebra are identi-
fied with the fiber along Luztig’s usual quantum Frobenius

Vect⊗Rep(G∗
ε)
Rep(Gq)

∼−→ Rep(ūq) (2)

[7, 46]. Since Rep(G∗
ε) is generally non-central in Rep(Gq), and often not even

symmetric, this fiber is most naturally understood as a right module category over
Rep(Gq).

2

It is at the level (2) that we recover classical structure theorems which “factor”
the representation theory of Rep(Gq) between that of Rep(G∗

ε) and Rep(ūq), as in
[41, 49, 4, 5].
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Etingof, Eric Friedlander, Dennis Gaitsgory, Simon Lentner, and Julia Pevtsova
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to H. Andersen and S. Lentner for comments on an earlier version of this text. The
author was supported by NSF Grant No. DMS-2149817 and Simons Collaboration
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2. Preliminaries on categories and Hopf algebras

We fix an algebraically closed field k of characteristic 0. All categories are k-
linear categories, algebras are k-algebras, coalgebras are k-coalgebras, etc. We let
Vect denote the tensor category of arbitrary k-vector spaces.

2We could have taken the fiber on the right, and had an action of Rep(Gq) on the left, but it
doesn’t matter. These two constructions are equivalent.
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2.1. Representations and corepresentations. Let B be an algebra. By a B-
module we always mean a left B-module. We let Rep(B) denote the category
of all B-modules V which are the unions of their finite-dimensional submodules.
Dually, for any coalgebra C, by a C-comodule we always mean a right C-comodule.
We let Corep(C) denote the category of arbitrary C-comodules, and note that
any comodule is already the union of its finite-dimensional subcomodules (see for
example [45]).

2.2. Tensor categories and module categories. A tensor category is an abelian,
compactly generated monoidal category A whose compact and rigid objects agree.
We require additionally that the subcategory A c of compact/rigid objects in A is
an essentially small, locally finite abelian subcategory [21, Definition 1.8.1], that
the unit object in A is simple, and that the tensor product commutes with colimits
in each factor. These generation restrictions imply, for example, that any tensor
category A is a Grothendieck abelian category [36, Theorem 8.6.5]. Since tensoring
with any rigid object is exact [21, proof of Proposition 4.2.1], and filtered colimits
are exact in any Grothendieck category, it follows that the product ⊗ on any tensor
category is exact in each factor.

The following lemma allows us to do homological algebra in any tensor category
A , in the expected ways.

Lemma 2.1. Any tensor category A has enough injectives. Furthermore, for any
injective I and arbitrary V in A , the products I ⊗ V and V ⊗ I are also injective.

Proof. Any Grothendieck abelian category has enough injectives [36, Theorem
9.6.2], so that the first statement follows. Now, for rigid V and arbitrary injec-
tive I, we have natural identifications

HomA (−, V ⊗ I) = HomA (V ∗⊗−, I) and HomA (−, I⊗V ) = HomA (−⊗ ∗V , I).

Via exactness of the product functor ⊗, it follows that V ⊗I and I⊗V are injective.
Finally, since A is generated by compact objects, a version of Baer’s criterion
implies that filtered colimits of injectives in A remain injective. This implies that
V ⊗ I and I ⊗ V are injective at arbitrary V . □

A (right) module category over a tensor category A is an abelian, compactly
generated category M which is equipped with an associative action of A on the
right of M , in the precise sense of [21, Definition 7.1.1]. We require that the
subcategory of compact objects M c is an essentially small, locally finite, abelian
subcategory in M and that the action map ⊗ : M × A → M commutes with
arbitrary colimits in each factor.

Lemma 2.2. Let M be a module category over a tensor category A . Then M has
enough injectives and, for an arbitrary object V in A and injective I in M , the
product I ⊗ V is injective in M .

Proof. Similar to the proof of Lemma 2.1. □

In practice, the action map ⊗ : M ×A →M will be exact in both factors.

Lemma 2.3. For any module category M over a tensor category A , the action
map ⊗ : M ×A → A is exact in the A variable. Furthermore, the action map ⊗
is exact in the M variable if and only if the product M ⊗ V of any nonzero objects
M in M and V in A remains nonzero in M .
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We omit the proof, since the result is not used in this text.
Call a module category M pointed if M comes equipped with a distinguished

compact simple object 1M . Equivalently, a pointed module category is a module
category M which comes equipped with a choice of a right A -module map

uM : A →M

which sends 1A to a compact simple object in M .

Remark 2.4. By restricting to the compacts we recover the standard notions of
tensor categories and module categories, as considered in [21]. We only work in the
cocomplete setting because it is more convenient.

Remark 2.5. The faithfullness condition of Lemma 2.3 holds for free whenever A
admits a compact injective object. We do not know if it holds in general, cf. [21,
Definition 7.3.1].

2.3. Tannakian reconstruction. Suppose that A is a tensor category which
comes equipped with a tensor functor to vector spaces, F : A → Vect. From
such a pair (A , F ) one constructs a uniquely associated Hopf algebra A and an

equivalence of tensor categories Corep(A)
∼→ A which fits into a diagram

Corep(A)

forget %%

∼ // A

F}}
Vect

[51, Theorems 2.2.8, 2.4.2]. Indeed, this algebra is given by the so-called coendo-
morphisms

A = Coend(F ) = HomCont /k(Endk(F ), k).

We refer the reader to [51] for a detailed presentation of this topic.

2.4. Coideal subalgebras and module coalgebras. Let A be a Hopf algebra.
A right coideal subalgebra B in A is a subalgebra for which ∆(B) ⊆ B ⊗ A. A
quotient module coalgebra A → C is a coalgebra quotient whose kernel is a right
ideal in A. In this way C inherits a right A-action for which ∆(c·a) = c1 ·a1⊗c2 ·a2.
These structures, coideal subalgebras and quotient module coalgebras, are dual to
each other when A is finite-dimensional.

At a categorical level, representations for a coideal subalgebra Rep(B) form a
right Rep(A)-module category, and corepresentations for a quotient module coalge-
bra Corep(C) form a right Corep(A)-module category. Furthermore, these module
categories are pointed via the trivial representation for B, and the trivial corepre-
sentation for C, respectively.

2.5. Normality for pointed module categories. Let M = (M ,1) be a pointed
module category over a tensor category A . For the sake of specificity, let us say
that A acts on the right of M .

Call an object M in M trivial if M admits a surjection 1⊕I → M from some
additive power of the unit.

Lemma 2.6. (1) Any trivial object is isomorphic to a (possibly infinite) addi-
tive power of 1.

(2) Any quotient of a trivial object in M is trivial.
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(3) Any subobject of a trivial object is trivial.
(4) Any object M in M has a unique maximal trivial subobject triv(M) ⊆M .

Proof. (1)–(3) All follow from the fact that any quotient of a semisimple object in
an abelian category is semisimple, as is any subobject. See for example [37, Remark
2.2, Theorem 2.4]. (4) Take triv(M) = im

(
⊕f∈HomM (1,M) 1→M). □

We consider the structure map uM : A → M , and define the kernel of uM to
be

ker(uM ) =

{
The full subcategory of W in A
for which uM (W ) is trivial in M

}
.

At this point we have standard notions of normality for tensor functors [9, Definition
3.4] (cf. [20]), which we now extend to the setting of pointed module categories.

Definition 2.7. For a pointed module category M over A , we say the structure
map uM : A →M is normal if the following properties hold:

(a) uM is exact.
(b) The kernel of uM is a tensor subcategory in A .
(c) For any object V in A there exists a subobject trivM (V ) ⊆ V for which

u(trivM (V )) = triv(uM (V )).

We recall that exactness of the functor uM = 1M ⊗ − holds for free in most
practical situations. See Lemma 2.3. Such exactness implies uniqueness of the
subobject trivM (V ) in V , and functoriality of the construction V 7→ trivM (V ).

3. Quantum group basics

Recall that k is an algebraically closed field of characteristic 0.

3.1. Data for semisimple algebraic groups. Fix a choice of a semisimple al-
gebraic group G over k, along with a choice of maximal torus T ⊆ G. For such
a pairing of G and T we have the associated root lattice Q, weight lattice P , and
character lattice X. These lattices fit into a sequence of inclusions Q ⊆ X ⊆ P .
We let Φ denote the collection of roots for G and fix a choice of simple roots ∆ in
Φ. This choice of ∆ determines a collection Φ+ of positive roots in Φ.

We let (−,−) : X×X → Q denote the unique scaling of the Killing form so that
(γ, γ) = 2 at any short root γ. We have

(γ, γ) = dγ · 2

at a general root γ, where dγ ∈ {1, 2, 3}. Let W = ⟨σγ : γ ∈ Φ⟩ denote the Weyl
group for G.

Throughout this work G is always a semisimple algebraic group with specified
data as above, and g = Lie(G). We call G almost-simple if its Dynkin diagram is
connected, and the lacing number for an almost-simple algebraic group is defined
as

lacing number for G := max

{
−2(α, β)

(α, α)
: α, β ∈ ∆, α ̸= β

}
= max{dγ : γ ∈ Φ}.

This number is 1, 2, and 3, in types {A,D,E}, {B,C, F}, and G2 respectively.
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3.2. Data for quantum groups. Consider the collection of connected compo-
nents π0(∆) in the Dynkin diagram for G, and for each i ∈ π0(∆) let ∆i denote
the associated component in ∆. Each component ∆i determines an almost-simple
subgroup Gi in G, and the decomposition ∆ = ∆1 ⨿ · · · ⨿ ∆t corresponds to the
decomposition of G into almost-simple factors

G = G1 × · · · ×Gt.
The category of quantum group representations is specified by the data of a

semisimple algebraic group G, with fixed maximal torus and simple roots ∆, and
a choice of symmetric bicharacter on the weight lattice

q : P × P → k×

which exponentiates the Killing form. Specifically, we require that the form q
is invariant under the action of the Weyl group and that q(λ, µ) = 1 whenever
(λ, µ) = 0. We call q torsion if q takes values in the roots of unity tors(k×).

Such a form q determines unique scalars qi over each connected component i ∈
π0(∆) under which

q(α, λ) = q
(α,λ)
i whenever α ∈ ∆i, λ ∈ P.

Indeed, if we let ωα ∈ P denote the fundamental weight associated to a given simple
root α ∈ ∆, and define

qα = q(α, ωα) for simple α,

we may take qi = qα at any short root α in ∆i.

We refer to such a bilinear form q as a quantum parameter for G. We refer to
the units qi over the various components i ∈ π0(∆) as the scalar parameters for G
at q. When we speak of a quantum group at a n-th “roots of unity”, we mean a
pairing of G and q for which the associated scalar parameters qi are all primitive
n-th roots of 1.

The values qα determine a unique function q∗ : Φ→ k× which is invariant under
the action of the Weyl group and which takes the prescribed values qα on simple

roots. Explicitly, qγ = q
dγ
i for each γ in the subsystem Φi = Φ ∩ Z∆i.

Supposing the form q is torsion, we define

lγ = ord
(
q(γ, γ)

)
= ord(q2(γ,−)) for each γ ∈ Φ, (3)

and for a given component i ∈ π0(∆) we take

li = lα where α is any short root in ∆i.

Throughout this text, all quantum parameters q are assumed to be torsion!

3.3. The quantum enveloping algebra. Suppose first that G is almost-simple,
i.e. that the Dynkin diagram for G is connected. We consider Lusztig’s integral
divided power algebra Uv = Uv(g) over Z[v, v−1] [43, §1.3, Theorem 6.7], and define
Uq as the base change of Uv along the algebra map Z[v, v−1]→ k, v 7→ qi, where i
labels the unique component in the Dynkin diagram ∆i = ∆. We might also write
Uq = Uqi in this case.

When G has multiple almost-simple factors G = G1 × · · · ×Gt we take

Uq = Uq1(g1)⊗k . . .⊗k Uqt(gt).
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As one expects, gi = Lie(Gi) in the above expression and the parameters qi are as
in Section 3.2.

We recall that Uq has generators

E(n)
α , F (n)

α , Kα, for simple α ∈ ∆ and n ∈ Z≥0,

and we have the distinguished toral elements[
Kα; 0

lα

]
=

lα∏
i=1

Kαv
−i+1 −K−1

α vi−1

vi − v−i

∣∣∣∣
v=qα

which also appear with some frequency. These generators satisfy the usual quantum
Serre relations and we have a Hopf structure on Uq which satisfies

∆(Eα) = Eα ⊗ 1 +Kα ⊗ Eα, ∆(Fα) = Fα ⊗K−1
α + 1⊗ Fα, ∆(Kα) = Kα ⊗Kα

[43, §1.1]. We also consider the positive and negative subalgebras U+
q and U−

q in

Uq which are generated by the divided powers of the simple root vectors E
(n)
α and

F
(n)
α respectively.

3.4. Vector space bases. We enumerate the simple roots ∆ = {α1, . . . , αrk(G)}
for G and, for a reduced expression of the longest element in the Weyl group
w0 = sr . . . s1, we obtain an enumeration of the positive roots as

Φ+ = {γ1, . . . , γr}, γi = st . . . si+1(αi).

As shown in [42, 43, 44], the simple reflections sα ∈ W lift to algebra automor-
phisms Tα : Uq → Uq which satisfy the relations of the type g braid group Bg [44,
§37.1, Ch 39]. Via applications of these braid group operators we obtain associated
root vectors

Eγi = Tt . . . Ti+1(Ei) ∈ U+
q

for each γ ∈ Φ+. We obtain corresponding negative root vectors Fγ = ϕ(Eγ) in U
−
q

via an application of the anti-algebra isomorphism ϕ : Uq−1 → Uq which exchanges
Eα and Fα, and inverts Kα. We then have Lusztig’s bases for U±

q via ordered
monomials in the roots vectors

{E(m1)
γ1 . . . E(mr)

γr : m : Φ+ → Z≥0} and {F (m1)
γ1 . . . F (mr)

γr : m : Φ+ → Z≥0}

[44, Proposition 41.1.3] [43, Proposition 6.7].

Lemma 3.1. Consider a semisimple algebraic group G at a torsion parameter q,
and a positive root γ ∈ Φ+. We have lγ = 1 if and only if Eγ and Fγ are non-
nilpotent, and otherwise

lγ = nil.deg(Eγ) = nil.deg(Fγ).

Here by nil.deg(x) we mean the smallest postive integer m at which xm = 0.

Proof. Follows from the expressions

Emγ = [m]qγ ! · E(m)
γ , Fmγ = [m]qγ ! · F (m)

γ ,

and the fact that the qγ-factorial [m]qγ ! [44, §1.3.3] vanishes if and only if m ≥ lγ >
1. □

Remark 3.2. In this text we employ the specific braid group operators Tα := T ′′
α,1

from [44, §37.1].
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3.5. Quantum group representations. We let Rep(Gq) denote the tensor cat-
egory of character graded representations for the quantum enveloping algebra Uq,
in the precise sense of [47, § 2.4] (cf. [4, 5]). So, a given Gq-representation V is

graded by the character lattice X for G, the divided powers E
(m)
α and F

(m)
α act on

V by homogeneous endomorphisms of degrees m · α and −m · α respectively, and
the toral elements in Uq act as the semisimple operators

Kα · v = q(α, λ) v and

[
Kα; 0

lα

]
· v =

[
⟨α, λ⟩
lα

]
qα

v, for v ∈ Vλ.

The category Rep(Gq) is, equivalently, the category of integrable, unital repre-

sentations for Lusztig’s modified algebra Rep(Gq) = Rep(U̇q) [44, § 31.2].

Remark 3.3. Up to isomorphism, the algebra Uq only depends on the restriction
of the form q to Q × Q, while the definition of the category Rep(Gq) depends on
the restriction of q to Q×X.

The restricted form q|X×X provides solutions to certain equations which one
needs to define the R-matrix (braiding) for Rep(Gq). The existence of an extension
of this form to the entire weight lattice allows us to extract the scalar parameters
qi from q, and also provides a simply-connected form Gscq for any Gq.

Remark 3.4. Our use of bilinear forms, rather than roots of unity, loosely follows
the presentation of [30].

3.6. Quantum function algebras. The quantum function algebra is, by defini-
tion, the Hopf algebra one reconstructs from the category Rep(Gq) and its forgetful
functor to vector spaces,

O(Gq) := Coend(forget : Rep(Gq)→ Vect).

Again we refer the reader to [51] for a thorough discussion of Tannakian reconstruc-
tion.

3.7. Dominant weights and simple representations. The following result is
proved in [41, Proposition 6.4] at odd order q, and one can use the formula [44,
Lemma 32.1.2] to extend the arguments of [41] to general q. See alternatively [44,
Propositions 31.2.7, 31.3.2].

Proposition 3.5 ([41, Proposition 6.4]). For each dominant weight λ ∈ X+ there is
a unique simple object L(λ) in Rep(Gq) which is of highest weight λ. Furthermore,
the assignment

X+ → Irrep(Gq), λ 7→ L(λ),

is a bijection.

3.8. Collected notations. Fix a semisimple algebraic group G with a choice of
maximal torus and simple roots. We gather all of the notations from this section.

• Φ denotes the roots for G, ∆ denotes the chosen base in Φ, and Φ+ denotes
the corresponding subset of positive roots in Φ. We identify ∆ with the
Dynkin diagram for G, via an abuse of notation.
• Q, P , and X denote the root, weight, and character lattices for G.
• (−,−) denotes the normalized Killing form on P , so that (α, α) = 2 at any
short root α. At a general root γ ∈ Φ we let dγ denote the relative length
dγ = (γ, γ)/2.
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• For any i ∈ π0(∆), ∆i ⊂ ∆ denotes the corresponding connected component
in the Dynkin diagram. We let Gi ⊆ G denote the associated almost-simple
factor in G.
• q denotes a quantum parameter for G. In particular, q is a symmetric form
on the weight lattice which exponentiates the Killing form. We always
assume q is torsion, i.e. takes values in the roots of unity tors(k×).
• For any simple root α, with corresponding fundamental weight ωα, we take
qα = q(α, ωα). For a general positive root γ we take qγ = qα, where α is
any simple root which is in the Weyl group orbit of γ.
• For any i ∈ π0(∆), we take qi = qα where α is any short root in ∆i. We
note that qi does not independent of the choice of α. These qi are the scalar
parameters associated to G at q.
• For any γ ∈ Φ+ we take

lγ = ord(q(γ, γ)) = ord(q2(γ,−)) =
{

nil.deg(Eγ) if Eγ is nilpotent
1 otherwise.

Let us also list the quantum algebras which we’ll encounter in the text, though one
might ignore the interruption upon first reading.

• Uq denotes Lusztig’s divided power quantum enveloping algebra [42, 43].

• U̇q denotes Lusztig’s modified enveloping algebra from [44, Ch 31].
• vq denotes the distinguished finite-dimensional Hopf subalgebra in Uq from
[43, §8.2], and u̇q denotes the modified analog of vq, as in [44, §36.2.1]. See
also Sections 5.1, 6.1, 9.1.
• ūq denotes the “smallest quantum algebra” from Sections 5.2, 6.3. There is
also an intermediate Hopf algebra vq which appears in these sections, and
which serves as a link between vq and ūq.

As defined above, Rep(Gq) is the category of character graded representations for
the divided power algebra Uq.

4. Quantum Frobenius

We recall Lusztig’s construction of the quantum Frobenius functor from [44].
This functor specifies a dual group G∗ to G, a dual parameter ε to q, and an exact
monoidal embedding Rep(G∗

ε) → Rep(Gq). The associated scalar parameters εi
for ε take values ±1, so that G∗

ε has representation theory which is approximately
equivalent to the classical representation theory for G∗.

The quantum Frobenius functor plays a fundamental role in the analyses of
quantum group representations that follow.

4.1. Quantum groups at quasi-classical parameters.

Proposition 4.1 ([44, Proposition 33.2.3]). Let H be any semisimple algebraic
group and ε be a quantum parameter with all εi = ±1. There is a linear equivalence
of categories Rep(Hε)

∼→ Rep(H). In particular, Rep(Hε) is semisimple.

Note that we have not claimed that Rep(Hε) and Rep(H) are equivalent as
tensor categories, at general ε.
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4.2. “Dual” lattices. We take

X∗ := {λ ∈ X : q(α, λ)2 = 1 for all simple α with lα > 1}

=
{
λ ∈ X : (α, λ) ∈ liZ for each α ∈ ∆i and i ∈ π0(∆)

}
.

For the equality of these two expressions, note that q(α, λ)2 = q
2(α,λ)
i whenever

α ∈ ∆i, so that q(α, λ)2 = 1 if and only if (α, λ) ∈ liZ. For simple roots with lα = 1
such vanishing of q(α, λ)2 holds for free, at all λ, by the definition of lα.

We also consider the “l-dualized” root lattice

lQ := Z · {lαα : α simple}.

The following is essentially stated in [44].

Lemma 4.2. lQ is contained in X∗, and both of the sublattices lQ and X∗ are
stable under the action of the Weyl group on P .

Proof. For each pair of simple roots α and β we have

q(α, lββ)
2 = q(α, β)2lβ = 1,

by the definition of lβ . This establishes the containment lQ ⊆ X∗.
As for stability under the action of the Weyl group, for the simple reflection σα

associated to α ∈ ∆i, and λ ∈ X∗, we have

σα(λ) = λ− (α, λ)

dα
α. (4)

Each pairing (α, λ) lies in dαZ and, by the definition of X∗, in liZ as well.
When dα | li we have lα = li/dα so that (α, λ)/dα is seen to lie in lαZ. When

dα ∤ li we have lα = li and (α, λ) ∈ lcm(dα, li)Z = dαliZ = dαlαZ, giving again
(α, λ)/dα ∈ lαZ. So from the expression (4) we find

σα(λ) ∈ λ+ lαZ · α ⊆ λ+ lQ. (5)

This expression lies in lQ when λ lies in lQ, and lies in X∗ when λ lies in X∗. So
we observe stability under the action of the Weyl group. □

4.3. Quasi-classical representations in Rep(Gq).

Proposition 4.3 ([44, Proposition 35.3.2]). A simple representation L(λ) in Rep(Gq)
is annihilated by all simple root vectors Eα and Fα with lα > 1 if and only if λ ∈ X∗.
Furthermore, in this case L(λ) is graded by the sublattice X∗ in X.

Proof. If λ ∈ X∗ then L(λ) has grading in X∗, and is annihilated by all such Eα
and Fα, directly by [44, Proposition 35.3.1 (a) and (b)]. If λ /∈ X∗ consider a simple
root α with lα > 1 and q(α, λ)2 ̸= 1, and v ∈ L(λ) of highest weight to find

[Eα, Fα] · v =
q(α, λ)− q(α, λ)−1

qα − q−1
α

· v = q(α, λ)−1

(
q(α, λ)2 − 1

qα − q−1
α

)
· v ̸= 0.

This equation implies Fα · v ̸= 0 and Eα(Fα · v) ̸= 0. Hence L(λ) is not annihilated
by the prescribed root vectors. □

Lemma 4.4. For a Gq-representation V , the following are equivalent:

(a) V is annihilated by all root vectors Eα and Fα, with α simple and lα > 1.
(b) V is annihilated by all root vectors Eγ and Fγ , with γ ∈ Φ+ and lγ > 1.
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Proof. The implication (b)⇒ (a) is trivial. So we consider (a)⇒ (b). Let I be the
ideal in Uq generated by the simple root vectors Eα and Fα with lα > 1. It suffices
to show that I is stable under the actions of the simple braid group operators Tβ .
Indeed for any positive root γ with lγ > 1 we can find a corresponding simple
root α, with lα > 1, and a braid group operator T for which T (Eα) = Eγ and
T (Fα) = Fγ . However, such stability is clear from the explicit expressions of the
Tβ given in [44, §37.1.3]. □

We call a representation V in Rep(Gq) quasi-classical if V is annihilated by all
simple Eα and Fα with lα > 1. Note that this class of representations is closed under
taking subobjects and quotients. We let Eq ⊆ Rep(Gq) denote the full subcategory
of quasi-classical representations.

Lemma 4.5. The subcategory Eq ⊆ RepGq is a tensor subcategory in RepGq, and
all objects in Eq are graded by the sublattice X∗.

Proof. The fact that Eq is a tensor subcategory in RepGq follows from the fact that
all simple root vectors Eα and Fα are skew primitive. As for the claim about the
grading, if a representation V is annihilated by all Eα and Fα with lα > 1 then all
of its composition factors are of the form L(λ) with λ ∈ X∗, by Proposition 4.3. It
follows that V is graded by X∗, since all of its composition factors are graded by
X∗. □

Remark 4.6. The category Eq is also closed under the formation of extensions in
Rep(Gq), provided all li > 2, or provided G has no factors of types A1 or Bn at
li = 2. Indeed, in this case Eq is precisely the subcategory of X∗-graded objects in
Rep(Gq).

4.4. The dual group G∗. In [42, 43, 44] Lusztig considers a dual group G∗ to G
which is specified by the following data: The character lattice for G∗ is X∗, and
the simple roots are

∆∗ := {α∗ : α ∈ ∆} ⊆ lQ

where α∗ := lαα. The Cartan integers are given by

⟨α∗, β∗⟩l :=
2lβ
lα

(α, β)

(α, α)

[44, § 2.2.5]. The group G∗ decomposes into almost-simple factors which correspond
bijectively to the almost-simple factors for G,

G = G1 × · · · ×Gt ⇒ G∗ = G∗
1 × · · · ×G∗

t .

One sees from the definition of the Cartan integers that the Killing form on
the root lattice lQ for G∗ is some rescaling of the form (−,−)|lQ×lQ. We have
(α∗, α∗) = l2α(α, α) and, for

l′i = min{lβ : β ∈ ∆i},
we rescale by 1/lil

′
i on each simple factor g∗i to obtain the properly normalized form

(−,−)l. At each simple root α ∈ ∆i we now have

1

2
(α∗, α∗)l =

l2α
lil′i

dα =


dα if li/l

′
i = 1

2 if α short and li/l
′
i = 2

3 if α short and li/l
′
i = 3

1 if α long and li/l
′
i = 2 or 3

.
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We therefore observe the fundamental weights

ωα∗ = lα · ωα

and weight lattice P ∗ = Z · {lαωα : α simple} for G∗. From the above expressions
we find the following.

Lemma 4.7. When the lacing number for Gi is coprime to li, the dual group G∗
i

is of the same Dynkin type as Gi. When the lacing number for Gi divides li, the
dual group G∗

i is of Langlands dual Dynkin type to Gi.

4.5. Lusztig’s quantum Frobenius. Take G∗ and P ∗ as above. Consider the
form ε on P ∗ defined simply by restricting q,

ε(λ, µ) := q(λ, µ) for λ, µ ∈ P ∗.

Since the Killing form on P ∗ is just a rescaling of the Killing form on the ambient
lattice P , the form ε exponentiates the Killing form for G∗ and so provides a
quantum parameter for the dual group. We have

ε(α∗, α∗) = q(α, ωα)
2l2α = 1

at each simple root, which forces εi = ±1 on each almost-simple factor G∗
i .

Remark 4.8. Scalar parameters of non-trivial value εi = −1 can occur, for exam-
ple, when the corresponding parameter qi for Gi is a 2p-th root of 1 with p odd.
This can also occurs in types Bn, Cn, and F4 when qi is a 4p-th root of 1 with p
odd, and in type G2 when qi is a 6p-th root of 1 with p odd.

We now let U̇∗
ε denote the modified quantum enveloping algebra for G∗ at ε [44,

§31.2], and let

e(m)
α 1µ, f

(m)
α 1µ ∈ U̇∗

ε

denote the standard generators, for simple α and µ ∈ X∗. By [44, Theorem 35.1.9,
§ 35.5.2] (see also [39]) there is a surjective map of non-unital algebras

fr : U̇q → U̇∗
ε

which maps the powers of the simple root vectors as

E(n)
α 1λ 7→

{
e
(n/lα)
α 1λ if lα|n and λ ∈ X∗

0 otherwise

and

F (n)
α 1λ 7→

{
f
(n/lα)
α 1λ if lα|n and λ ∈ X∗

0 otherwise.

The map fr is compatible with the Hopf structures on U̇q and U̇
∗
ε , and restricting

along fr provides an embedding of tensor categories

Fr := resfr : Rep(G
∗
ε)→ Rep(Gq). (6)

The tensor compatibility Fr(V )⊗ Fr(W )→ Fr(V ⊗W ) is given by the identity.
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4.6. Quasi-classical representations via quantum Frobenius.

Theorem 4.9 ([44]). The quantum Frobenius functor Fr : Rep(G∗
ε) → Rep(Gq)

restricts to an equivalence onto the subcategory Eq of quasi-classical representations
in Rep(Gq).

The proof is essentially the same as that of [44, Corollary 35.3.3]. We repeat it
for the sake of completeness.

Proof. We first note that the image of Fr is contained in Eq, directly by the defini-

tions. Now, it is shown in [44, § 35.2.3] that the generators E
(lα)
α in U+

q satisfy the

ε-Serre relations of the eα in U+
ε . The F

(lα)
α similarly satisfy the relations of the fα.

So any V in Eq comes equipped with actions of U+
ε and U−

ε and is appropriately
graded by X∗. The commutativity relations [43, 6.5 (a2)], in conjunction with the
fact that V is annihilated by all Eα with lα > 1, implies that

[E(lα)
α , F

(lβ)
β ] · v = δαβ

[
Kα; 0
lα

]
· v = δα,β

[
⟨α, λ⟩
lα

]
qα

· v

= δαβ

(
q
(
⟨α,λ⟩
lα

+1)l2α
α

⟨α, λ⟩
lα

· v
)

= δαβ

(
q
l2α(⟨α∗,λ⟩l+1)
α ⟨α∗, λ⟩l · v

)
for arbitrary α, β ∈ ∆ [44, Lemma 34.1.2]. We have q

l2α
α = εα∗ so that the final

expression reduces to

[E(lα)
α , F

(lβ)
β ] · v = δαβ

(
ε
(⟨α∗,λ⟩l+1)
α∗ ⟨α∗, λ⟩l · v

)
= δα,β

[
⟨α∗, λ⟩l

1

]
εα∗

· v.

This information tells us that the E
(lα)
α and F

(lα)
α actions on V satisfy the necessarily

relations to provide a U̇∗
ε -action on V . This defines a functor

−|U∗
ε
: Eq → Rep(G∗

ε).

Now, for V in Eq, the identity map provides a natural isomorphism of Gq-

representations Fr(V |U̇∗
ε
)

∼→ V , and for any W in Rep(G∗
ε) the identity again

provides a natural isomorphism of G∗
ε-representations W

∼→ Fr(W )|U̇∗
ε
. So Fr :

Rep(G∗
ε)→ Rep(Gq) restricts to an equivalence onto Eq. □

The following is an immediate corollary to Theorem 4.9 and Proposition 4.1.

Corollary 4.10. The category Eq of quasi-classical representations in Rep(Gq) is
semisimple.

5. Small quantum algebras above the lacing number

We cover the construction of the smallest quantum algebra ūq = ū(Gq) at almost-
every q. We address all pairings of G and q save for types Bn, Cn, and F4 at a 4-th
root of 1, and type G2 at a 3-rd, 4-th, or 6-th root of 1. These low order cases are
discussed independently in Section 6 below. We also explain how the category of
representations Rep(ūq) inherits the natural structure of a pointed module category
over Rep(Gq).

We begin by recalling Lusztig’s finite-dimensional Hopf subalgebra in Uq, which
we denote by vq. We view vq as associated to the Lie algebra g = Lie(G), rather
then the group G itself. We then construct an intermediate Hopf algebra vq which
admits highly structured maps from both vq and our “smallest quantum algebra”
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ūq. We use vq, along with the aforementioned maps, to translate results for vq to
ūq;

vq

vq

88

oo // ūq.

ff

5.1. Lusztig’s finite-dimensional subalgebra. Consider a semisimple algebraic
group G, and suppose that each li is greater than the lacing number for its associ-
ated almost-simple factors in G. We consider Lusztig’s divided power algebra Uq,
which we think of as a “copy” of the quantum enveloping algebra used in the con-
struction of Rep(Gq). To distinguish between these two algebras we let Kα denote
the standard grouplikes in our new copy of Uq.

We begin with Lusztig’s finite-dimensional subalgebra in Uq [42, 43]. We adopt
the unorthodox notation vq for this algebra, and recall the definition

vq = vq(g) =

 The subalgebra in Uq generated
by the elements Eα, Fα, and Kα

for simple roots α ∈ ∆

 ⊆ Uq.

The algebra vq is a finite-dimensional Hopf subalgebra in Uq which has basis

B = {Em1
γ1 . . . Emr

γr · Kν · F
m′

1
γ1 . . . F

m′
r

γr : ν ∈ Q, γi ∈ Φ+, and mi,m
′
i < lγi},

under some ordering of the positive roots.
From this basis one determines the dimension of vq as

dim(vq) = (
∏
α∈∆

2lα)(
∏
γ∈Φ+

lγ)
2.

The first factor accounts for the grouplikes in vq and the second factors accounts
for the positive and negative subalgebras v±q in vq [43, Theorem 8.3].

5.2. Small quantum algebras. Recall our root lattice lQ = Z · {lαα : α ∈ ∆}
and character lattice X∗ for the dual group G∗, from Section 4.5. We first consider
the character groups

A := (X/2 · lQ)∨ and Ā := (X/X∗)∨,

and note that the inclusion 2 · lQ ⊆ X∗ dualizes to an inclusion Ā ⊆ A.
For any ν ∈ Q we have the associated character Kν : X → k∗, Kν(λ) = q(λ, ν),

which vanishes on 2 · lQ and hence defines an element in A. We also have a natural
action of A on vq by the Hopf algebra automorphisms

ξ · Eγ = ξ(γ)Eγ , ξ · Fγ = ξ(−γ)Fγ , ξ · Kα = Kα,

and can consider the new Hopf algebra vq ⋊A.
We note that the differences Kν ·K−1

ν are central grouplike elements in vq ⋊ A,
and take the quotient

vq :=
vq ⋊A

(Kν ·K−1
ν : ν ∈ Q)

.

From the basis for vq we see that vq⋊A is a symmetric bimodule over the subgroup
algebra generated by the differences Kν ·K−1

ν , which is furthermore free on the left
and right independently. We then have the induced basis,

Basis for vq = {Em1
γ1 . . . Emr

γr · ξ · F
m′

1
γ1 . . . F

m′
r

γr : ξ ∈ A, mi,m
′
i < lγi for all i},
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and the triangular decomposition for vq induces a triangular decomposition for vq,

v+q ⊗ kA⊗ v−q
∼=→ vq.

In our new algebra vq, we scale by the grouplikes to produce normalized root
vectors Eγ = KγEγ for each γ ∈ Φ+.

Definition 5.1. Let G be a semisimple algebraic group, and q be a quantum
parameter at which each li is greater than the lacing number for its associated
almost-simple factor in G. We define ūq as follows:

ūq = ū(Gq) :=

 The subalgebra in vq generated by the
root vectors Eα and Fα, for α ∈ ∆,

and the subgroup of characters Ā in A

 .

We refer to ūq, somewhat informally, as the smallest quantum algebra for G at
q. We consider the subalgebras ū+q and ū−q in ūq generated by the positive and
negative root vectors Eα and Fα respectively.

Lemma 5.2. Under some ordering of the positive roots {γ1, . . . , γr} = Φ+, the
collections

{Em1
γ1 . . .Emr

γr : mi < lγi for all i} and {Fm
′
1

γ1 . . . F
m′

r
γr : m′

i < lγi for all i}

provide bases for ū+q and ū−q respectively.

Proof. Take v±q = ū±q , interpreted as subalgebras in the ambient algebra vq. For

v+q we note that both of the subalgebras v+q , v
+
q ⊆ vq are naturally graded by the

root lattice Q, and we have linear isomorphisms

Kν · − : (v+q )ν
∼→ (v+q )ν

at all ν ∈ Q. So we deduce the claimed basis for v+q from that of v+q . For ū−q , we

simply have ū−q = v−q = v−q . □

From the triangular decomposition for vq we deduce a triangular decompositions
for ūq,

ū+q ⊗ kĀ⊗ ū−q
∼=→ ūq. (7)

The above isomorphism is given explicitly by including the relevant algebras into
ūq, then composing with multiplication. From the decomposition (7), and the bases
of Lemma 5.2, we calculate the dimension of ūq.

Corollary 5.3.

dim(ūq) = [X : X∗] · (
∏
γ∈Φ+

lγ)
2.

Remark 5.4. Our rescaling of the generators Eγ 7→ Eγ is adapted from Arkhipov-
Gaitsgory [7].

5.3. Tensor structures. The Hopf structure on vq is given explicitly by the for-
mulas ∆(ξ) = ξ ⊗ ξ, for ξ ∈ A, and

∆(Eα) = Eα ⊗ 1 +Kα ⊗ Eα, ∆(Fα) = Fα ⊗K−α + 1⊗ Fα, (8)

for each α ∈ ∆.

Lemma 5.5. The algebra ūq is a right coideal subalgebra in vq.
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Proof. We have ∆(Fα) ∈ ūq ⊗ vq and ∆(ξ) = ξ ⊗ ξ ∈ ūq ⊗ vq for all ξ ∈ Ā, by
direct inspection. For any λ ∈ X∗ we have q2(α, λ) = 1 at all α ∈ ∆, so that
K2
α : X → k× vanishes on X∗. Hence each character K2

α lies in Ā ⊆ ūq. So we have

∆(Eα) = Eα ⊗Kα +K2
α ⊗Eα ∈ ūq ⊗ vq,

and see that ūq is a right coideal subalgebra in vq. □

Via the actions of Eα, Fα, and Ā on big quantum group representations, Rep(ūq)
inherits a natural right module category structure over Rep(Gq).

To elaborate, any Gq-representation carries a natural X/X∗-grading, via the
X-grading and the projection X → X/X∗. Hence any Gq-representation carries a
natural action of the character group Ā = (X/X∗)∨. Via this Ā-action, the actions
of Eα = KαEα and Fα on Gq-representations, and the coproducts (8) we obtain a
natural action of ūq on products

W ⊗ V for W in Rep(ūq) and V in Rep(Gq).

In this way Rep(ūq) is realized as a right module category over Rep(Gq).
Furthermore, the restriction functor

res−q : Rep(Gq)→ Rep(ūq)

is Rep(Gq)-linear, with trivial compatibility res−q (V
′ ⊗ V ) = res−q (V

′)⊗ V , so that
Rep(ūq) becomes a pointed module category over Rep(Gq). The unit object in
Rep(ūq) is given by the trivial representation 1Rep(ūq) = k.

We find in Section 7 below that the restriction functor res−q : Rep(Gq)→ Rep(ūq)
is in fact normal, and has kernel equal to the subcategory of quasi-classical repre-
sentations in Rep(Gq).

6. Small quantum algebras below the lacing number

We extend our construction of ūq at not-too-small order q to arbitrary q. Here
we replace Lusztig’s usual small quantum algebra, from Section 5.1, with a slight
modification which already appears in [44, §8.2] and was studies extensively by
Lentner [39].

Formally speaking, the materials of this section recover (and extend) all of our
findings from Section 5. However, our presentation becomes much more delicate as
we must account for degenerations of certain “linkings” between root vectors in Uq
at low order q.

Remark 6.1. The reader who is happy to work away from extraordinarily small
order parameters can safely skip this section, though they should heed the change
in notation from ∆ to ∆l (see Section 6.2).

6.1. Finite-dimensional subalgebras at small order q. We consider the quan-
tum enveloping algebra Uq, now at arbitrary q. We again think of Uq as a “copy”
of our original enveloping algebra from Section 3.3, and let Kν denote the grouplike
element in Uq associated to ν ∈ Q. In [43, §8.1, 8.2] Lusztig introduces the following
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subalgebra in Uq,
3

vq = vq(g) =


The smallest subalgebra in Uq which contains all
of the simple generators Eα and Fα with lα > 1,
contains all the grouplikes Kν for ν ∈ Q, and

which is stable under the braid group action on Uq

 . (9)

We note that vq is not generated by the simple root vectors Eα and Fα in
general. For example, in type B2 at a 4-th root of 1 we have lβ = 1 at the long
simple root β, so that neither Eβ nor Fβ appears in vq. However, the root vectors
Eβ+α = EβEα + EαEβ and Fβ+α do appear in vq in this case.

Lentner establishes the following structural result.

Proposition 6.2 ([39, Theorems 5.2 & 5.4]). Suppose that G is almost-simple, and
take l = li for the unique component ∆i = ∆. At an arbitrary quantum parameter
q we have a triangular decomposition

v+q ⊗ k[Kν : ν ∈ Q]⊗ v−q
∼→ vq

and corresponding linear basis

B = {Em1
γ1 . . . Emr

γr · Kν · F
m′

1
γ1 . . . F

m′
r

γr : ν ∈ Q and mi, m
′
i < lγi} (10)

for vq, where {γ1, . . . , γr} = Φ+ is some ordering of the positive roots.
In the specific cases where l is equal to the lacing number for G, the algebra vq

admits the following description:

• When l = 1, vq = k[Kν : ν ∈ Q].
• In type Cn at l = 2, vq is generated by the simple root vectors Eα and Fα

with α short, the grouplikes Kν , and

Eβ+α′ := (EβEα′ + Eα′Eβ), Fβ+α′ := −(FβFα′ + Fα′Fβ), (11)

where β is the long simple root and α′ is its unique short neighbor.
• In type F4 at l = 2, list the roots as {β4, β3, α2, α1} where the αi are short
and (β3, α2) = −2. Then vq is generated by the short vectors Eαi and Fαi ,
the grouplikes Kν , Eβ3+α2

and Fβ3+α2
defined as in (11), and

Eβ4+β3+α2
= (Eβ4

Eβ3+α2
+Eβ3+α2

Eβ4
), Fβ4+β3+α2

= −(Fβ4
Fβ3+α2

+Fβ3+α2
Fβ4

).

• In type Bn at l = 2, list the roots as {βn, . . . , β2, α1}, where consecutive
roots are neighbors and α1 is short. Then vq is generated by Eα1

and Fα1
,

the grouplikes Kν , and the root vectors Eβr+···β2+α1
and Fβr+···β2+α1

for
all r ≥ 2, which we define recursively as

Eβr+1+···α1 = (Eβr+1Eβr+···α1 + Eβr+···α1Eβr+1),

Fβr+1+···α1
= −(Fβr+1

Fβr+···α1
+ Fβr+···α1

Fβr+1
).

• In type G2 at l = 3, vq is generated by Eα and Fα for short α, all the
grouplikes Kν , and the vectors

Eβ+α = (EβEα − q3αEαEβ), Fβ+α = −(FβFα − q3αFβFα).

Furthermore, each of the generating Eγ and Fγ above are skew primitive in vq.

3It is not obvious that our algebra vq agrees with Lusztig’s algebra from [43, §8.1, 8.2]. However,
such an identification follows from Propositions 6.2 and 6.4 below in conjunction with stability

under the action of the braid group.
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Proof. Each anomalous generator Eγ = Eβ+γ′ (resp. Fγ = Fβ+γ′) is obtained
from the preceding generator Eγ′ (resp. Fγ′) via an application of the braid group
operator Tβ . So it is clear that these elements live in vq. In [39] it is shown that
these generators Eγ and Fγ are also skew primitive in vq, and that they generate
a finite-dimensional subalgebra in Uq with the prescribed basis. So, all that is left
to show is that the subalgebra generated by the prescribed elements is all of vq.
Equivalently, we must show that this subalgebra is stable under the braid group
action on Uq. We verify such stability via direct computation in Appendix A. □

Remark 6.3. Though the algebra vq already appears in [43, §8.2], Lusztig imme-
diately relocates to the case of an odd order scalar parameter. Such low order cases
are also avoided in the text [44]. So we rely on, and emphasize, the more extensive
analysis of Lentner [39] in this section.

One should note that, in the above basis, we have lγ = 1 whenever γ ∈ Φ+

is long and l is equal to the lacing number for G. Hence many root vectors do
not contribute to the basis B at low order q. We also highlight the validity of the
expression (10) at all quantum parameters (cf. Section 5.1).

The final case of G2 at a 4-th root of unity is also interesting. Here not all root
vectors lie in the subalgebra of Uq generated by the simple root vectors, though all
root vectors Eγ and Fγ do appear in vq.

Proposition 6.4 ([39, Theorem 5.4]). Consider G of type G2 at l = 2, and let β
and α be the long and short simple roots respectively. The algebra vq is generated
by the grouplikes Kν and the elements

Eα, Eβ , E2α+β , Fα, Fβ , F2α+β ,

where

E2α+β = E(2)
α Eβ +EβE

(2)
α +EαEβEα and F2α+β = F (2)

α Fβ + FβF
(2)
α + FαFβFα.

Furthermore, these generating E’s and F ’s are skew primitive.

Proof. We have

E2α+β = TβTαTβ(Eα) and F2α+β = TβTαTβ(Fα)

[44, §39.2.2]. Lenter proves skew primitivity of these elements in vq, and that the
subalgebra in Uq which is generated by these elements has the prescribed basis [39,
Theorem 5.4]. So, again, we need only verify that the subalgebra generated by the
specified elements Eγ , Fγ , and Kν is stable under the braid group action. We verify
such stability in Appendix A. □

For general G, vq decomposes into a product

vq = vq(g1)⊗ . . .⊗ vq(gt)

in accordance with the decomposition of G into almost-simple factors. So Proposi-
tions 6.2 and 6.4 provide an explicit description of vq in all cases.

Though there are many more interesting things to say about this algebra, and in
particular about its positive and negative subalgebras v±q at low order q, we close
our introduction to vq here and invite the reader to see [39] for more details.
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6.2. Distinguished root vectors at low order q. It will be convenient to define
a subset of positive roots ∆l ⊆ Φ+ which labels the skew-primitive generators in
vq at arbitrary q. Though the definition of ∆l is implicit in the statements of
Propositions 6.2 and 6.4 above, let us take a moment to identify this subset clearly.

First, we decompose G into its almost-simple factors G = G1 × · · · × Gt, each
of which has its associated simple roots ∆i ⊆ ∆. For each index i ∈ π0(∆) we
consider a new set of “simple roots” ∆li , and then define ∆l =

∐
i∆li ⊆ Φ+.

In the case where li is greater than the lacing number forGi we just take ∆li = ∆.
In the case where li is equal to the lacing number for Gi, we first enumerate the
simple roots as

∆i := {βn, . . . , βr+1, αr, . . . , α1}
with the αi short, the βj long, and all consecutive roots neighbors. We take

• ∆li = {βn+ · · ·+β2+α1, . . . , β2+α1, α1} when Gi is of type Bn at li = 2.

• ∆li = {βn + αn−1, αn−1, . . . , α1} in type Cn at li = 2.

• ∆li = {β4 + β3 + α2, β3 + α2, α2, α1} in type F4 at li = 4.

• ∆li = {β2 + α1, α1} in type G2 at li = 3.

Finally, for a factor of type G2 at li = 2 we take ∆li = {2α+ β, β, α}. This covers
all cases, and we now have the explicit subset of positive roots

∆l :=
∐

i∈π0(∆)

∆li .

According to Propositions 6.2 and 6.4, the roots α ∈ ∆l label the skew-primitive
generators Eα and Fα in vq, for arbitrary G at an arbitrary torsion parameter q.
One can check that ∆l also provides a basis for the subsystem

{γ ∈ Φ : lγ > 1} ⊆ Φ, (12)

whenever G has no factor of type G2 at li = 2. In all cases, the subsystem (12)
labels the root vectors Eγ and Fγ which appear in vq.

6.3. Small quantum algebras below the lacing number. Having taken proper
account of the above details, we can now proceed exactly as in Section 5.

Take

A = (X/2 · lQ)∨, Ā = (X/X∗)∨,

and consider the charactersKν : X → k∗, Kν(λ) = q(λ, ν). These characters vanish
on 2 · lQ, and so define elements in A.

We note that vq is a Hopf subalgebra in Uq and we have the modification of the
grouplikes realized by the algebra

vq :=
vq ⋊A

(Kν ·K−1
ν : ν ∈ Q)

.

The algebra vq inherits a unique Hopf structure so that the characters A are grou-
plike and the map vq → vq is a map of Hopf algebras. We additionally have a
triangular decomposition for vq which is inherited from that of vq.

Definition 6.5. Define ūq = ū(Gq) to be the subalgebra in vq which is generated
by the Eα = KαEα and Fα, for α ∈ ∆l, and the subgroup of characters Ā ⊆ A.
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We again refer to ūq as the smallest quantum algebra for G at q. We have the
triangular decomposition, distinguished basis, and dimension calculation

dim(ūq) = [X : X∗] · (
∏
γ∈Φ+

lγ)
2,

just as in Section 5.

6.4. Realization via coinvariants. We describe an alternate means of locating
the subalgebra ūq in vq. Consider the group of characters Ψ = (X∗/2 · lQ)∨ along
with the natural quotient map A→ Ψ, which is given by restriction.

The composition

Rep(G∗
ε)→ Rep(Gq)

res−→ Rep(vq)

provides a tensor functor from Rep(G∗
ε) to Rep(vq), and each G∗

ε-representation
decomposes into a sum of 1-dimensional representations over vq. These represen-
tations are labeled by elements in the quotient X∗/2 · lQ and define a map of Hopf
algebras π : vq → kΨ. The map π annihilates all of the generators Eα and Fα, and
lifts the group map A→ Ψ.

Via Nichols-Zoeller freeness [48] the subalgebra of left kΨ-coinvariants in vq is
seen to be of dimension

dim(kΨvq) =
dim(vq)

|Ψ|
= [X : X∗] · (

∏
γ∈Φ+

lγ)
2.

Furthermore, by checking on the generators, one observes an algebra inclusion
ūq ⊆ kΨvq. Via the triangular decomposition for vq one sees that ūq has dimension
greater than or equal to [X : X∗] · (

∏
γ∈Φ+ lγ)

2, which forces a calculation

dim(ūq) = [X : X∗] · (
∏
γ∈Φ+

lγ)
2, an equality of algebras ūq =

kΨvq,

and verifies the triangular decomposition for ūq as well.

6.5. Tensor structures. As before, the algebra ūq sits in vq as a right coideal
subalgebra in vq. This follows from the computations

∆(Eα) = Eα ⊗Kα +K2
α ⊗Eα and ∆(Fα) = Fα ⊗K−1

α + 1⊗ Fα, (13)

for α ∈ ∆l, and the fact that all K2
α|X∗ = 1.

Via the coaction (13) we obtain a natural right action of Rep(Gq) on Rep(ūq),
and the restriction functor

res−q : Rep(Gq)→ Rep(ūq)

becomes a map of Rep(Gq)-module categories. So, Rep(ūq) again carries a natural
pointed module category structure over Rep(Gq). The details here are exactly as
in Section 5.3.

6.6. Braid group actions. By construction, the action of the braid group Bg on
Uq restricts to an action of Bg on the Hopf subalgebra vq. This action extends
uniquely to an action on vq under which the map vq → vq is Bg-equivariant, and
under which Bg acts on the grouplikes ξ ∈ A as Tα · ξ = ξ(σ−1

α −). We claim that
the subalgebra ūq ⊆ vq is stable under this braid group action.

Proposition 6.6. The algebra ūq admits a natural action of the braid group Bg

under which the restriction functor res−q : Rep(Gq)→ Rep(ūq) is Bg-equivariant.
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For the proof one employs the identification of ūq with the kΨ-coinvariants in
vq, and leverages Bg-equivariance of the map π : vq → kΨ. We leave the details to
the interested reader.

7. Normality of restriction functors

In this section we show that the restriction functor res−q : Rep(Gq) → Rep(ūq)
is normal. Here Rep(ūq) is considered along with its natural structure as a pointed
module category over Rep(Gq) (see Sections 5.3 and 6.5). We show additionally that
the kernel of this functor is precisely the image of quantum Frobenius in Rep(Gq).

At certain parameters such normality is well-known. See for example [17] [15,
§ 2.3] for the case of simple G at an odd order scalar parameter which is coprime
to the determinant of the Cartan matrix. The general odd order case also follows
from standard relations which can be found in [43, 44]. One can see [7, Proposition
1.5] for the case of a semisimple simply-connected group G at a quantum parameter
which is of “sufficiently large” even order.4

7.1. Normality of restriction.

Proposition 7.1 (cf. [39, Problem 7.1]). The restriction functor res−q : Rep(Gq)→
Rep(ūq) is normal. Furthermore, the kernel of res−q is equal to the image of quantum
Frobenius

ker(res−q ) = im
(
Fr : Rep(G∗

ε)→ Rep(Gq)
)
.

The proposition is obtained as an application of Lemma 7.3 below. We provide a
proof which is contingent on Lemma 7.3, then return to cover the necessary details.

Proof. All objects in ker(res−q ) necessarily have grading in the kernel of the pro-
jection X → (A)∨ = X/X∗, and are annihilated by all Eα with lα > 1. So
ker(res−q ) ⊆ im(Fr) by Lemma 4.5 and Theorem 4.9. We refer again to Lemma 4.5

to see that im(Fr) ⊆ ker(res−q ), and hence that the kernel is precisely the image of
quantum Frobenius.

We need to show now that the ūq-invariants V
ūq in any Gq-representation V

form a Gq-subrepresentation. We have explicitly

V ūq =

{
The sum of all homogeneous v ∈ V with

deg(v) ∈ X∗ and Eα · v = Fα · v = 0 at all α ∈ ∆l

}

=

{
The sum of all homogeneous v ∈ V with

deg(v) ∈ X∗ and Eα · v = Fα · v = 0 at all α ∈ ∆l

}
.

By definition, this subspace V ūq is stable under the actions of Eα and Fα, for
α ∈ ∆l, and we need only show it is stable under the actions of the divided powers

E
(lβ)
β and F

(lβ)
β for simple β. Rather, we need to show that, for any v ∈ V ūq , the

vectors

E
(lβ)
β · v and F

(lβ)
β · v

are still annihilated the actions of the elements Eα, Fα, and (ξ − 1) with ξ ∈ Ā.
However, this is precisely what Lemma 7.3 tells us. □

4As far as we can tell, one also assumes that a sufficiently large power of 2 divides all li in [7].
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We now cover the requisite details. In our arguments below we consider the
topological Hopf algebra

Ûq := lim←−
V

U̇q/Ann(V ),

where the limit is over all finite-dimensional Gq-representations V . Here we employ
the partial ordering where V ≤ W whenever W admits an injective map of repre-

sentations V → W . Alternatively, Ûq is constructed as the endomorphism algebra
of the forgetful functor

Ûq = End
(
forget : RepGq → Vect

)
[47, §2.6]. This algebra is generated topolgically by the divided powers of the simple

root vectors E
(n)
β and F

(n)
β , and the characters X∨ = HomGrp(X, k

×).

By Tannakian reconstruction, the restriction functor Rep(Gq) → Rep(ūq) de-

fines an algebra map ūq → Ûq, which explicitly sends the Eγ and Fγ in ūq to

the corresponding vectors in Ûq and the characters ξ ∈ Ā to their corresponding
functions on X.

Remark 7.2. From a simple-minded perspective, Ûq is just a version of the quan-

tum enveloping algebra which is unital–unlike the modified algebra U̇q–and which
contains all naturally occurring toral characters–unlike the usual quantum envelop-

ing algebra Uq. In Ûq we can directly compare elements from all of our favorite
algebras; Uq, vq, and ūq.

Lemma 7.3. Let m ⊆ ūq be the kernel of augmentation ūq → k. For all ξ ∈ Ā,
and all positive roots γ, we have

(ξ − 1)E(lγ)
γ = E(lγ)

γ (ξ − 1) and (ξ − 1)F (lγ)
γ = F (lγ)

γ (ξ − 1). (14)

Additionally, for all α ∈ ∆l and all β ∈ ∆ we have

EαE
(lβ)
β , FαF

(lβ)
β , EαF

(lβ)
β , FαE

(lβ)
β ∈ Ûqm. (15)

The result essentially follows by computations of Lusztig [43, 44] and Lentner
[39].

Proof. It suffices to prove the result when G is almost-simple. Hence we take l = li
at the unique index i ∈ π0(∆). When l = 1 the group Ā is trivial and ∆l is empty,
so that ūq = k and there is nothing to check. We therefore suppose that l > 1.

Before beginning, let us note that we have containments

ÛqEγ ⊆ Ûqm and ÛqFγ ⊆ Ûqm

whenever γ is a positive root with lγ > 1. We take these inclusions for granted,
and use them throughout the proof.

Each characters ξ in (X/X∗)∨ = Ā has ξ|lQ = 1, by Lemma 4.2. Hence ξ(lγγ) =
1 at each root γ, and the commutativity relations (14) follow.

As for the relations (15), it suffices to establish inclusions

[E
(lβ)
β , Eα], [F

(lβ)
β , Fα]

[E
(lβ)
β , Fα], [F

(lβ)
β , Eα]

}
∈ Ûqm (16)

at arbitrary α ∈ ∆l and β ∈ ∆. When both α, β ∈ ∆, and lα, lβ > 1, one
employs the higher Serre relations [44, Proposition 35.3.1] to see that the first two

commutators lie in Ûqm. Similarly, in this case the relations of [43, §6.5 (a2), (a6)]
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tell us that the latter two commutators lie in Ûqm as well. We therefore have both
of the desired containments (14) and (15), provided l is greater than the lacing
number for G.

The cases where l is less than or equal to the lacing number for G are somewhat
involved, and are delayed until Appendix B. □

7.2. Normality and Hopf structures. We note that the fiber functor for Rep(Gq)
endows Vect with the structure of a pointed Rep(Gq)-module category, and that the
forgetful functor Rep(ūq) → Vect is naturally a map of pointed module categories
over Rep(Gq). It follows that the restriction functor res−q : Rep(Gq)→ Rep(ūq) de-
termines, and is determined by, a map of O(Gq)-module coalgebras π : O(Gq)→ ū∗q
[19, Definition 1.1], via Tannakian reconstruction [51, Theorem 2.2.8].

Similarly, the quantum Frobenius functor determines an embedding of Hopf al-
gebras fr∗ : O(G∗

ε)→ O(Gq) [51, Lemma 2.2.13]. The following codifies normality
of the restriction functor in algebraic terms.

Lemma 7.4. Consider a Hopf algebra A, and let π : A→ C be a map of A-module
coalgebras for which the restriction functor resπ : Corep(A)→ Corep(C) is normal.
Let B be the (unique) Hopf subalgebra in A whose corepresentations are identified
with the kernel of resπ. Then the left and right C-coinvariants in A agree, and
CA = AC = B.

Proof. The fact that B is in the kernel of resπ implies B ⊆ AC , by definition. The
left counit axiom for B then gives π|B = ϵB . Explicitly, for b ∈ B we have

ϵ(b) = ϵ(b1)π(b2) = π(ϵ(b1)b1) = π(b).

Since B is a subcoalgebra in A, this implies B ⊆ CA as well.
For the opposite inclusion AC ⊆ B, normality of restriction tells us that AC lies

in Corep(B), so that ∆(AC) ⊆ A ⊗ B. We apply the counit on the left to find
AC ⊆ B, and hence AC = B.

The final inclusion CA ⊆ B follows from the A-module coalgebra structure on
C. Indeed, for any a ∈ CA we have π(a1)⊗ a2 = 1⊗ a ∈ C ⊗A, and hence

π(Sa1)⊗ a2 =
(
1 · Sa1

)
⊗ a2 =

(
π(a1) · Sa2

)
⊗ a3 = 1⊗ a.

Apply idC⊗S to the above expression to see that S(a) ∈ AC = B whenever a ∈ CA.
This gives a = S−1S(a) ∈ S−1(B) = B, and verifies the equality CA = B. □

We apply Lemma 7.4 to the quantum group setting, as described above.

Corollary 7.5. For arbitrary G and q,

ū∗
qO(Gq) = O(Gq)

ū∗
q = O(G∗

ε).

7.3. Normality of restriction for the quantum Borel. We consider the cat-
egory Rep(Bq) of representations for the positive quantum Borel. These are inte-
grable U+

q -representations which are equipped with a compatible grading by the
character lattice X for G. As with the full quantum group, we have the tensor
embedding

Fr≥0 : Rep(B∗
ε )→ Rep(Bq)

which is obtained by restricting along the algebra map fr|U+
q
: U+

q → (U∗
ε )

+ [44, 39].
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We also have the non-negative subalgebra ū≥0
q in ūq, which sits as a subcomodule

subcoalgebra in ūq. Hence we obtain a natural action of Rep(Bq) on the category
of representations Rep(ū≥0

q ), and the restriction functor

Rep(Bq)→ Rep(ū≥0
q )

endows Rep(ū≥0
q ) with a pointed module category structure over Rep(Bq).

One can use Lentner’s normality result [39, Lemma 6.6], or [44, Proposition
35.3.1], to obtain the following non-negative analog of Proposition 7.1.

Proposition 7.6 ([44, 39]). The restriction functor Rep(Bq)→ Rep(ū≥0
q ) is nor-

mal, and has kernel equal to the image of Rep(B∗
ε ) in Rep(Bq) under quantum

Frobenius.

8. Restriction and simple Gq-representations

Before turning to a discussion of the Steinberg representation, we record some
helpful results which describe simple Gq-representations and their behaviors under
restriction. For convenience of presentation,

We suppose that G is simply-connected throughout this section.

Remark 8.1. One recovers an analysis of the simples for non-simply-connected G
by noting that Rep(Gq) sits in its simply-connected form Rep(Gscq ) as the full sub-
category of representations whose P -grading is supported on the character lattice
X for G.

8.1. Generic information. The following is well-known at most parameters q.

Lemma 8.2 ([4, Lemma 1.13]). Consider a Gq-representation V , and let Πl(V )
denote the subset of weights µ ∈ P with Vµ non-vanishing. Then Πl(V ) is stable
under the action of the Weyl group on P .

Proof. It suffices to consider the case where V is finite-dimensional. Let v ∈ V be
nonzero and of weight µ. Fix simple α and take m = −(α, µ)/dα. We claim that

if m ≥ 0 then E
(m)
α · v ̸= 0, and if m ≤ 0 then F

(m)
α · v ̸= 0. Supposing this claim

is valid, we find that Vσα(µ) = Vµ+mα is non-zero, that Πl(V ) is stable under the
actions of the simple reflections in W , and hence that Πl(V ) is stable under the
action of the Weyl group.

To establish the claim, we reduce to the case of G = SL(2) at a parameter ζ
by restricting along the root subgroup for α. Now, by induction on the length,
we reduce further to the case where V is a simple SL(2)ζ-representation. Here all
the simples are of the form Fr(L1) ⊗ L2 where L1 is a representation for classical
SL(2) and L2 has highest weight < ord ζ(α, α), and the claim follows by a direct
inspection. □

For a given simple representation L(λ) we take Πl(λ) = Πl(L(λ)). A classical
fact tells us that the minimal element in this set is w0λ [40, Theorem 4.12] [33,
Proposition 21.3, Exercise 21.4(6)]. We therefore obtain the following.

Lemma 8.3. For λ ∈ P+, L(λ) has lowest weight w0λ, and L(λ)
∗ = L(−w0λ).
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8.2. Restrictions of simple Gq-representations. Below we take

Pl =

{
λ ∈ P : 0 ≤ (α, λ)

dα
< lα ∀ α ∈ ∆

}
.

In [49] such weights are called (l-)restricted. These are weights of the form λ =∑
α cαωα, where the ωα are the fundamental weights associated to simple roots α,

and the coefficients satisfy 0 ≤ cα < lα. We note that the class of simples L(λ)
of restricted highest weight is closed under duality. This just follows from the fact
that w0∆ = −∆.

Lemma 8.4 ([49, Lemma 9.3.2]). For any λ ∈ Pl, the simple representation L(λ)
satisfies

L(λ)ū
+
q = L(λ)v

+
q = L(λ)λ.

To be clear, by the ū+q or v+q -invariants here we mean the collections of vectors
which are annihilated by all Eα or Eα, for α ∈ ∆l, respectively.

Proof. The equality L(λ)ū
+
q = L(λ)v

+
q is immediate, since all Kγ act as units on

L(λ). We restrict to Bq and, for any µ ∈ P , consider the product L(λ) ⊗ kµ. It

suffices to show that the invariants (L(λ) ⊗ kµ)ū
≥0
q lie in the span of the highest

weight vector, at arbitrary µ ∈ P . Let v(µ) denote the (unique-up-to-scaling)
highest weight vector in L(λ)⊗ kµ, which is just the highest weight vector in L(λ)
times any nonzero vector in kµ.

By the normality result of Proposition 7.6, the invariants (L(λ) ⊗ kµ)
ū≥0
q are

identified with a B∗
ε -representation via quantum Frobenius, and the socle of this

representation over B∗
ε lies in the socle of L(λ)⊗kµ over Bq, i.e. in the highest weight

space. It follows that v(µ) is contained in the B∗
ε -subrepresentation generated by

any nonzero vector w in (L(λ)⊗ kµ)ū
≥0
q .

From the expression λ =
∑
α cαωα, with each cα < lα by hypothesis, we find at

each simple root α that

σα(λ− lαα) = λ− cαα+ lαα = λ+ (lα − cα)α > λ.

In particular λ − lαα /∈ Πl(λ). It follows that any nonzero homogeneous w in

(L(λ) ⊗ kµ)
ū≥0
q which is of degree < λ + µ generates a subrepresentation which

does not contain v(µ). By our previous observations about B∗
ε -subrepresentations

in (L(λ)⊗ kµ)ū
≥0
q , no such nonzero vector exists. This forces

(L(λ)⊗ kµ)ū
≥0
q ⊆ k · v(µ).

□

Proposition 8.5 ([49, Proposition 9.3.4]). For each λ ∈ Pl, the associated simple
L(λ) in Rep(Gq) restricts to a simple object in Rep(ūq).

Proof. One employs Lemma 8.4 and proceeds exactly as in [49]. □

By the usual analysis with baby Verma modules, one sees that simple repre-
sentations in Rep(ūq) are characterized by their highest weights. These highest
weights are, by definition, characters for the group Ā = (P/P ∗)∨, i.e. elements in
the quotient P/P ∗. Now, the projection P → P/P ∗ restricts to provide a bijection

Pl
∼→ P/P ∗, so that

| Irrep(ūq)| = |P/P ∗| = |Pl|.
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Hence Proposition 8.5 implies the following.

Corollary 8.6. For any simple representation L(λ̄) in Rep(ūq) there is a simple
representation L(λ) in Rep(Gq) for which

res−q (L(λ)) = L(λ̄).

One sees from Corollary 8.8 below that this simple lift L(λ) of L(λ̄) is unique.

8.3. Steinberg decomposition. We use Lemma 8.4 and Proposition 8.5 to re-
cover Steinberg’s tensor product theorem at arbitrary q.

Theorem 8.7 ([41, Theorem 7.4]). Suppose that G is simply-connected. For any
λ ∈ P+ we have a unique decomposition λ = λ0 + λ1 with λ1 ∈ P ∗ and λ0 ∈ Pl,
and a corresponding isomorphism of Gq-representations

Fr(L(λ1))⊗ L(λ0) = L(λ1)⊗ L(λ0)
∼→ L(λ).

Proof. We check highest weight vectors in the product L(λ1)⊗L(λ0). Since L(λ1)
is in the kernel of the restriction functor Rep(Bq)→ Rep(v+q ) we have

(L(λ1)⊗ L(λ0))v
+
q = L(λ1)⊗ L(λ0)v

+
q = L(λ1)⊗ kλ0

.

The final equality here follows by Proposition 8.5. We note that L(λ1) ⊗ kλ0
has

1-dimensional socle over Bq to see now that L(λ1)⊗L(λ0) has a 1-dimensional socle
over Bq. This Bq-socle is spanned by the unique-up-to-scaling element of weight λ.
This calculates the socle over Gq as soc(L(λ1)⊗ L(λ0)) = L(λ).

We note at this point that L(λ1) ⊗ L(λ0) and L(λ) both have lowest weights
w0λ. Take duals and apply a similar analysis to see that L(λ0)

∗⊗L(λ1)∗ has socle
L(−w0λ). We therefore observe a projection

p : L(λ1)⊗ L(λ0)→ L(−w0λ)
∗ = L(λ).

The kernel of this map must be trivial, since L(λ1)⊗L(λ0) has no additional highest
weight vectors, outside of the one of weight λ. Hence p is injective. Surjectivity
follows by simplicity of L(λ), so that we observe the claimed isomorphism. □

From Proposition 8.5 we know that res−q (L(λ)) is simple in Rep(ūq) whenever
λ ∈ Pl. So the Steinberg decomposition can alternately be expressed in terms of
the restriction functor res−q .

Corollary 8.8. Suppose that G is simply-connected. Then for any λ ∈ P+ the
simple representation L(λ) admits a unique decomposition

L(λ) = L(λ′′)⊗ L(λ′)
where L(λ′) restricts to a simple representation in Rep(ūq), and L(λ′′) is in the
kernel of res−q .

9. The Steinberg representation

We consider the dominant weight ρl :=
1
2

∑
γ∈Φ+(lγ − 1)γ and its corresponding

simple representation
St := L(ρl)

in Rep(Gq), for simply-connected G. The representation St is known as the Stein-
berg representation, and it has proved extraordinarily useful in studies of both
modular and quantum representation theory. See for example [34, 49, 4, 5, 3].
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Our next goal is to show that the Steinberg representation is both projective
and injective in Rep(Gq), and that it restricts to a projective and injective object
in Rep(ūq) (cf. [3, 49, 4, 5, 2]). However, these points are more easily argued in a
locale which lies between these two categories.

In this section we analyze the behaviors of the Steinberg representation in the
category of torally extended small quantum group representations Rep(u̇q). We then
return to a discussion of Gq-representations and ūq-representations in Sections 10
and 11. Our approach follows those of Parshall-Wang [49] and Andersen-Polo-Wen
[4], to an extent, though we employ basic results for Hopf algebras [38] in order to
avoid intricate arguments with induction.

We note that ρl does not lie in the character lattice forG, at a general non-simply-
connected group. So we restrict our attention to the simply-connected setting.

Throughout the section we assume G is simply-connected!

9.1. Torally extended small quantum group representations. We consider
the tensor category Rep(u̇q) of “torally extended” small quantum group represen-
tations. Specifically we consider

Rep(u̇q) =

{
The category of vq-modules with a

compatible grading by the character lattice X

}
. (17)

Since we’ve restricted ourselves to the simply-connected setting, this character lat-
tice is just the weight lattice X = P . By a compatible P -grading we mean that
Eγ and Fγ shift degrees on a u̇q-representation V by γ and −γ respectively, and
that the Kν act on each homogeneous subspace Vλ ⊆ V as the corresponding scalar
q(ν, λ).

Our notation (17) is taken from [44, § 31.1 & 36.2], where Rep(u̇q) is constructed
as the category of “unital” representations for a non-unital algebra u̇q with gener-
ators Eα1λ and Fα1λ, for α ∈ ∆l and λ ∈ P , which satisfy

Eα1λ · Fβ1µ = δµ,λ+βEαFβ1µ and Fβ1µ · Eα1λ = δλ,µ−αFβEα1λ,

as well as relations deduced from the usual quantum Serre relations.

9.2. The smallest quantum algebra and u̇q-representations. Each of the
generators for ūq act in the obvious way on u̇q-representations. In particular, the
elements Eγ and Fγ act on a u̇q-representation via the corresponding elements in
vq, and the characters ξ ∈ Ā act as the semisimple operators

ξ · v = ξ(λ) · v for homogeneous v ∈ V , λ = deg(v).

In this way we obtain a natural restriction functor Rep(u̇q) → Rep(ūq) and, as in
Section 5.3, Rep(ūq) has the natural structure of a pointed module category over
Rep(u̇q).

For the maximal torus T ∗ in the dual group G∗, we consider the tensor subcat-
egory Rep(T ∗

ε ) of P ∗-graded vector spaces in Rep(u̇q). One checks the following
directly.

Lemma 9.1. The restriction functor Rep(u̇q)→ Rep(ūq) is normal, and has kernel
equal to the subcategory of P ∗-graded vector spaces Rep(T ∗

ε ) ⊆ Rep(u̇q).
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We also have a natural restriction functor from Rep(Gq) to Rep(u̇q), which is a
tensor functor. This tensor functor factors res−q as

Rep(u̇q)

%%
Rep(Gq)

99

res−q

// Rep(ūq).

The above diagram and Proposition 8.5 imply the following.

Lemma 9.2. For any restricted weight λ ∈ Pl, the associated simple L(λ) in
Rep(Gq) restricts to a simple object in Rep(u̇q).

9.3. Induction for u̇q-representations. We consider the category Rep(u̇≤0
q ) of

character graded representations for the non-positive subalgebra v≤0
q in vq, and the

restriction functor Rep(u̇q)→ Rep(u̇≤0
q ). We have the right adjoint to restriction

R.ind := R.ind
u̇q

u̇
≤0
q

: Rep(u̇≤0
q )→ Rep(u̇q),

as well as the left adjoint

L.ind := L.ind
u̇q

u̇
≤0
q

: Rep(u̇≤0
q )→ Rep(u̇q).

One can write L.ind(V ) explicitly as L.ind(V ) = vq ⊗v
≤0
q
V ∼= v+q ⊗ V , where the

Eγ and Fγ act via the left factor and the P -grading is given by

deg(Em1
γ1 · · ·E

mr
γr ⊗ v) = deg(v) +

∑
i

miγi.

Lemma 9.3. For any finite-dimensional u̇≤0
q -representation V ,

R.ind(V ) = L.ind(V ∗)∗ and L.ind(V ) = R.ind(V ∗)∗.

In particular, R.ind sends finite-dimensional u̇≤0
q -representations to finite-dimensional

u̇q-representations.

In the proof we employ the pivotal structure id
∼→ (−)∗∗ on Rep(u̇q) which is

provided by the action of the character Kρ.

Proof. We consider the first identification. Since Rep(u̇q) is generated by its finite-
dimensional representations, under filtered colimits, it suffices to provide natural
isomorphisms

Homu̇q
(W,L.ind(V ∗)∗) ∼= Hom

u̇
≤0
q
(W,V )

at all finite-dimensional W in Rep(u̇q). Now, for finite-dimensional V and W we
have the sequence of natural isomorphisms

Homu̇q
(W,L.ind(V ∗)∗) ∼= Homu̇q

(W ∗∗,L.ind(V ∗)∗)
∼= Homu̇q

(L.ind(V ∗),W ∗)
∼= Hom

u̇
≤0
q
(V ∗,W ∗) ∼= Hom

u̇
≤0
q
(W,V )

which realize L.ind(V ∗)∗ as a, and hence the, right adjoint to restriction. As a
consequence we see that R.ind preserves finite-dimensional representations, since
L.ind preserves finite-dimensional representations. The identification L.ind(V ) =
R.ind(V ∗)∗ is established similarly. □
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For any λ ∈ P , with associated 1-dimensional simple u̇≤0
q -representation kλ, we

take
R.ind(λ) = R.ind(kλ) and L.ind(λ) = L.ind(kλ).

We have
dim(R.ind(λ)) = dim(L.ind(λ)) = dim(v+q ) =

∏
γ∈Φ+

lγ

at each λ. We note that L.ind(λ) has a 1-dimensional lowest weight space of
weight λ, and 1-dimensional highest weight space of weight λ + 2ρl, where ρl =
1
2

∑
γ∈Φ+(lγ − 1)γ. Lemma 9.3 now tells us that R.ind(λ) has 1-dimensional high-

est and lowest weights spaces as well, of weights λ and λ− 2ρl respectively.

Lemma 9.4. For any λ ∈ P , R.ind(λ) has a unique highest weight vector which
is of weight λ. This highest weight vector generates a simple subrepresentation in
R.ind(λ), and identifies the socle as

soc(R.ind(λ)) = the unique simple u̇q-rep of highest weight λ.

Proof. Let L′(µ) denote the simple u̇q-representation of highest weight µ. Highest
weight vectors in R.ind(λ), of weight µ ∈ P say, are identified with maps M(µ)→
R.ind(λ) from the corresponding baby Verma module M(µ) = L.ind

u̇q

u̇
≥0
q

(µ). We

have by adjunction

Homu̇q
(M(µ),R.ind(λ)) ∼= Hom

u̇
≤0
q
(M(µ), kλ).

SinceM(µ) is cyclically generated over u̇≤0
q by its highest weight spaceM(µ)µ ∼= kµ

we restrict along the projection M(µ)→ kµ to get

Hom
u̇
≤0
q
(M(µ), kλ)

∼← Hom
u̇
≤0
q
(kµ, kλ) =

{
k if µ = λ
0 otherwise,

and also

Hom
u̇
≤0
q
(kµ, kλ)

∼→ Hom
u̇
≤0
q
(L′(µ), kλ) ∼= Homu̇q

(L′(µ),R.ind(λ)).

The first expression tells us that R.ind(λ) admits a highest weight vector of weight
µ if and only if λ = µ. The second expression says that this vector defines a map
L′(λ)→ R.ind(λ) which is unique up to scaling. □

We similarly calculate the cosocle for R.ind(λ).

Lemma 9.5. At any weight λ we have

cosoc(R.ind(λ)) = the unique simple u̇q-rep of lowest weight λ− 2ρl.

Proof. Via duality and Lemma 9.3 it suffices to show that the socle in L.ind(µ) is
identified with the unique simple u̇q-representation of highest weight µ + 2ρl, at
arbitrary µ. For this we note that L.ind(µ) = v+q as a v+q -representation. So this
representation has a unique highest weight vector of weight µ + 2ρl if and only
if v+q has 1-dimensional socle as a module over itself, i.e. 1 dimensional space of

v+q -invariants.

Now, any invariant vector in v+q decomposes into a sum of homogeneous invariant

vectors, under the natural Q-grading on v+q , and any homogeneous invariant vector

contributes a unique non-vanishing v≥0
q -invariant vector in the free module

v≥0
q =

⊕
χ

v≥0
q ⊗k[Kα:α∈∆] kχ.
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Here the χ run over all characters for the (finite abelian) group generated by the
units Kα in vq. However, we know that the invariants in any finite-dimensional
Hopf algebra are 1-dimensional [45, Theorem 2.1.3] [38]. So we have

dimL.ind(µ)v
+
q = dim(v+q )

v+
q ≤ 1.

Since the unique vector v of weight µ+2ρl in L.ind(µ) provides such an invariant
vector, we conclude

L.ind(µ)v
+
q = L.ind(µ)µ+2ρ = k · v.

Uniqueness of the highest weight vector calculates the socle in L.ind(µ) as the
simple u̇q-rep of highest weight µ+ 2ρl. □

Lemma 9.6. For any weight λ ∈ P , the identity map is the unique u̇q-linear
endomorphism of R.ind(λ), up to scaling.

Proof. Since R.ind(λ) is of highest weight λ, and R.ind(λ)λ is 1-dimensional, we
have

Endu̇q
(R.ind(λ)) ∼= Hom

u̇
≤0
q
(R.ind(λ), kλ) ∼= End

u̇
≤0
q
(kλ) = k · id.

□

9.4. The Steinberg representation and u̇q-extensions. We consider the Stein-
berg representation St in Rep(Gq), which we recall is the simple representation
St = L(ρl) of highest weight ρl =

1
2

∑
γ∈Φ+(lγ − 1)γ. By Lemma 9.2, the restric-

tion St |u̇q
to Rep(u̇q) is still simple. It is, more specifically, the unique simple

u̇q-representation of highest weight ρl.

Lemma 9.7 (cf. [49, Theorem 9.10.3]). At ρl we have R.ind(ρl) ∼= St |u̇q
. Further-

more, this object is self-dual.

Proof. We have w0ρl = −ρl so that St has lowest weight −ρl and is self-dual, by
Lemma 8.3. Hence its restriction St |u̇q

is self-dual as well. So we need only establish
the claimed isomorphism R.ind(ρl) ∼= St |u̇q

.
By Lemmas 9.4 and 9.5 there is a nontrivial inclusion i : St |u̇q

→ R.ind(ρl)
and projection p : R.ind(ρl) → St |u̇q

. Since these two representations have 1-
dimensional highest weight space of weight ρl, both i and p restrict to isomorphisms
on the respective highest weight spaces. In particular, the composites ip and pi are
both nonzero. Since

dimEndu̇q
(St |u̇q

) = dimEndu̇q
(R.ind(ρl)) = 1

we conclude that both of these composites are isomorphisms, and hence that both
i and p are isomorphisms. □

Lemma 9.8. We have isomorphisms of u̇q-representations

R.ind(ρl) ∼= L.ind(−ρl) ∼= R.ind
u̇q

u̇
≥0
q

(−ρl) ∼= L.ind
u̇q

u̇
≥0
q

(ρl).

Proof. By Lemmas 9.3 and Lemma 9.7 we have

L.ind(−ρl) = R.ind(ρl)
∗ ∼= R.ind(ρl).
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By exchanging q with q−1 and considering the algebra isomorphism ψ : u̇q
∼→ u̇q−1

which exchanges Eα with Fα, and takes 1λ to 1−λ, we see that

resψ R.ind
u̇q−1

u̇
≤0

q−1

(ρl) = R.ind
u̇q

u̇
≥0
q

(−ρl).

Since St |u̇q
is simple with highest and lowest weights ρl and −ρl respectively we

also have

St |u̇q
= resψ(St |u̇q−1

) = resψ R.ind
u̇q−1

u̇
≤0

q−1

(ρl).

So R.ind(ρl) ∼= St |u̇q
∼= R.ind

u̇q

u̇
≥0
q

(−ρl). Finally by fiddling with (self-)dualities

again we obtain R.ind
u̇q

u̇
≥0
q

(−ρl) ∼= L.ind
u̇q

u̇
≥0
q

(ρl). □

We now observe vanishing of extensions for the Steinberg representation.

Proposition 9.9 (cf. [5, Lemma 4.2]). For any finite-dimensional u̇q-representation
V we have

Ext1u̇q
(St |u̇q

, V ) = Ext1u̇q
(V,St |u̇q

) = 0.

Proof. By duality it suffices to prove Ext1u̇q
(V,St |u̇q

) = 0, and by considering ex-
act sequences on cohomology it suffices to establish such vanishing at simple V .
Consider an extension

0→ St |u̇q
→W → V → 0, (18)

with V simple and of highest weight µ. Then, by Lemma 9.4, V has lowest weight
µ′ with µ′ ≥ µ− 2ρl.

In the case where µ ≱ ρl,W has a unique nonzero highest weight vector of weight
ρl, up to scaling, and the u̇≤0

q -submodule W ′ in W generated by the all weight

spaces Wτ with τ ̸= ρl is of codimension 1 with quotient W/W ′ ∼→Wρl
∼= kρl . This

projection lifts to a map W → R.ind(ρl) = St |u̇q
which splits the sequence (18). A

similar argument splits the sequence when µ = ρl.
In the final case where µ > ρl, W has 1-dimensional lowest weight space of

weight −ρl. We have the u̇≥0
q -projection W → W−ρl

∼= k−ρl and corresponding

map W → R.ind
u̇q

u̇
≥0
q

(−ρl) = St |u̇q
, which again splits (18). □

9.5. Projective and injective u̇q-representations.

Lemma 9.10. The category rep(u̇q) of finite-dimensional u̇q-representations has
enough injectives, and any injective object in rep(u̇q) is injective in Rep(u̇q).

Proof. As in [49, pg 118] we consider the right adjoint I : VectP = Rep(Tq) →
Rep(u̇q) to the restriction functor Rep(u̇q) → Rep(Tq). We note that I sends
injectives to injectives since restriction is exact. By an explicit expression

I(V ) = lim−→
α

HomTq (u̇q, Vα)
∼= lim−→

α

Homk(v
+
q ⊗ v−q , Vα)

∼= Homk(v
+
q ⊗ v−q , V ),

where the colimit here is indexed over finite-dimensional subrepresentations Vα ⊆
V , we see that I preserves finite-dimensional objects.

Now, since all objects in Rep(Tq) are injective, the unit of the adjunction V →
I(V ) maps any finite-dimensional u̇q-representation to a finite-dimensional injective
object. Since the restriction functor is faithful, this unit map V → I(V ) has trivial
kernel. So we see that rep(u̇q) has enough injectives, and injectives in rep(u̇q) are
injective in Rep(u̇q). □
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Proposition 9.11. The Steinberg representation St restricts to a simultaneous
projective and injective object in Rep(u̇q).

Proof. Proposition 9.9 tells us that St |u̇q
is injective in rep(u̇q). By Lemma 9.10,

it follows that St |u̇q
is injective in Rep(u̇q). For projectivity, Proposition 9.9 says

that St |u̇q
is also projective in rep(u̇q). For a possibly infinite-dimensional u̇q-

representation M , we can write M as a filtered colimit M = lim−→α
Mα of finite-

dimensional subrepresentations. We then employ compactness of St |u̇q
in Rep(u̇q)

and exactness of filtered colimits to find

Ext1u̇q
(St |u̇q

,M) = lim−→
α

Ext1u̇q
(St |u̇q

,Mα) =
Prop 9.9

0.

Such vanishing ensures projectivity of St |u̇q
in Rep(u̇q). □

Corollary 9.12. The categories rep(u̇q) and Rep(u̇q) have enough projectives, and
projectives in rep(u̇q) remain projective in Rep(u̇q).

Proof. Take P = (St |u̇q
)⊗ (St |u̇q

) = (St |u̇q
)∗ ⊗ (St |u̇q

). This module is projective
and coevaluation provides a surjection P → 1. Tensoring with any representation
V provides a surjection P ⊗ V → V , and the object P ⊗ V is seen to be projective
via the existence of the adjunction

Homu̇q
(P ⊗ V,−) ∼= Homu̇q

(V, ∗P ⊗−) ∼= Homu̇q
(V, P ⊗−).

To elaborate, P ⊗− is an exact functor which takes injective values in Rep(u̇q)
(see Lemma 2.1). Hence P ⊗ − sends exact sequences to split exact sequences,
and we observe exactness of the above functor. We note finally that P ⊗ V is
finite-dimensional whenever V is finite-dimensional to see that rep(u̇q) has enough
projectives. □

10. Restriction, projectivity, and injectivity for simply-connected G

We prove that the Steinberg representation is both projective and injective in
Rep(Gq), in the simply-connected setting, and that it restricts to a simultaneously
projective and injective representation in Rep(ūq). We use this fact to find that
the restriction map

res−q : Rep(Gq)→ Rep(ūq)

both preserves, and detects, projective and injective objects in Rep(Gq).

10.1. Vibe check. In Section 9 we considered two “induction” functors, the left
and right adjoints to restriction Rep(u̇q) → Rep(u̇≤0

q ) for torally extended vq-
representations. We adopted the notations L.ind and R.ind for these functors.

From this point on we only consider right adjoints to restriction functors, and
any functor which we refer to as induction is the right adjoint to some restriction
functor.

10.2. Exactness of induction. We first recall a standard fact.

Lemma 10.1 ([22, §3.3]). Let A be a Hopf algebra. For any map of A-module
coalgebras A→ C, the right adjoint to restriction ind : Corep(C)→ Corep(A) is a
map of Corep(A)-module categories.
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Proof. Since the trivial corepresentation 1 is compact in Corep(C), the functor

ind(−) = HomC(1,−⊗A) = (−⊗A)C = −□CA
[18, Proposition 6] commutes with filtered colimits. So it suffices to establish the
proposed natural isomorphism ind(−⊗ res(V )) ∼= ind(−)⊗ V at finite-dimensional
V . But now the claim follows by duality, since we have the sequence of natural
identifications

HomC(res(−),−⊗ res(V )) ∼= HomC(res(−⊗ ∗V ),−)
∼= HomA(−⊗ ∗V , ind(−)) ∼= HomA(−, ind(−)⊗ V ).

□

Via Tannakian reconstruction, Lemma 10.1 tells us that the right adjoints to the
restriction functors

Rep(Gq)→ Rep(u̇q), Rep(u̇q)→ Rep(ūq), and Rep(Gq)→ Rep(ūq)

are naturally Rep(Gq)-linear, Rep(u̇q)-linear, and again Rep(Gq)-linear, respec-
tively.

Proposition 10.2. Let G be simply-connected. The right adjoint to restriction
Rep(ūq)→ Rep(u̇q) is faithfully exact.

Proof. We can just write down the adjoint. For any ūq-representation V there is a
unique lift of V to a P -graded vector space lift(V ) whose P -grading is supported on
Pl. We then take the orbit under the action of the simples kλ associated to λ ∈ P ∗

to get the P -graded vector space

ind(V ) =
⊕
λ∈P∗

kλ ⊗ lift(V ).

This graded vector space carries a natural u̇q-action specified by the formulae

Eα · (ζλ ⊗ v) = ζλ′ ⊗ (Eα · v) and Fα · (ζλ ⊗ v) = ζλ′′ ⊗ (Fα · v),
where

λ′ = λ+ deg(v) + α− deg(Eα · v) and λ′′ = λ+ deg(v)− α− deg(Fα · v).
This operation is functorial, is seen directly to provide a right adjoint to restriction,
and is faithful and exact by construction. □

Proposition 10.3. Let G be simply-connected. The right adjoint to restriction
Rep(u̇q)→ Rep(Gq) is exact.

We proceed as in the proof of [4, Theorem 4.8].

Proof. Let 1
∼→ E be a bounded below resolution of 1 in Rep(Gq) by objects of the

form Ei = Ēi ⊗ St, where Ēi is any representation in Rep(Gq). Then E restricts
to an injective resolution of the unit 1 → E|u̇q

in Rep(u̇q). For any V in Rep(u̇q)
we have the injective resolution V ⊗E|u̇q

and calculate the higher derived functors
of induction as

ind>0(V ) = H>0
(
ind(V ⊗ E|u̇q

)
)

∼= H>0
(
ind(V )⊗ E

)
= ind(V )⊗H>0(E) = 0.

Since the higher derived functors vanish, ind is exact. □

We combine Propositions 10.2 and 10.3 to see that induction from the smallest
quantum algebra to Rep(Gq) is also exact.
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Theorem 10.4. Let G be simply-connected. The right adjoint to restriction Rep(ūq)→
Rep(Gq) is faithfully exact.

Proof. The restriction functor res−q factors through Rep(u̇q). Hence the right ad-

joint to res−q factors as

Rep(ūq)
ind1−→ Rep(u̇q)

ind2−→ Rep(Gq).

So exactness follows immediately from Propositions 10.2 and 10.3.
Via exactness, we can prove faithfulness by observing non-vanishing of ind(L)

for each simple L in Rep(ūq). However, each simple L in Rep(ūq) is the image of
some simple L′ in Rep(Gq), by Corollary 8.6. So we have

0 ̸= Homūq

(
res−q (L

′), L
)
= Homūq

(
L′, ind(L)

)
.

In particular, ind(L) is nonzero. □

Remark 10.5. For q with odd order scalar parameters, Theorem 10.4 appears in
[5, Theorem 4.8].

10.3. Projectives and injectives.

Proposition 10.6. Let G be simply-connected. A Gq-representation is injective in
Rep(Gq) if and only if its image in Rep(ūq) is injective.

Proof. First note that the induction functor ind : Rep(ūq)→ Rep(Gq) satisfies

ind(1) = 1□(ūq)∗O(Gq) =
ū∗
qO(Gq).

By Corollary 7.5 this object is just O(G∗
ε), and in particular lies in the semisim-

ple subcategory Rep(G∗
ε) = ker(res−q ) in Rep(Gq). Hence the unit map of the

adjunction 1 → ind(1) is split. It follows that ind(1) contains 1 as a sum-
mand, and that each Gq-representation V appears as a summand in the induction
ind(res−q V ) ∼= ind(1)⊗ V .

Suppose first that V has injective image in Rep(ūq). Since V appears as a
summand in ind(1)⊗V , it suffices to show that ind(1)⊗V is injective in Rep(Gq).
We have the natural identification

HomGq (−, ind(1)⊗ V ) ∼= HomGq (−, ind(res−q V )) ∼= Homūq (res
−
q −, res−q V ),

from which we conclude exactness of the functor HomGq (−, ind(1)⊗ V ). It follows
that ind(1)⊗ V is injective, and hence that V is injective.

Suppose conversely that V is injective in Rep(Gq). To verify injectivity of

res−q (V ) in Rep(ūq), we show that the extensions Ext>0
ūq

(L, res−q V ) vanish for each

simple L in Rep(ūq). By Corollary 8.6, we can find a representation L′ in Rep(Gq)
with res−q (L

′) = L, and by exactness of induction we obtain an identification

Ext>0
ūq

(L, res−q V ) ∼= Ext>0
Gq

(L′, ind(res−q V )) ∼= Ext>0
Gq

(L′, ind(1)⊗ V ). (19)

Since V is injective, the product ind(1) ⊗ V is injective in Rep(Gq). Hence the
extensions (19) vanish. □

For projectivity, we see most clearly that one can detect finite-dimensional pro-
jectives via restriction, though we remove this constraint in a moment.

Lemma 10.7. The restriction functor Rep(Gq)→ Rep(ūq) preserves, and detects,
finite-dimensional projective objects.
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Proof. Suppose that V is projective in Rep(Gq). Then the functor

Homūq
(res−q (V ),−) = HomGq

(V, ind(−))

is exact by Theorem 10.4. So res−q (V ) is projective in Rep(ūq).
Suppose conversely that V is finite-dimensional and has projective image in

Rep(ūq). We have an identification

HomGq
(V,−) = HomG∗

ε
(1,Homūq

(res−q V,−)).

(Note that we employ finiteness of V here to ensure that, at any Gq-representation
W , the G∗

ε-representation Homūq (res
−
q V,W ) is integrable.) This functor is exact

by projectivity of res−q (V ) and semisimplicity of the category Rep(G∗
ε). □

By completely similar arguments, with G∗
ε and Proposition 7.1 replaced by T ∗

ε

and Lemma 9.1, respectively, we obtain toral analogs of Proposition 10.6 and
Lemma 10.7.

Proposition 10.8. An object V in Rep(u̇q) is injective if and only if its image in
Rep(ūq) is injective. A finite-dimensional object V in Rep(u̇q) is projective if and
only if its image in Rep(ūq) is projective.

We recall that the Steinberg representation is projective and injective in Rep(u̇q),
by Proposition 9.11. So Proposition 10.8 implies projectivity and injectivity of St
over ūq. We recall also that St has simple restriction to ūq, by Proposition 8.5.

Corollary 10.9. For simply-connected G, the Steinberg representation St is pro-
jective, injective, and simple over ūq.

We now “go backwards” to observe projectivity and injectivity of St over Gq.

Corollary 10.10 ([3]). Let G be simply-connected. The Steinberg representa-
tion St is both projective and injective in Rep(Gq), the subcategory rep(Gq) of
finite-dimensional Gq-representations has enough projectives, and any projective
in rep(Gq) is projective in Rep(Gq).

Proof. The first claim follows by the three previous results. The subsequent claims
are established just as in the proof of Corollary 9.12. □

We now understand infinite-dimensional projectives in Rep(Gq) via the following
observation.

Lemma 10.11. Let G be simply-connected. An object V in Rep(Gq) is projective
if and only if V is a summand of V ⊗ St⊗St. Similarly, V is injective if and only
if V is a summand of V ⊗ St⊗St.

Proof. If I is an injective representation then W ⊗ I is injective for all W (see
Lemma 2.1). So all products W ⊗St are injective. Furthermore, tensoring with the
coevaluation map 1 → St⊗ St∗ = St⊗St provides an injection V → V ⊗ St⊗St
at arbitrary V . In the case that V is injective, this injection splits, so that V is a
summand of the given product. Furthermore, since the class of injectives is closed
under taking summands, we see that this property characterizes injectives.

For projectives, we first claim that W ⊗St is projective for any W . This is clear
from self-duality of St, the adjunction

HomGq
(W ⊗ St,−) ∼= HomGq

(W,−⊗ St∗) ∼= HomGq
(W,−⊗ St),
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and the fact that −⊗St is an exact endomorphism to the subcategory of injectives
in Rep(Gq). Given this fact, we have the evaluation St⊗St = St∗⊗St→ 1 which
provides a surjection V ⊗ St⊗St → V at arbitrary V . When V is projective, this
surjection splits, and conversely splitting of this map implies projectivity of V . So
we establish the claimed result. □

As a corollary we see that the category Rep(Gq) is Frobenius, in the sense that
its projectives and injectives agree.

10.4. Simply-connected conclusions. We collect our findings.

Theorem 10.12. Let G be simply-connected. Consider the dominant weight ρl =
1
2

∑
γ∈Φ+(lγ − 1)γ and the corresponding simple Gq-representation St = L(ρl).

(1) The representation St is both projective and injective in Rep(Gq).

(2) The representation St restricts to an object which is simultaneously projec-
tive, injective, and simple in Rep(ūq).

(3) The category Rep(Gq) has enough projectives and injectives, and is Frobe-
nius.

(4) The subcategory rep(Gq) of finite-dimensional Gq-representations has enough
projectives and injectives, and is Frobenius.

(5) The inclusion rep(Gq) → Rep(Gq) preserves (and detects) projective and
injective objects.

(6) An object in Rep(Gq) is projective and injective if and only if its restriction
to Rep(ūq) is projective and injective.

11. Restriction, projectivity, and injectivity for general G

In this final section we generalize Theorem 10.12 to arbitrary semisimple groups.

11.1. Homological algebra along the quotient Gscq → Gq.

Lemma 11.1. Let G be a semisimple algebraic group, and let Gsc be the simply-
connected form for G.

(1) The categories rep(Gq) and Rep(Gq) have enough projectives and injectives.

(2) The inclusion functor rep(Gq) → Rep(Gq) preserves (and detects) projec-
tive and injective objects.

(3) An object in Rep(Gq) is projective if and only if it is injective.

(4) An object in Rep(Gq) is projective and injective if and only if its image in
Rep(Gscq ) is projective and injective.

Proof. (4) Note that Rep(Gq) is equal to the full subcategory of representations
in Rep(Gscq ) whose P -grading is supported on the character lattice X for G. We
let F : Rep(Gq) → Rep(Gscq ) denote the corresponding monoidal embedding and
consider the group of characters Σ = (P/X)∨. This group acts naturally on Gscq -

representations, and the invariants WΣ in any Gscq -representation W produce a
maximal Gq-subrepresentation in W . Indeed, taking Σ-invariants simply isolates
the subrepresentation in W consisting of those vectors which are supported on the
sublattice X in P .
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We have the natural Gscq -linear inclusion iW : WΣ → W and projection pW :

W →WΣ, and restrictions along iW and pW provide adjunctions

HomGsc
q
(F−,W ) = HomGq

(−,WΣ) and HomGsc
q
(W,F−) = HomGq

(WΣ,−).
(20)

Since taking Σ-invariants is an exact functor, the above adjunctions imply that a
Gq-representation P has projective (resp. injective) image in Rep(Gscq ) whenever P
is projective (resp. injective) in Rep(Gq).

Conversely, fully faithfulness of the embedding F implies that a given represen-
tation P over Gq is projective (resp. injective) in Rep(Gq) provided it has projective
(resp. injective) image in Rep(Gscq ). We therefore establish (4).

(1) Consider any Gq-representation V and any surjection P → FV from a pro-
jective in Rep(Gscq ). By Theorem 10.12, such P exists and can be taken to be finite-
dimensional when V is finite-dimensional. By the adjunction (20) we find that the
invariants PΣ are projective in Rep(Gq), and the induced surjection PΣ → V pro-
vides a projective covering of V . One similarly argues with injectives, so that we
obtain (1). Properties (2) and (3) are now inherited from Rep(Gscq ) via (1), (4),
and Theorem 10.12. □

For the smallest quantum algebra, we have the inclusion X → P and recover
X∗ as the intersection X∗ = X ∩ P ∗. So this inclusion reduces to an inclusion on
the quotients X/X∗ → P/P ∗. We therefore locate Rep(ūq) in its simply-connected
form Rep(ūscq ) as the full subcategory of ūscq -representations whose P/P ∗-grading
is supported on the subgroup X/X∗.

Lemma 11.2. Consider the smallest quantum algebra ūscq for Gscq , and the inclu-
sion Rep(ūq)→ Rep(ūscq ). A ūq-representation is projective (resp. injective) if and
only if its image in Rep(ūscq ) is projective (resp. injective).

Proof. Since the inclusion Rep(ūq) → Rep(ūscq ) is exact and fully faithful, any ūq-
representation V whose image in Rep(ūscq ) is projective (resp. injective) must be
projective (resp. injective) in Rep(ūq).

For the converse, take K∨ = coker(X/X∗ → P/P ∗) and consider the central
subgroup K = (K∨)∨ ⊆ ūscq . For any ūq-representation V and ūscq -representation
W , we have natural identifications

Homūsc
q
(V,W ) = Homūq

(V,WK) and Homūsc
q
(W,V ) = Homūq

(WK, V ).

These identifications are obtained by composing with the natural inclusion WK →
W and projection W → WK respectively. Since K is finite, taking K-invariants is
an exact functor, and we conclude that V is projective (resp. injective) in Rep(ūscq )
whenever V is projective (resp. injective) in Rep(ūq). □

11.2. Semisimple algebraic groups. We apply Lemmas 11.1 and 11.2 to obtain
a version of Theorem 10.12 for general G.

Theorem 11.3. Let G be a semisimple algebraic group and q be an arbitrary quan-
tum parameter. The following hold:

(1) The category Rep(ūq) is Frobenius.

(2) The category Rep(Gq) has enough projectives and injectives, and is Frobe-
nius.
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(3) The subcategory rep(Gq) of finite-dimensional representations has enough
projectives and injectives, and is Frobenius.

(4) The inclusion rep(Gq) → Rep(Gq) preserves (and detects) projective and
injective objects.

(5) An object in Rep(Gq) is projective and injective if and only if its restriction
to Rep(ūq) is projective and injective.

Proof. Points (2)–(4) were already covered in Lemma 11.1. Point (5) follows from
Theorem 10.12 (6) in conjunction with Lemma 11.1 (5) and Lemma 11.2. Point (1)
follows from (2), (5), and Corollary 8.6 in the simply-connected case. The general
case then follows by Lemma 11.2. Alternatively, we observe (1) via Skryabin’s
Theorem [53, Theorem 6.1]. □

11.3. An incomplete accounting of the literature. As we noted in the pre-
amble to Section 9, the Steinberg representation has a long and storied history in
both quantum and modular representation theory. We recall some of the quantum
hits below.

In [49] Parshall and Wang show that, for G = SL(n) and q of odd order, the
Steinberg representation is projective and injective in Rep(SL(n)q), and also in
Rep(ūq) [49, Theorem 9.10.3, Corollary 9.10.4]. Their proof relies on an analysis
of a gaggle of induction functors, between various quantum groups, and a reci-
procity theorem which essentially counts the lengths of indecomposable injectives
in Rep(u̇q) [49, Proposition 9.8.4]. As the authors note, their methods are directly
inspired by known phenomena in modular representation theory. See for example
[34, Ch 10 & 11].

In [4] Andersen, Polo, and Wen prove that the Steinberg representation is pro-
jective and injective in Rep(Gq), but now for arbitrary simply-connected G and q
of a prime power order [4, Lemma 6.6, Theorem 9.8]. In this context the authors
rely on a rigorous analysis of induction from the quantum Borel H∗(Gq/Bq,−),
and a linkage principle for Gq-representations [4, § 8]. In a subsequent text [5]
Andersen, Polo, and Wen prove projectivity and injectivity of St over the small
quantum group, under essentially the same restrictions on G and q [5, Theorem
4.3]. In [5] it is also shown that the induction functor from the small quantum
group Rep(ūq)→ Rep(Gq) is exact and faithful [5, Theorem 4.8].

In [6] Andersen and Wen again work at q of prime power order and provide
analyses which parallel those of [4, 5], but now in mixed characteristic. In [2]
Andersen addresses induction and tilting modules for simply-connected G at q of
odd order which is greater than the Coxeter number. In [3] Andersen returns to
this topic, and proves a linkage principle for the big quantum group Gq at simply-
connected G and arbitrary q. As suggested in [3, pg 14], one can argue from the
strong linkage principle that St is both projective and injective in Rep(Gq) [1],
though the details are not entirely trivial and do not appear in the referenced text.

The papers [5, 6, 3] provide the most recent treatments of these topics which
are relatively general and completely rigorous, as far as I know. Since [5, 6] it has
often been proposed, either implicitly or explicitly, that the methods of these texts
generalize immediately to most quantum parameters, most odd quantum param-
eters, or all parameters q. (Consider, for example, the curious appearance of the
Steinberg representation in [47, proof of Lemma 4.1].)
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In reconsidering this topic however, the transition from the odd order case to
the even order case did not seem to be completely transparent. Hence we produce
this text.

Appendix A. Braid group action on vq

For this section vq specifically denotes the subalgebra in Uq generated by the
simple root vectors Eα and Fα with lα > 1, the grouplikes Kν , and the distinguished
generators from Propositions 6.2 and 6.4 at low order q.

Our goal is to show that the subalgebra vq is preserved under the action of the
braid group operators on Uq. It will follow that vq is the smallest subalgebra in
Uq which contains all of the simple root vectors Eα and Fα with lα > 1, all of the
grouplikes Kν , and is stable under the action of the braid group Bg, i.e. that vq is
identified with the subalgebra of (9).

Let us be clear here that our braid group Bg, for g = Lie(G), acts on Uq via the
specific operators

Tα = T ′′
α,1

from [43, §37].

Remark A.1. The reader should note that the usual braid group [8] (only) appears
in type An, from the perspective of the works [43, 44]. The “braid group” we are
referring to here is a group Bg which depends on the Dynkin type of g. Specifically,
the operators Tα in Bg are only supposed to satisfy the relations

Tαm
. . . Tα1

= Tβm
. . . Tβ1

whenever
∏
i

σαi
=

∏
i

σβi
and length(σ) = m.

A.1. Reducing to almost-simple G at the lacing number. When each li is
greater than the lacing number for its associated almost-simple factor in G, the
algebra vq is seen to be stable under the action of Bg by direct inspection. Namely,
for each pair of simple roots α and β the explicit expression of Tβ(Eα) from [43]
shows that Tβ(Eα) is in the subalgebra generated by the simple Eν in Uq. The
same is true of the F ’s.

According to this information, we need only check the case where some of the li’s
are less than or equal to the lacing numbers for their associated factors in G. The
problem then reduces to considering almost-simple G at such low order parameters.
We deal with these particular almost-simple cases below.

A.2. Some lemmas.

Lemma A.2. If β is a simple root with qβ = −1, then Tβ = T−1
β .

Proof. In this case Kβ = K−1
β , and Kβ centralizes both Eβ and Fβ . So the result

follows from the explicit expression of T−1
β [44, §37.1.3] and the fact that (−1)rq±rβ =

1 at every integer index r. □

We translate between computations for the E’s and F ’s via a “symmetry” on
the quantum enveloping algebra. Specifically, we observe the following braid group
equivariant isomorphism.

Lemma A.3 ([43]). At an arbitrary parameter q, there is an anti-algebra isomor-
phism ϕ : Uq−1 → Uq,

ϕ(E(n)
α ) = F (n)

α , ϕ(F (n)
α ) = E(n)

α , ϕ(Kγ) = K−1
γ ,
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with Tβϕ(x) = ϕTβ(x) at each simple β and x ∈ Uq.
This anti-algebra isomorphism restricts to an isomorphism between vq−1 and vq.

Proof. The first claim is immediate from the explicit expressions of the braid group
operators [44, §37.1.3]. As for vq, the distinguished generators are obtained by
applying braid group operators the the Eα and Fα with lα > 1. So one sees that ϕ
maps the generators for vq−1 bijectively to the generators for vq. □

A.3. Types B, C and F .

Lemma A.4. When G is of type Bn, Cn, or F4, and l = 2, the algebra vq is stable
under the action of the braid group Bg.

Proof. The main arguments for types Bn and Cn already appear in the arguments
for type F4. So we only cover the F4 case.

Enumerate the simple roots as {β4, β3, α2, α1}, with the βi long, the αi short,
and consecutive roots neighbors in the Dynkin diagram. Take Ei = Eαi at i < 3
and Ej = Eβj at j ≥ 3. Consider the subalgebras v2q, v

3
q, v

4
q in vq defined by

v2q = the subalg gen’d by all K’s, E1, E2, F1, and F2.

v3q = the subalg gen’d by v2q and E32, F32,

v4q = the subalg gen’d by v3q and E432, F432 = vq.

Take also v5q = vq. It suffices to show that Tν(v
j
q) ⊆ vj+1

q for each simple ν and all
j ≤ 4.

We let Ti = Tαi
, or Tβi

when appropriate. In the case j = 2, v2q is immediately
seen to be stable under the actions of T1 and T2, and is invariant under T4. So we
need only check T3, and since the K’s are stable under the Ti we need only check
that T3 applied to the E’s and F ’s lie in v3q. The vectors E1 and F1 are T3 invariant,
and

T3(E2) = E32, T3(F2) = F32 ∈ v3q.

We’re done.
For the Ti applied to v3q, we need only check the values of these operations on the

new vectors E32 and F32. One sees directly from the definitions, or the braid group
relations, that TiTj(Er) = TjTi(Er) and TiTj(Fr) = TjTi(Fr) whenever |i− j| > 1.
So we have

T1(E32) = T1T3(E2) = T3T1(E2) ∈ T3(v2q) ⊆ v3q ⊆ v4q,

and similarly find T1(F32) ∈ v4q. Via the rank 2 calculation [44, §39.2.3 (b)], and

the fact that T−1
3 = T3 by Lemma A.2, we have also

T2(E32) = T3T3T2T3(E2) = T3(E2) = E32 and similarly T2(F32) = F32 ∈ v3q.

Here we’ve used [44, §39.2.3] specifically for the calculation T3T2T3(E2) = E2.
For T3, we have T 2

3 = id by Lemma A.2 so that

T3(E32) = T 2
3 (E2) = E2 and T3(F32) = T 2

3 (F2) = F2.

For T4 we have simply T4(E32) = E432 and T4(F32) = F432. These elements are all
in v4q, so that Ti(v

3
q) ⊆ v4q at all i.

For v4q we need to check

Ti(E432), Ti(F432) ∈ v4q for all i.
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For i = 1 or 2 we have

Ti(E432) = TiT4(E32) = T4Ti(E32) ∈ T4(v3q) ⊆ v4q.

For i = 4 we have T4 = T−1
4 by Lemma A.2 so that T4(E432) = T 2

4 (E32) = E32 ∈ v4q.
For i = 3 we apply the braid group relations [44, Theorem 39.4.3] to get

T3(E432) = T3T4T3(E2) = T4T3T4(E2) = T4(E32) = E432.

The results for F432 are obtained similarly. □

A.4. Type G2.

Lemma A.5. For G of type G2, and l = 3, the algebra vq is stable under the braid
group action.

Proof. Write ∆ = {β, α} with α short and β long. The algebra vq is generated by
Eα, Eβ+α = Tβ(Eα), and the corresponding F ’s. We have Tβ(Eα) = Eβ+α ∈ vq
already and

Tβ(Eβ+α) = T 2
β (Eα) = Eα ∈ vq

by Lemma A.2, since qβ = −1. For α we have Tα(Eα) = −FαKα and

Tα(Eβ+α) = E(2)
α Eβ − q−2

α EαEβEα + EβE
(2)
α ∈ vq,

by [44, §39.2.2]. This shows Tν(v
+
q ) ⊆ vq at all simple ν and, via symmetry, we

obtain Tν(v
−
q ) ⊆ vq as well. □

Lemma A.6. For G of type G2, and l = 2, the algebra vq is stable under the braid
group action.

Proof. We recall

E2α+β = E(2)
α Eβ + EβE

(2)
α + EαEβEα.

For the simple root vectors we have

Tα(Eα) = −FαKα, Tβ(Eα) = Eβ+α = EβEα − qαEαEβ , Tβ(Eβ) = −FβKβ .

We have [3]qα = −1 so that E
(3)
α = −E(2)

α Eα, which gives

Tα(Eβ) = E
(3)
α Eβ + qαE

(2)
α EβEα − EαEβE(2)

α − qαEβE(3)
α

= −EαE2α+β + qαE2α+βEα.

We are only left to check the values of Tα and Tβ on E2α+β .
We have

Eα = TβTαTβTαTβ(Eα) = TβTα(E2α+β)

by the rank 2 calculation [44, §39.2.2 (b)] and, using the explicit formula for the
inverse T−1

β [44, §37.1], we the obtain

Tα(E2α+β) = T−1
β (Eα) = −qαEβEα + EαEβ .

For Tβ(E2α+β) we have

Tβ(E
(2)
α ) = E

(2)
β E(2)

α − qαEβE(2)
α Eβ − E(2)

α E
(2)
β
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[44, §37.1] and Tβ(Eβ) = KβFβ so that

Tβ(E2α+β − EαEβEα)

= Kβ(FβTβ(E
(2)
α )− Tβ(E(2)

α )Fβ)

= −Kβ([E(2)
β , Fβ ]E

(2)
α − qα

[
Kβ ; 0

1

]
E

(2)
α Eβ − qαEβE(2)

α

[
Kβ ; 0

1

]
− E(2)

α [E
(2)
β , Fβ ])

= −Kβ([E(2)
β , Fβ ]E

(2)
α − E(2)

α [E
(2)
β , Fβ ]) + qαKβ

[
Kβ ; 0

1

]
(E

(2)
α Eβ + EβE

(2)
α ).

Now,

[E
(2)
β , Fβ ] =

[
Kβ ;−1

1

]
Eβ

so that the expression reduces to

−qαKβ(
[

Kβ ; 0

t

]
− q−3

α

[
Kβ ; 1

t

]
)(E(2)

α Eβ + EβE
(2)
α )

= E(2)
α Eβ + EβE

(2)
α = E2α+β − EαEβEα

by [43, §6.4 (b4)]. Hence Tβ(E2α+β) = E2α+β − EαEβEα − qαKβEβ+αFβEβ+α.
The above arguments establish inclusions T (v+q ) ⊆ vq for all braid group opera-

tors T , and by symmetry we have T (v−q ) ⊆ vq as well. □

Appendix B. Normality below the lacing number

We cover the details for the proof of Lemma 7.3 at low order parameters.

B.1. Completed proof of 7.3. As argued in the early parts of the proof, we may
assume G is almost-simple and that l > 1. We first cover the case where G is not
of type G2 at l = 2.

Proof away from G2 at l = 2. We have that l is equal to the lacing number for G,
and suppose additionally that the scalar parameter for G is of order > 3 in type G2.
Equivalently, we assume qβ = −1 whenever β is a long simple root. This implies

Kβ = K−1
β .

It is shown in [39, Lemma 6.6] that v+q remains a normal (braided) Hopf sub-

algebra in U+
q when l is equal to the lacing number. By considering the Hopf

isomorphism U≥0
q−1 → U≤0

q which exchanges E’s and F ’s, we also have that v−q is

normal in U−
q . Such Hopf normality implies

E
(lβ)
β Eα + (−1)lβq(β, α)lβEαE

(lβ)
β ∈ m+ ⇒ [E

(lβ)
β , Eα] ∈ Ûqm

+, (21)

where m+ is the subspace of positive degree elements in v+q . But now one sees,

by scaling by grouplikes, that Ûqm
+ ⊆ Ûqm. So we locate the commutator (21) in

Ûqm. We similarly find that [F
(lβ)
β , Fα] ∈ Ûqm at all α ∈ ∆l, β ∈ ∆. So we need

only check the commutators of the E’s with the F ’s in (16).
In considering these commutators we have three cases to check; when β is short

and has no long neighbors, when β is short but has a long neighbor, and when β is
long. In the last case lβ = 1. Let us list the simple roots as

∆ = {βn, . . . , βr+1, αr, . . . , α1}
∆l = {βn + · · ·+ βr+1 + αr, . . . , βr+1 + αr, αr, . . . , α1}



45

with neighbors appearing in consecutive order, all the αi short, and all βj long.
Take

Ei = Eαi or Eβi where appropriate, Er,r = Er and Er+j,r = Eβr+j+···+βr+1+αr .

Adopt a similar notation for the F ’s.
Recall that qβ = −1 whenever β is long. When β is short and has no long

neighbors [F
(lβ)
β , Er+j,r] = [E

(lβ)
β , Fr+j,r] = 0 for all positive j. So the computation

reduces to a type An calculation at l = 2, which we have already addressed in
Section 7.1.

When β is short and has a long neighbor we have β = αr necessarily. The generic

commutator relation [43, §6.5 (a2)] shows that [Ej , F
(lβ)
β ] lies in Ûqm for all j. For

Er+1,r we have

[Er+1,r, F
(lβ)
β ] = Er+1[Er, F

(lβ)
β ] + [Er, F

(lβ)
β ]Er+1.

Now

[Er, F
(lβ)
β ] =

[
Kβ ;m

1

]
F

(lβ−1)
β

for some integer m [43, §6.5 (a2), (a6)]. Since Fβ commutes with Er+1 in this case
we get

[Er+1,r, F
(lβ)
β ] = (

[
Kβ ;m

′

1

]
+

[
Kβ ;m

1

]
)Er+1F

(lβ−1)
β .

Since F
(lβ−1)
β is in m ⊆ ūq this element is in Ûqm, as desired. One now sees by

induction that

[Er+j,r, F
(lβ)
β ] ∈ ÛqFβ ⊆ Ûqm

for all positive j, when β = αr.
We are left, finally, to deal with the case where β is long, so that lβ = 1. We

have F
(lβ)
β = Fr+j for some positive j. Now, when j > j′ ≥ 0 we have immediately

[Fr+j , Er+j′,r] = 0. When j′ = j we have

[Fr+j , Er+j,r] = −[Fr+j , Er+jEr+j−1,r + Er+j−1,rEr+j ]

= −
[

Kr+j ; 0

1

]
Er+j−1,r − Er+j−1,r

[
Kr+j ; 0

1

]
. (22)

Since qβ = −1, we have the commutativity relations

Er+j−1

[
Kr+j ; 0

1

]
=

[
Kr+j ; 1

1

]
Er+j−1 = −

[
Kr+j ; 0

1

]
Er+j−1 +KβEr+j−1

[43, §6.4 and 6.5 (b5), (a5)] which reduces (22) to

[Fr+j , Er+j,r] = −Kr+jEr+j−1,r ∈ m.

For r + j + 1 the above expression gives also

[Fr+j , Er+j+1,r] = −Er+j+1Kr+jEr+j−1,r −Kr+jEr+j−1,rEr+j+1

= −(q−1
βr+j

+ 1)Kr+jEr+j−1,rEr+j+1 = 0,

since qβr+j
= −1. By induction one now finds [Fr+j , Er+j+k,r] = 0 at all k ≥ 1.

We have now checked all cases and obtain the desired inclusion

[F
(lβ)
β , Eα] ∈ Ûqm
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for all β ∈ ∆ and α ∈ ∆l. The cases with the E’s and F ’s swapped follow by
symmetry.

We have now established the desired inclusions (16) whenever G is not of type
G2 at a 3-rd root of unity. The final case of G2 at a 3-rd root of 1 is established
via completely similar arguments, though some signs are changed. □

We now cover the special case of G2 at a 4-th root of 1.

Proof for G2 at l = 2. As in the analysis at (21), we can use Lentner’s normality
result [39, Lemma 6.6] to find that

EαE
(lν)
β , FαF

(lν)
β ∈ Ûqm

whenever α ∈ ∆l and β ∈ ∆. So we need only check the products EαF
(lν)
β , FαE

(lν)
β .

In this special setting lβ = 2 at all simple β. We have

[E
(lβ)
β , Fα], [F

(lβ)
β , Eα] ∈ Ûqm

whenever α, β ∈ ∆ by the generic commutativity relation [44, §6.5 (a2)]. For the
unique non-simple root 2α+ β in ∆l we have

E2α+β = E(2)
α Eβ + EβE

(2)
α + EαEβEα (23)

and compute

[F
(2)
β , E(2)

α ] = [F
(2)
β , Eα] = 0, [F

(2)
β , Eβ ] =

[
Kβ ;−1

1

]
Fβ , [F (2)

α , Eβ ] = 0

[F (2)
α , Eα] =

[
Kα;−1

1

]
Fβ , and [F (2)

α , E(2)
α ] =

[
Kα;m

1

]
FαEα −

[
Kα; 0

2

]
,

where m is some integer [43, §6.5]. Hence applying the derivation [F
(2)
β ,−] to the

expression (23) yields an elements

[F
(2)
β , E2α+β ] ∈ ÛqFβ ⊆ Ûqm.

This implies E2α+βF
(2)
β ∈ Ûqm.

As for the derivation [F
(2)
α ,−], we have

Eβ

[
Kα; 0

2

]
=

[
Kα; 2

2

]
Eβ

[43, §6.5] so that we find again

[F (2)
α , E2α+β ] ∈ Ûqm ⇒ E2α+βF

(2)
α ∈ Ûqm.

We employ symmetry to obtain F2α+βE
(2)
β , F2α+βE

(2)
α ∈ Ûqm as well. This com-

pletes the proof. □
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