
THE CUP PRODUCT ON HOCHSCHILD COHOMOLOGY

VIA TWISTING COCHAINS AND APPLICATIONS TO

KOSZUL RINGS

CRIS NEGRON

Abstract. Given an acyclic twisting cochain π : C → A, from a curved
dg coalgebra C to a dg algebra A, we show that the associated twisted
hom complex Homπ

k (C,A) has cohomology equal to the Hochschild coho-
mology of A, as a graded ring. As a corollary we find that the Hochschild
cohomology of a Koszul algebra A, along with its cup product, is a sub-
quotient of the tensor product algebra A!⊗A of A with its Koszul dual.

1. Introduction

Let k be a field of arbitrary characteristic. The Hochschild cohomology
of an dg (k-)algebra A can be defined as the graded group of bimodule
extensions

HH•(A) = Ext•A-bimod(A,A).

This cohomology was popularized in the many works of Gerstenhaber (see
e.g. [6, 7]). Hochschild cohomology is fundamental in that it is the coho-
mology associated to a dg algebra A which “controls the formal deformation
theory of A”, in the general sense of deformation theory via dg Lie algebras
[21, 17] (see also the closing comments of Section 6).

As with any group of self extensions, Hochschild cohomology carries a
natural Yoneda product, which is often referred to as the cup product.
Hochschild cohomology, along with the cup product, has been shown to
have very strong relations to loop space (co)homology in topological set-
tings [22, 5], and is known to be a derived invariant [13].

In this paper we give a general result relating twisting cochains to the cup
product on Hochschild cohomology, then discuss its specific appearance for
Koszul algebras.

Theorem 1.1 (5.3). Let A be any dg algebra, C be any (curved) dg coalge-
bra, and π : C → A be an acyclic twisting cochain. Let Homπ

k(C,A) denote
the associated twisted hom complex. There is a dg algebra quasi-isomorphism

Homπ
k(C,A)

∼→ RHomA-bimod(A,A)

and subsequent identification of graded rings H•(Homπ
k(C,A)) = HH•(A).
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In the text RHomA-bimod(A,A) will be represented by the endomorphism
dg algebra of a particular semi-projective approximation of A. A twist-
ing cochain is a degree 1 k-linear map π from C to A which satisfies the
Maurer-Cartan equation, and the corresponding twisted hom complex is
the standard set of graded homs

Homπ
k(C,A) = ⊕i

{
homogeneous degree i k-linear maps

f : C → A

}
with the convolution product f ∗ g = µA(f ⊗ g)∆C and altered differential

dHomπ(f) = dAf − (−1)|f |fdC − [π, f ],

where µA is the multiplication on A and ∆C is the comultiplication on C.
This gives Homπ

k(C,A) the structure of a dg algebra.
Twisting cochains have primarily been of use in topological and geometric

studies [2, 4, 9], although they have proved fundamental in recent algebraic
inquiries into A∞-algebras initiated by Lefévre-Hasegawa’s thesis [18] and
the subsequent works of Keller [16, 15, 14, 12]. In the topological/geometric
settings the object A is usually a dg algebra with nonvanishing differential
(e.g. the singular chains of a topological group), while in the ring theoretic
context A will usually be concentrated in degree 0.

Although the cup product on Hochschild cohomology is of independent
interest (see e.g. the support variety theory of [30] and the applications to
loop space (co)homology [22, 5]), we are also interested in it for its value
as a derived invariant and for the assisting role it plays in computations of
the graded Lie structure on Hochschild cohomology (see e.g. [8]).1 We also
believe that the relationship established in Theorem 1.1 is somewhat funda-
mental. Indeed, we are suggesting that dg coalgebras with acyclic twisting
cochains can act as replacements for the (generally) larger structures of the
bar construction, bar resolution, and Hochschild cochain complex. One can
see [25] for another application of this philosophy.

As noted above, Theorem 1.1 has a specific life for Koszul algebras. While
we’ll avoid giving a formal definition of Koszul algebras here, some important
examples include quantum polynomial rings, Sklyanin algebras, Universal
enveloping algebras, Clifford algebras, Steenrod algebras, and Weyl algebras
(see [29]). For a graded Koszul algebra, for example, we will have

Theorem 1.2 (8.4). Let A = k〈x1, . . . , xn〉/(R) be a Koszul algebra (with R
the k-space of homogeneous degree 2 relations) and A! = k〈λ1, . . . , λn〉/(R⊥)
be its Koszul dual. Let e be the degree 1 element e =

∑
i λi⊗xi in the tensor

product algebra A! ⊗A. Then

(1) the graded commutator operation [e,−] : A!⊗A→ A!⊗A is a square
zero degree 1 derivation on the algebra A! ⊗ A, where we grade by
the degree on A!,

1One can see [7, 17] for more information on this Lie structure.
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(2) the cohomology of the resulting dg algebra admits an identification
of graded rings H•(A! ⊗A) = HH•(A).

In the statement of the above theorem the λi are dual to xi so that
k{λ1, . . . , λn} = (k{x1, . . . , xn})∗. When A is filtered (not graded) we need
to replace A! with a certain curved dg algebra which plays the analogous
role. More information on Koszul algebras, and the production of canonical
twisting cochains via the Koszul dual, from which Theorem 1.2 is derived,
can be found in Section 7 and Lemma 8.3.

We should mention here the work of Buchweitz, Green, Snashall, and
Solberg [3]. In the paper [3] the authors relate the multiplication on the
Hochschild cohomology of a Koszul (path) algebra A to a comultiplicative
structure on a special collection of right ideals in A. One manner in which
our results differ is that the methods presented here are essentially basis
free–the element e does not depend on choice of basis–while those of [3]
seem to depend heavily on choices of bases and a concrete analysis of a
certain coalgebra related to the Koszul ring.

The work presented here also appears, in an alternate form with an ad-
ditional computation of the Hochschild cohomology ring of the universal
enveloping algebra of the Heisenberg Lie algebra, in the first chapter of my
dissertation [24].

1.1. Organization. Section 2 is dedicated to establishing the necessary
background information, and in Section 3 we recall the definitions of twisting
cochains and some related constructions. In Section 4 we give a fundamental
relationship between twisted tensor products and twisted homs. Sections 5
and 6 are dedicated to the presentation of the main theorem and its proof,
and Sections 7 and 8 are dedicated to an analysis of Koszul algebras.

Acknowledgments. Thanks to thank Xingting Wang, Guangbin Zhuang,
and James Zhang for their support and assistance in this research. Thanks
also to James Zhang for pushing me to think more deeply about the basics
of twisting cochains. Thanks to the referee for their helpful comments.

Notations and conventions

Let R be an arbitrary ring. By a “R-module” we mean a left R-module
unless stated otherwise. We will always use the cohomological indexing
convention

X = · · · d→ Xn−1 d→ Xn d→ Xn+1 d→ · · · ,
and do not distinguish between chain complexes and cochain complexes.
Given R-complexes X and Y we write HomR(X,Y ) for the standard Hom
complex

HomR(X,Y ) =
⊕
n∈Z

(
∏
i

HomR(Xi, Y i+n))
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For any homogenous function θ ∈ HomR(X,Y ) of degree n, the differential
d is given by the formula d(θ) = dY θ − (−1)nθdX . For a k-complex X we
let X∗ denote the chain dual

X∗ = Homk(X, k) = · · · → (Xi+1)∗ → (Xi)∗ → (Xi−1)∗ → · · ·

Sweedler’s notation will be used to denote the comultiplication on a coal-
gebra C. So the element ∆(c) will be written ∆(c) = c1 ⊗ c2, with the sum
implicit. To say this more clearly, “c1 ⊗ c2” is simply shorthand for some
expression of the element

∆(c) =
∑
i

ci1 ⊗ ci2

in the tensor product C ⊗ C. Higher iterations of the comultiplication will
be denoted using similar notation. For example, the element

(∆⊗ id)∆(c) = (id⊗∆)∆(c)

will be denoted c1⊗ c2⊗ c3. Again, there is an implicit sum. If C is graded,
and c ∈ C is homogeneous, then the c1, c2, etc. will always be taken to be
homogeneous.

2. Preliminaries on (curved) dg algebras and (curved) dg
coalgebras

2.1. Dg algebras and coalgebras. Recall that a dg algebra is a chain
complex (A, d) equipped with a unit k → A and associative multiplication
µ : A ⊗ A → A which are both chain maps. A dg coalgebra is defined
dually to be a complex (C, d) with a coalgebra structure such that each
structure map C → k, ∆ : C → C ⊗ C, is a chain map. We will call a
dg (co)algebra locally finite if it is finite dimensional in each homological
degree. A dg algebra A (resp. dg coalgebra C) is said to be augmented

(resp. coaugmented) if it comes equipped with a dg map A
ε→ k (resp.

k
u→ C).
Given an arbitrary dg algebra A and dg coalgebra C the hom complex

Homk(C,A) becomes a dg algebra under the convolution product

f ∗ g := µA(f ⊗ g)∆C : c 7→ (−1)|c1||g|f(c1)g(c2).

In particular the dual C∗ = Homk(C, k) is a dg algebra. One can check
that the dual A∗ = Homk(A, k) of any locally finite dg algebra, which is
additionally bounded above or below, is a dg coalgebra under the coproduct
∆(γ) = γµ. The double dual of a locally finite dg (co)algebra A, which is
bounded above or below, is naturally isomorphic to A via the standard map

ev : A→ (A∗)∗

a 7→ (φ 7→ (−1)|a||φ|φ(a)).
(1)

The tensor product of dg (co)algebras is again a dg (co)algebra under the
differential dA⊗A′ = dA⊗ idA′+ idA⊗dA′ , and we can define the opposite dg
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algebra Aop to be the complex A with the opposite multiplication a ·op b :=
(−1)|a||b|ba.

Given a dg algebra A, a k-complex M is called a left (resp. right) dg
module over A if it is a graded A-module, after we forget the differential,
and the action map

A⊗M →M (resp. M ⊗A→M)

is a map of chain complexes. Similarly, M is a dg bimodule if it is a graded
bimodule over A and the action map A ⊗ M ⊗ A → M is one of chain
complexes. A bimodule over a dg algebra A can, as in the non-dg case, also
be seen as a module over the enveloping algebra Ae = A⊗Aop.

Given dg A-modules M and N , we define the hom complex HomA(M,N)
in the usual way. That is

HomA(M,N) = (⊕iHomi
A(M,N), dHom)

with the usual differential dHom : f 7→ dNf − (−1)|f |fdM . Here the notation
Homi

A(M,N) denotes the set of homogenous degree i maps f : M → N
satisfying

f(am) = (−1)|f ||a|af(m)

for any homogeneous a, b ∈ A. Taking A = Be for a dg algebra B gives the
appropriate definition of the hom complex for bimodules HomB-bimod(M,N) =
HomBe(M,N).

2.2. Curved dg algebras and coalgebras. We recall the notion of a
curved dg (co)algebra, following [28]. These structures will be needed in our
account of Koszul duality for nonaugmented algebras, such as Weyl algebras
and Clifford algebras.

Definition 2.1 (Curved dg (co)algebras). A curved dg algebra is a graded
algebra A = ⊕i∈ZAi along with a degree 1 graded derivation dA, and a
degree 2 element cA ∈ A2, so that

d2
A = [cA,−] and dA(cA) = 0.

(Here d2
A is the square dAdA.) Dually, a curved dg coalgebra is a graded

coalgebra C = ⊕i∈ZCi along with a degree 1 coderivation dC , and degree 2
function fC : C → k satisfying

d2
C = (fC ⊗ id− id⊗ fC)∆ and fCdC = 0.

We may denote a curved dg algebra (resp. coalgebra) as a triple (A, dA, cA)
(resp. (C, dC , fC)).

As with dg algebras and coalgebras, we have some standard constructions.
Given a curved dg algebra A and a curved dg coalgebra C the set of graded
maps Homk(C,A) =

⊕
n

(∏
i Homk(C

i, Ai+n)
)

becomes a curved dg algebra

under the convolution product, standard derivation d(ξ) = dAξ−(−1)|ξ|ξdC ,
and curvature

cHom = cAεC − 1AfC
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[27, Section 6.2]. In particular, the graded dual C∗ of any curved dg coalge-
bra becomes a curved dg algebra with curvature element cC∗ = −fC . The
graded dual of any locally finite curved dg algebra A becomes a curved dg
coalgebra with the obvious coproduct, derivation d(η) = −(−1)|η|ηdA, and
curvature function fA∗ = −evcA . When C is locally finite, the evaluation
map ev : C → C∗∗ provides an isomorphism of curved dg coalgebras between
C and its double dual. Finally, the tensor product A ⊗ A′ of curved dg al-
gebras will again be a curved dg algebra with dA⊗A′ = dA⊗ idA′ + idA⊗dA′
and cA⊗A′ = cA ⊗ 1 + 1⊗ cA′ .

Theoretically, curved dg structures arise as deformations of dg algebras.
For example, a cocycle in the second Hochschild cohomology of a dg algebra
A will correspond to a curved dg k[t]/(t2)-algebra, or more generally curved
A∞ k[t]/(t2)-algebra, which reduces to A at t = 0.

3. Twisting cochains

We first give the definition in the non-curved setting, then address the
curved situation independently. The following definition is standard and can
be found, for example, in [10] or [19].

Definition 3.1 (Twisting cochain). Let C be a dg coalgebra and A be a dg
algebra. A degree 1 linear map π : C → A is called a twisting cochain if π
satisfies the equation

− (dAπ + πdC) + µ(π ⊗ π)∆ = 0. (2)

In other sources, the formula in (2) may appears as

dAπ + πdC + µ(π ⊗ π)∆ = 0.

One can mediate between the two perspectives by replacing π with −π.
Assuming k is of characteristic 6= 2, this alternate form of (2) is exactly the
statement that π is a solution to the Maurer-Cartan equation

d(π) +
1

2
[π, π] = 0,

where [, ] denotes the graded commutator on the dg algebra Homk(C,A).

Example 3.2. Let g be a Lie algebra and k[Σg] be the free graded commu-
tative algebra generated by the degree −1 k-space Σg. Given x ∈ g we let
X denote the corresponding element in Σg with shifted degree. We extend
the operation

∆ : Σg→ k[Σg]⊗ k[Σg], X 7→ 1⊗X +X ⊗ 1

(uniquely) to an algebra map from ∆ : k[Σg] → k[Σg] ⊗ k[Σg], which gives
k[Σg] a graded bialgebra structure.

The linear map k[Σg]−2 → k[Σg]−1 = Σg which takes a monomial XY to
the Lie bracket −[x, y], with shifted degree, extends to a unique coderivation
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dg on k[Σg]. We then get a canonical twisting cochain π : k[Σg] → U(g)
given in degree −1 by X 7→ x. Indeed, on degree −2 elements we have

∆(XY ) = ∆(X)∆(Y ) = XY ⊗ 1 +X ⊗ Y + (−1)|X||Y |Y ⊗X + 1⊗XY
= XY ⊗ 1 +X ⊗ Y − Y ⊗X + 1⊗XY

and so

π ∗ π(XY ) = π(XY )π(1)− π(X)π(Y ) + π(Y )π(X) + π(1)π(XY )
= −[x, y] = πdg(XY ).

This is the twisting cochain condition. This twisting cochain is an example
of the canonical twisting cochain of Lemma 8.3.

Definition 3.3 (Twisted homs). Given a twisting cochain π : C → A, we
define the dg algebra of twisted homs Homπ

k(C,A) as the space of graded
homs Homπ

k(C,A) = ⊕iHomi
k(C,A) along with convolution product ∗ and

differential

dHomπ
k (C,A)(f) := dAf − (−1)|f |fdC − (π ∗ f − (−1)|f |f ∗ π)

= dHomk(C,A)(f)− [π, f ].

One can easily verify that Homπ
k(C,A) is a in fact a dg algebra, or simply

see [19, Proposition 2.1.6]. We also have the analogous definition of the
twisted homs Homπ

k(C,M), where M is a dg A-bimodule.

Lemma/Definition 3.4. Suppose π : C → A is a twisting cochain. There
is a functor

(−)π : dg Homk(C,A)-bimod→ dg Homπ
k(C,A)-bimod.

This functor takes a dg bimodule (M,dM ) to the bimodule (Mπ, dπM ) which is
M as a graded space, has the Homπ

k(C,A)-action induced by the algebra iden-
tification Homk(C,A) = Homπ

k(C,A), and differential dπM := dM − [π,−].
For any ϕ : M → N we simply take ϕπ := ϕ.

Proof. Take dH = dHomk(C,A) and dπ = dHomπ
k (C,A). For any m ∈M we have

(dπM )2(m) = d2
M (m)− dM ([π,m])− [π, dM (m)] + [π, [π,m]]

= −[dH(π),m] + [π, dM (m)]− [π, dM (m)] + [π, [π,m]]
= −[dH(π),m] + [π, [π,m]].

(3)

But

[π, [π,m]] = π2m−mπ2 − (−1)|m|πmπ − (−1)|m|+1πmπ = [π2,m]

and π2 = dH(π) by the twisting cochain condition, where π2 = π ∗ π is the
second convolution power here. So the final equation of (3) vanishes and we
get that dπM is in fact a differential on M .

We need to check now that the equation dπM (fm) = dπ(f)m+(−1)|f |fdπM (m)
holds for f ∈ Homπ

k(C,A) and m ∈ M . But this is clear since dπM =
dM + [π,−] and dM and [π,−] satisfy the equations

dM (fm) = dH(f)m+(−1)|f |fdM (m) and [π, fm] = [π, f ]m+(−1)|f |f [π,m].
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One similarly verifies the equation for dπM (mf). Finally, one sees that for
any ϕ : M → N , ϕπ = ϕ is still a dg map since for any m ∈M

ϕ(dπM (m)) = ϕ(dM (m)) + ϕ([π,m]) = dM (ϕ(m)) + [π, ϕ(m)] = dπM (ϕ(m)).

�

Lemma 3.5. For any dg coalgebra C and dg algebra A, the tensor complex
A⊗ C ⊗A is a dg Hom(C,A)-bimodule under the left and right actions

f · (a⊗ c⊗ b) := (−1)|f |(|a|+|c1|)a⊗ c1 ⊗ f(c2)b

and

(a⊗ c⊗ b) · f := (−1)|f |(|c|+|b|)af(c1)⊗ c2 ⊗ b,
for a, b ∈ A, c ∈ C.

Proof. The verification of this fact is a sequence of tedious but straightfor-
ward calculations. We only check compatibility with the differential under
the left action. Take f and a⊗ c⊗ b as above. Then we have

d(f · (a⊗ c⊗ b))
= ±d(a)⊗ c1 ⊗ f(c2)b± a⊗ d(c1)⊗ f(c2)b± a⊗ c1 ⊗ d(f(c2))b
±a⊗ c1 ⊗ f(c2)d(b)

= ±d(a)⊗ c1 ⊗ f(c2)b± a⊗ d(c1)⊗ f(c2)b± a⊗ c1 ⊗ f(c2)d(b)

±a⊗ c1 ⊗ dHom(f)(c2)b+ (−1)(|f |+1)(|a|+|c1|)+|f |a⊗ c1 ⊗ f(d(c2))b

where all the signs ± are the appropriate Koszul signs, and all the d must
be given the appropriate subscript. Using the fact that dC is a coderivation,
this final equation can then be rewritten

(−1)|f |f · dA⊗C⊗A(a⊗ c⊗ b) + dHom(f) · (a⊗ c⊗ b).

The verification of the formula

dA⊗C⊗A((a⊗ c⊗ b) · f)

= dA⊗C⊗A(a⊗ c⊗ b) · f + (−1)|f |(|a|+|c|+|b|)(a⊗ c⊗ b) · dHom(f)

is similar. �

To gain some understanding of these actions we may consider the two
extreme cases, when C = k and when A = k. When C = k the actions
reduce to the inner actions of Homk(k,A) = A on A⊗A. When A = k, the
actions of the dual Homk(C, k) = C∗ on C are the standard left and right
actions corresponding to the respective right and left coactions of C on
itself [23]. When C and A have nonvanishing (co)augmentation (co)ideals,
we are integrating the inner action of A with the standard actions of C∗

to produce a natural action of the convolution algebra Homk(C,A) on the
tensor complex.

Definition 3.6 (Twisted tensor products). Given a twisting cochain π :
C → A, we define the twisted tensor product A ⊗π C ⊗π A as the value of
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the functor (−)π on the bimodule A⊗C ⊗A (with right and left actions as
in described in Lemma 3.5). In other words,

A⊗π C ⊗π A = (A⊗ C ⊗A)π = (A⊗ C ⊗A, dA⊗C⊗A − [π,−]).

The fact that the twisted tensor product, according to Lemma 3.4, is a
dg bimodule over the twisted hom complex Homπ

k(C,A) will be an essential
point in our proof of the main result Theorem 5.3.

On elements, the differential on the twisted tensor product will be given
by the formula

dπA⊗C⊗A(a⊗ c⊗ b)
= dA⊗C⊗A(a⊗ c⊗ b) + (−1)|a|+|c1|a⊗ c1 ⊗ π(c2)b

−(−1)|a|+|c|+|b|+|b|+|c|aπ(c1)⊗ c2 ⊗ b
= dA⊗C⊗A(a⊗ c⊗ b) + (−1)|a|+|c1|a⊗ c1 ⊗ π(c2)b− (−1)|a|aπ(c1)⊗ c2 ⊗ b.

So we can write the differential on the twisted product in the more conven-
tional form

dA⊗C⊗A+(µ(idA ⊗ π)⊗ idC ⊗ idA − idA ⊗ idC ⊗ µ(π ⊗ id)) (idA ⊗∆⊗ idA)

[11]. The twisted tensor product A⊗π C ⊗π A will always have a canonical
dg A-bimodule structure under the outer A-actions, and we will view the
twisted tensor product as an object in dg A-bimod in what follows.

As an example, the twisted tensor product U(g)⊗π k[Σg]⊗π U(g) associ-
ated to the twisting cochain of Example 3.2 will recover the standard Koszul
resolution of [29]. For the familiar reader, we also note that one recovers
the standard bar resolution as the twisted tensor product of a dg algebra A
with its bar construction via the universal twisting cochain.

3.1. Twisting cochains in the curved setting. Here we follow [27, Sec-
tion 6.2]. The reader may also refer to [26].

Definition 3.7 (Twisting cochains with curvature). A degree 1 linear map
π : C → A from a curved dg coalgebra to a curved dg algebra is called a
twisting cochain if the equation

(cAεC − 1AfC)− (dAπ + πdC) + µ(π ⊗ π)∆ = 0

holds.

Here, again, we differ from some other references by a sign. We will only
be interested in the case in which A is a dg algebra. In this setting we still
get a twisted tensor products A⊗πC⊗πA. The differential on this complex
is, oddly enough, given by the same formula as in the non-curved setting:

dA⊗C⊗A+(µ(idA ⊗ π)⊗ idC ⊗ idA − idA ⊗ idC ⊗ µ(π ⊗ id)) (idA ⊗∆⊗ idA) .
(4)

As one can see from the above formula, the curvature disappears at this
level. Indeed, for the remainder of the paper we will be able to provide a
uniform analysis of the curved and non-curved situations. We outline below
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the manner in which one arrives at the above formula for the twisted tensor
product in the curved situation.

Definition 3.8 (Curved bimodules). Suppose we have a curved dg algebra
A = (A, dA, cA). An A-bimodule M is called a curved bimodule if M comes
equipped with a grading M = ⊕iM i and a degree 1 operation dM satisfying

dM (am) = dA(a)m+(−1)|a|adM (m) and dM (ma) = dM (m)a+(−1)|m|mdA(a)

and d2
M = [cA,−]. A morphism of curved bimodules is a graded A-bimodule

map ϕ : M → N which satisfies dNϕ = ϕdM .

Lemma/Definition 3.9. For any twisting cochain π : C → A from a
curved dg coalgebra to a curved dg algebra the complex

Homπ
k(C,A) = (Homk(C,A), dHom − [π,−])

is a dg algebra.

Proof. Take dπ = dHom − [π,−]. Since the sum of algebra derivations is
again an algebra derivation the operation dπ is an algebra derivation. We
need only check that it is square 0. For homogeneous g ∈ Homk(C,A) we
get

(dπ)2(g) = d2
Hom(g)− dHom([π, g])− [π, dHom(g)] + [π[π, g]]

= [cAε, g]− [1AfC , g]− [dHom(π), g] + [π, dHom(g)]
−[π, dHom(g)] + [π2, g]

= [cAε, g]− [1AfC , g]− [dHom(π), g] + [π2, g]
= [cAε− 1AfC − dHom(π) + π2, g]
= 0,

since π is a twisting cochain and therefore cAε−1AfC−dHom(π)+π2 = 0. �

Lemma/Definition 3.10. Given a twisting cochain π : C → A from a
curved dg coalgebra to a curved dg algebra, we get a functor

(−)π : curved Homk(C,A)-bimod→ dg Homπ
k(C,A)-bimod.

On objects, for a curved bimodule M we take Mπ = M as a graded bimodule
over Homπ

k(C,A) = Homk(C,A), and give Mπ the differential dπM := dM −
[π,−]. Given ϕ : M → N we take ϕπ = ϕ.

Recall that the natural curvature on the convolution algebra Homk(C,A)
is the function cAε− 1AfC .

Proof. Checking that d2
M = 0 is formally similar to the computation given

for Lemma 3.9. The remainder of the proof is exactly the same as that of
Lemma 3.4. �

Lemma 3.11. For a (non-curved) dg algebra A and curved dg coalgebra C,
the tensor complex A⊗C ⊗A is a curved bimodule over Homk(C,A) under
the same actions as in Lemma 3.5.
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Proof. Save for compatibility with the curvature, this is the same as Lemma
3.5. For compatibility with the curvature we have

d2(a⊗ c⊗ b) = a⊗ d2
C(c)⊗ b

= a⊗ fC(c1)c2 ⊗ b− a⊗ c1fC(c2)⊗ b
= a⊗ c1 ⊗ (−1AfC(c2))b− a(−1AfC(c1))⊗ c2 ⊗ b
= [cHom, a⊗ c⊗ b].

(5)

�

We then get the twisted tensor product, again, as the value of (−)π on
this bimodule

A⊗π C ⊗π A = (A⊗ C ⊗A)π = (A⊗ C ⊗A, dA⊗C⊗A − [π,−]).

The twisted tensor product will be viewed as a dg A-bimodule under the
outer A-actions.

Remark 3.12. The proof of Lemma 3.11 breaks if we allow A to be curved.
Specifically, the sequence of equalities (5) will not hold.

4. Maps from the twisted tensor complex as twisted homs

For the remainder of the paper by a “twisting cochain” π : C → A we
will mean a twisting cochain from a, possibly curved, dg coalgebra to a dg
algebra. One should recall our definition of the hom complex HomAe(M,N)
from Section 2, for dg bimodules M and N .

Proposition 4.1. Suppose π : C → A is a twisting cochain, and that M is
any dg A-bimodule. Then the restriction map

resM : HomAe(A⊗π C ⊗π A,M)→ Homπ
k(C,M)

is an isomorphism of chain complexes. These restrictions together produce
a natural isomorphism res : HomAe(A⊗π C ⊗π A,−)→ Homπ

k(C,−).

Proof. Take d to be the differential on HomAe(A ⊗π C ⊗π A,M) and d′ to
be the differential on Homπ

k(C,M). We need to check the formula

d(f)|C = dHom(f |C)− (π ∗ (f |C)− (−1)|f |(f |C) ∗ π)

for any homogenous Ae-linear map f : A ⊗π C ⊗π A → M . We proceed
directly. Take c ∈ C. Then

d(f)(c)

= dMf(c)− (−1)|f |(fdA⊗C⊗A(c) + f(π(c1)⊗ c2 ⊗ 1− (−1)|c1|1⊗ c1 ⊗ π(c2))

= dMf(c)− (−1)|f |fdC(c)− (−1)|f |+|f |(|c1|+1)π(c1)f(c2) + (−1)|c1|+|f |f(c1)π(c2)

= dHomk(C,M)(f |C)(c)− ((π ∗ f)(c)− (−1)|f |(f ∗ π)(c))
= dHomk(C,M)(f |C)(c)− [π, f ](c)
= d′(f |C)(c).

It is obvious that restriction is natural in M , so the second statement is
immediate. �
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We will call a pair (C,M), with C a curved dg coalgebra and A a dg
algebra, sufficiently finite if the natural dg algebra embedding

C∗ ⊗A→ Homk(C,A), f ⊗ a 7→ (c 7→ (−1)|c||a|f(c)a) (6)

is an isomorphism. For any dg A-bimodule M , we say the pair (C,M) is
sufficiently finite if (C,A) is sufficiently finite and the map analogous to (6),
with A replaced byM , is an isomorphism. Some easy examples of sufficiently
finite pairs (C,A) would be when C is finite dimensional, or when A is finite
dimensional, or when C is locally finite and A is bounded above and below,
etc.

Definition 4.2 (The functor C∗⊗π−). Let π : C → A be a twisting cochain
on a sufficiently finite pair (C,A). Then we define the functor

C∗ ⊗π − : dg A-bimod→ dg k-bimod

by taking

C∗ ⊗π M = (C∗ ⊗M,dC∗⊗M − [π,−]).

and C∗ ⊗π φ = C∗ ⊗ φ for any dg bimodule map φ : M → N .

Here we take π ∈ C∗ ⊗ A to be the preimage of π along (6), by abuse of
notation. Note that when (C,A) is sufficiently finite we have π =

∑
i π
∗
i ⊗πi

for some elements π∗i ∈ C∗ and πi ∈ A. So, even when (C,M) is not locally
finite, we can still consider the degree 1 operation

dC∗⊗M − [π,−] = dC∗⊗M −
∑
i

[π∗i ⊗ πi,−]

on the graded space C∗ ⊗M .
The fact that C∗ ⊗π M is actually a chain complex follows from the fact

that the differential dHomπ
k

induces the given operation dC∗⊗M − [π,−] on
C∗ ⊗M by way of the embedding analogous to (6). This observation also
implies

Proposition 4.3. Suppose π : C → A is a twisting cochain with (C,A)
sufficiently finite. Then the natural chain maps

C∗ ⊗π M → Homπ
k(C,M), f ⊗m 7→ (c 7→ (−1)|c||m|f(c)m) (7)

produce a natural transformation C∗⊗π− → Homπ
k(C,−) which restricts to

a natural isomorphism on the full subcategory of sufficiently finite bimodules
in dg A-bimod. Additionally, there is a natural transformation

C∗ ⊗π − → HomAe(A⊗π C ⊗π A,−),

defined by composing (7) with res−1, which is also an isomorphism on the
subcategory of sufficiently finite dg bimodules.
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5. Presentation of the main theorem: an algebra
identification H•(Homπ

k(C,A)) = HH•(A)

For any twisting cochain π : C → A from a curved dg coalgebra to a dg
algebra, we have a canonical map

ε : A⊗π C ⊗π A→ A, a⊗ c⊗ b 7→ abεC(c)

of dg bimodules.
Recall that a coalgebra C is called connected if it has a unique one dimen-

sional simple subcoalgebra C0 = k [23, Definition 5.1.5]. We say a curved dg
coalgebra C = (C, dC , fC) is connected, or “cocomplete”, if it is connected
as a coalgebra and dC(C0) ⊂ C0. Compatibility of dC with the counit then
implies dC |C0 = 0. In this case the standard coradical filtration

{FnC := ker(C
∆(n)

→ C⊗n → (C/C0)⊗n)}n
will be exhaustive and also satisfy dC(FnC) ⊂ FnC. The following definition
is standard [18, Definitions 2.2.1.1], [27, Section 6.5], [16, Section 4.6].

Definition 5.1 (Acyclic twisting cochain). A twisting cochain π : C → A
is called admissible if C is a connected curved dg coalgebra and π|C0 = 0.
A twisting cochain π : C → A is called acyclic if π is admissible and the dg
A-bimodule map

ε : A⊗π C ⊗π A→ A

is a quasi-isomorphism.

Our main example of an acyclic twisting cochain will be the canonical
twisting cochain π : (B!)∗ → B associated to any filtered Koszul algebra B.
In this case the map ε : B ⊗π (B!)∗ ⊗π B → B will be the standard Koszul
resolution (see Section 8). Before continuing we need to give a definition.

Definition 5.2 (Hochschild cohomology of a dg algebra). Let A be any
dg-algebra. Then we take

HH•(A,M) = H•(RHomAe(A,M)) and HH•(A) = HH•(A,A).

For the uninitiated reader it may not even be clear that we can derive
the functor HomAe(A,−) in general. We will give a more explicit definition
in Section 6, where more information on derived categories of dg modules
and derived functors will be given. For the time being, we give complete
proofs of the following theorems only in the ring theoretic settings, i.e. the
setting in which A is concentrated in degree 0 and C is bounded above. The
completed proofs are given in Section 6.

We begin with our main theorem about the Hochschild cohomology ring
HH•(A), then consider the general cohomologies HH•(A,M).

Theorem 5.3. Let π : C → A be any twisting cochain and take K =
A⊗π C ⊗π A. The map l : Homπ

k(C,A)→ HomAe(K,K) defined by

f 7→
(
a⊗ c⊗ b 7→ (−1)|f |(|a|+|c1|)a⊗ c1 ⊗ f(c2)b

)
(8)
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is a map of dg algebras. Furthermore, if π is acyclic then the map l is a
quasi-isomorphism and we have an identification of graded rings HH•(A) =
H•(Homπ

k(C,A)).

Proof in ring theoretic setting. Take K = A ⊗π C ⊗π A. Note that for any
dg algebra Π, left dg module M , and generic elements σ ∈ Π and m ∈ M ,
the formula dM (σm) = dΠ(σ)m + (−1)|σ|σdM (m) is exactly the statement
that the left multiplication map lΠ : Π → Homk(M,M) is a chain map.
Associativity of the action tells us that the left multiplication map is also
an algebra, and hence dg algebra, map. Therefore we get a dg algebra map

lHomπ
k

: Homπ
k(C,A)→ Homk(K,K)

given by the formula (8), since K = A⊗π C ⊗π A = (A⊗ C ⊗ A)π is a left
Homπ

k(C,A)-module under the action given in Lemmas 3.10 and 3.11. We
simply note that each map lHomπ

k
(f) is left and right A-linear to see that

the image of lHomπ
k

lay in the dg subalgebra HomAe(K,K) ⊂ Homk(K,K).
This produces l as the dg algebra map given by restricting the codomain of
lHomπ

k
.

In the case that π is acyclic, C is bounded above, and A is concentrated in
degree 0, the complex K provides a free bimodule resolution of A. Whence
the functor HomAe(K,−) preserves quasi-isomorphisms. In particular, the
map

ε∗ : HomAe(K,K)→ HomAe(K,A) ∼=
res

Homπ
k(C,A)

will be a quasi-isomorphism. (Recall that the restriction map is a chain
isomorphism, by Proposition 4.1.) Since ε(c1)f(c2) = f(ε(c1)c2) = f(c) for
each c ∈ C we see that ε∗l = idHomπ

k (C,A). Since ε∗ is a quasi-isomorphism
this then implies that l is also a quasi-isomorphism. �

Corollary 5.4. When (C,A) is sufficiently finite, and π : C → A is an
acyclic twisting cochain, then we have an identification of graded rings

HH•(A) = H•(C∗ ⊗π A) = H•(C∗ ⊗A, dC∗⊗A − [π,−]).

Proof. This is an immediate consequence of the fact that the isomorphism
C∗⊗π A ∼= Homπ

k(C,A) of Proposition 4.3 is a dg algebra isomorphism. �

Let us now consider the cohomologies HH•(A,M).

Theorem 5.5. If π : C → A is an acyclic twisting cochain then

(1) for any dg bimodule M we have HH•(A,M) = H•
(
Homπ

k(C,M)
)
.

(2) We have an H•(A)-bimodule identification

HH•(A,Ae) = H•
(
Homπ

k(C,Ae)
)
,

where the A-bimodule structure on functions in Homπ
k(C,Ae) is in-

duced by the inner bimodule structure on Ae = A⊗A.
(3) If (C,M) is sufficiently finite then HH•(A,M) = H•(C∗⊗πM) and

if (C,Ae) is sufficiently finite then the identification HH•(A,Ae) =
HH•(C∗ ⊗π Ae) is one of H•(A)-bimodules.
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Proof in ring theoretic setting. Take K = A ⊗π C ⊗π A. Recall that, ac-
cording to Proposition 4.1, the restriction map resAe : HomAe(K,M) →
Homπ

k(C,M) is an isomorphism of chain complexes for each M . For (1)
we need only know that K = A ⊗π C ⊗π A is such that HomAe(K,−) =
RHomAe(A,−). As was explained in the partial proof to 5.3, this is clear
when A is concentrated in degree 0 and C is bounded above. For (2) we
simply note that the restriction map is an isomorphism of bimodules. Part
(3) is an immediate consequence of Proposition 4.3 and the fact that the iso-
morphism (7) is, again, an isomorphism of A-bimodules when M = Ae. �

Remark 5.6. Let C•(A) = Homuniv
k (BA,A) denote the Hochschild cochain

complex for A. Theorem 5.3 can alternately be proved by showing that the
quasi-isomorphism C•(A)→ HomAe(K,A) dual to the canonical embedding
of K into the bar resolution for A (see [29, Proposition 3.9]) maps the cup
product of elements in C•(A) to the convolution product of their images.
This will be a more appropriate proof if one wishes to address the cup
product on Hochschild cohomology with coefficients in some ring extension
A′ of A.

Remark 5.7. Since we already have a quasi-isomorphism at the level of dg
algebras in Theorem 5.3, one can verify that the identification HH•(A) =
H•(Homπ

k(C,A)) is in fact one of A∞-algebras.

6. Hochschild cohomology of dg algebras: proofs of main
theorems

Here we give an an overview of some of the definitions and results from
Barthel, May, and Riehl’s paper [1], and complete the proofs of Theorems
5.3 and 5.5. The paper [1] is concerned with analyzing a number of model
structures on categories of dg modules. We will, however, avoid discussing
model categories at length. Let us only say that since we are over a field, the
(unbounded) derived category of k is equal to the (unbounded) homotopy
category of k. This implies that the q-model structure and r-model structure
from [1] are actually the same. So we can use the authors results for the
r-model structure to address the standard derived category of a dg algebra
Π,

D(Π) = Ho(dg Π-mod) = dg Π-mod[Quasi-isom−1].

We fix a dg algebra Π for the moment.

Definition 6.1 (Semi-projective dg modules). A dg Π-module M is called
semi-projective (q-semi-projective in [1]) if M is projective as a Π-module,
after forgetting the differential, and the hom complex HomΠ(M,N) is acyclic
whenever N is acyclic.

Since the construction of the mapping cone commutes with the hom com-
plex functor, we see that M is semi-projective if and only if it is projective as
a (non-dg) Π-module and HomΠ(M,−) preserves quasi-isomorphism. So, in
this case, HomΠ(M,−) induces a functor on the localizations D(Π)→ D(k).
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Definition 6.2 (Split filtrations). A split filtration of a dg Π-module M is
a filtration M = ∪iFiM with each FiM a dg submodule, F−1M = 0, and
each quotient FiM/Fi−1M isomorphic to a dg bimodule of the form Π⊗E
for some k-complex E.

We are principally interested in the following result.

Proposition 6.3 ([1, Propositions 9.19]). Let M be a dg Π-module. If M
admits a split-filtration then M is semi-projective.

We now turn our attention back to dg bimodules over a dg algebra A, in
which case Π = Ae.

Proposition 6.4. If π : C → A is an admissible twisting cochain then the
dg bimodule A⊗π C ⊗π A is semi-projective over Ae.

This result was inspired by [1, Proposition 10.18], which initiated my
interest in the paper [1]. The proof is also rather similar.

Proof. We filter by the coradical filtration on C. More specifically, we take

Fi = Fi(A⊗π C ⊗π A) := A⊗ FiC ⊗A.
Since the differential on C is filtered, as is the comultiplication, the differen-
tial on the twisted tensor complex does respect this filtration. In fact, from
the formula

dA⊗πC⊗πA = dA⊗C⊗A − [π,−]
= dA⊗C⊗A +

(
µ(idA ⊗ π)⊗ idC ⊗ idA − idA ⊗ idC ⊗ µ(π ⊗ id)

)
(idA ⊗∆⊗ idA)

for the differential on the twisted tensor product, and the fact that π|C0 = 0,
we see that the portion [π,−] of the differential vanishes in the associated
graded complex. So we have

Fi/Fi−1
∼= A⊗ (FiC/Fi−1C)⊗A

as an A-bimodule, where the differential is the product differential. Whence,
by Proposition 6.3 the complex is semi-projective. �

We will call a map p : M̃ →M of dg Π-modules a semi-projective approx-
imation of M if M̃ is semi-projective and p is a surjective quasi-isomorphism.
This notions correspond p being an acyclic fibration.

Lemma 6.5. Let π : C → A be a twisting cochain. If π is acyclic then
ε : A⊗π C ⊗π A→ A is a semi-projective approximation.

Proof. In light of the previous Proposition, we need only show that the map
ε is surjective. However, this is clear since we have the k-section

A→ A⊗A ∼= A⊗ C0 ⊗A→ A⊗ C ⊗A, a 7→ a⊗ 1⊗ 1.

�

There is now an obvious definition of the Hochschild cohomology, at least
from the perspective of homological algebra and derived functors.
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Redefinition 6.6 (Hochschild cohomology of a dg algebra). Let A be a dg
algebra. We define the Hochschild cohomology HH•(A) as the cohomol-

ogy of the hom complex HomAe(Ã, Ã), where Ã → A is a semi-projective
approximation of A over Ae.

Obviously each of these hom complexes HomAe(Ã, Ã) = EndAe(Ã) will
be a dg algebra. So the Hochschild cohomology still admits a natural prod-
uct. This graded ring structure is well defined and independent of choice of
resolution.

We now complete the proof of Theorem 5.3.

Completed proof of Theorem 5.3. By Lemma 6.5 ε : K → A will be a semi-
projective approximation of A. Thus the induced map

ε∗ : HomAe(K,K)→ HomAe(K,A) ∼= Homπ
k(C,A)

will be a quasi-isomorphism, and we can simply repeat the latter half of the
proof of Theorem 5.3 to get the desired result. �

We can also complete the proof of Theorem 5.5.

Completed proof of Theorem 5.5. We simply note thatK is a semi-projective
approximation, by Lemma 6.5, so that RHomAe(A,−) = HomAe(K,−) ∼=
Homπ

k(C,−). �

In closing, let us say a few words about the Hochschild cohomology of a dg
algebra. For any dg algebra A we will always have the bar dg coalgebra BA
and universal twisting cochain univ : BA → A. We then get the standard
map

ε : BarA = A⊗univ BA⊗univ A→ A,

which is a quasi-isomorphism since the mapping cone has a canonical con-
tracting homotopy. Then we get, by Theorem 5.3, that

HH•(A) = H•(Homuniv
k (BA,A)).

But Homuniv
k (BA,A) is the standard Hochschild cochain complex. So our

derived functor version of the Hochschild cohomology is the same as the
deformation theoretic Hochschild cohomology. In particular, ΣHH•(A) ad-
mits a graded Lie structure under which the solutions to the Maurer-Cartan
equation correspond to infinitesimal deformations of A (see, for example,
[17, Section 6.3]).

7. Filtered Koszul rings and Koszul duals (following
Positselski)

For the remainder of the paper B will denote a (non-dg) algebra. Inter-
nal gradings will be denoted with subscripts. We reserve the superscript
notation for (co)homological gradings.
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7.1. Graded Koszul duality with signs. A Koszul algebra is a finitely
generated connected graded algebra B, i.e. a graded algebra of the form

B = k ⊕B1 ⊕B2 ⊕ · · · ,

such that ExtB(k, k) is generated by Ext1
B(k, k) as an algebra. Here k = Bk

denotes the graded simple module B/(B≥1). The Koszul dual of a Koszul
algebra B is the algebra ExtB(k, k). To avoid confusion with the filtered
case, we denote the Koszul dual by E for the moment.

Any Koszul algebra will have a quadratic presentation B = k〈V 〉/(R).
Let us fix a Koszul algebra with such a presentation. Here R ⊂ V ⊗ V is
the subspace of quadratic relations for B. It is well known that we have
a presentation E ∼= k〈V ∗〉/(R⊥). We give here a description of the Koszul
dual which takes into account the homological grading on the implicit Koszul
resolution of k, which gives rise to the Koszul dual.

We let T 〈V 〉 = ⊕n≥0V
⊗n denote the tensor coalgebra on V . Recall that

the comultiplication on T 〈V 〉 is defined by “separation of tensors”

v = (v1⊗. . .⊗vn) 7→ (1)⊗(v)+(v)⊗(1)+
∑

1≤j≤n−1

(v1⊗. . .⊗vj)⊗(vj+1⊗. . .⊗vn).

We consider T 〈V 〉 to be homologically graded by taking V to be in degree
−1. The following lemma is well known. See for example [16, Section 4.7],
[19, Sections 3.1.3–3.2.2].

Lemma 7.1. The graded subspace W of T 〈V 〉 defined by W 0 = k, W−1 =
V , and

W−i =
⋂

i1+i2=i−2

V ⊗i1 ⊗R⊗ V ⊗i2 (9)

for all i ≥ 2, is a graded subcoalgebra of T 〈V 〉.

It is a standard fact that there is an algebra isomorphism E ∼= W ∗, where
W ∗ is given the unsigned product (f ? g)(c) := f(c1)g(c2). For our purposes
however, we will need an identification E = W ∗ which employs our signed
product on W ∗.

Consider k〈V ∗〉, the free algebra on the degree 1 space V ∗. We have the
canonical algebra isomorphism

k〈V ∗〉 → (T 〈V 〉)∗
f1 ⊗ . . .⊗ fn 7→ (v1 ⊗ . . .⊗ vn 7→ (−1)n(n−1)/2f1(v1) . . . fn(vn)).

(10)

Here the fi are in V ∗, the vi are in V , the function f1 ⊗ . . .⊗ fn will vanish
off V ⊗n, and the exponent n(n − 1)/2 =

∑n−1
l=0 l comes from commuting

the degree −1 variables vi past the degree 1 maps fi. If we then compose
the isomorphism (10) with the dual of the inclusion W → T 〈V 〉 we get
an algebra map k〈V ∗〉 → W ∗. The kernel of this map obviously contains
the ideal generated by R⊥, and it follows by the standard identification
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E ∼= W ∗ that the induced map k〈V ∗〉/(R⊥) = E → W ∗ is an isomorphism.
This isomorphism simply sends a monomial f1 . . . fn in E to the function

f1 . . . fn : W → k, v1 ⊗ . . .⊗ vn 7→ (−1)n(n−1)/2f1(v1) . . . fn(vn).

It is via this particular isomorphism that we identify E with W ∗ as a graded
algebra.

Remark 7.2. The sign conventions we employ here make no difference in
the presentation of the Koszul dual as a graded ring E = k〈V ∗〉/(R⊥) =

k〈V ∗〉/(
∑

i,j c
ij
` fi⊗fj)`. The conventions do make a difference once we start

considering differentials and curvature.

7.2. Filtered Koszul algebras and their Koszul dual (curved) dg
algebras. The class of algebras we will be interested in are the following.

Definition 7.3 (Filtered Koszul algebras). A Z≥0-filtered algebra B =
∪i≥0FiB such that grB is Koszul is called a filtered Koszul algebra.

Let B be a filtered Koszul algebra, and grB = k〈V 〉/(R) be its (graded)
Koszul associated graded algebra, with R the space of degree 2 relations.
One can check then that we will have a presentation

B = k〈V 〉/(r + α1(r) + α0(r))r∈R. (11)

for some linear functions α1 : R → V and α0 : R → k. These functions are
not determined uniquely by B, but depend (uniquely) on a choice of section
V = F1A/k → F1A (See [28, §2]).

Let us take E to be the algebra of extensions ExtgrB(k, k) for the associ-
ated graded algebra grB, which we have assumed to be Koszul. Recall that
the algebra E is given as the dual of the graded coalgebra W = · · ·⊕R⊕V ⊕k
of Lemma 7.1. In [28], Positselski proves the following

Proposition 7.4 ([28, Proposition 2.2]). Suppose B is filtered Koszul with
a presentation as in (11).

(1) The function V ∗ = E1 → R∗ = E2 given by precomposition with α1,
f 7→ fα1, extends to a well defined graded degree 1 derivation dB on
E.

(2) If we take

cB = −α0 ∈ R∗ = E2,

then the triple (E, dB, cB) defines a curved dg algebra structure on
the algebra of extensions E = ExtgrB(k, k) of the Koszul algebra grB.

Proof. The proof is the same as in [28]. We only note here that the sign
on the curvature has changed due to our signed identification with W ∗ (see
Remark 7.2). �

It is this structure which we view as the Koszul dual of B. Here we could
take B to be a Weyl algebra or Clifford algebra, for example.
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Definition 7.5 (The Koszul dual). Let B be a filtered Koszul algebra. The
curved dg algebra (ExtgrB(k, k), dB, cB) described above will be called the

Koszul dual curved dg algebra to B. It will generally be denoted B! =
(B!, dB! , cB!).

Note that when α0 = 0 in the presentation (11), the algebra B is aug-
mented, the curvature cB! vanishes, and the Koszul dual of B is a non-
curved dg algebra. In this augmented case, Proposition 7.4 already appears
in Priddy’s original work on Koszul resolutions [29, Theorem 4.3]. In the
case that B is the universal enveloping algebra of a Lie algebra g, for ex-
ample, the dg algebra (E, dB) is the Chevalley-Eilenberg dg algebra of g,
(E, dB) = (

∧• g∗, dCE).

7.3. Example: The nth Weyl algebra. In the case of the nth Weyl
algebra

An(k) = k〈x1, . . . , xn,
∂

∂x1
, . . . ,

∂

∂xn
〉/([xj , xi], [

∂

∂xj
,
∂

∂xi
], [

∂

∂xj
, xi]− δji)ij ,

we have grA = k[x1, . . . , xn,
∂
∂x1

, . . . , ∂
∂xn

] and

ExtgrA(k, k) = k[λ1, . . . , λn, θ1, . . . , θn] =: k[Λ,Θ].

In the second algebra, the variables λi and θj are the duals of the xi and
∂
∂xj

respectively. We consider these functions to have homological degree 1,

and the algebra k[Λ,Θ] is the free graded commutative algebra with these
generators. (So the variables anti-commute.)

Recall our identification of Ext2
grA(k, k) = (V ∗⊗V ∗)/R⊥ with R∗ is given

by sending a monomial f1f2 to the function
∑

i ri ⊗ r′i 7→ −
∑
f1(ri)f2(r′i).

So λiθj gets identified with the function R → k defined on basis elements
by

λiθj :

xk ⊗ xl − xl ⊗ xk 7→ 0
∂
∂xk
⊗ xl − xl ⊗ ∂

∂xk
7→ δilδjk

∂
∂xk
⊗ ∂

∂xl
− ∂

∂xl
⊗ ∂

∂xk
7→ 0

Whence, in this case, the curvature element cAn(k) = −α0 in k[Λ,Θ]2 will
be the sum

cAn(k) =

n∑
i=1

λiθi.

The corresponding Koszul dual of An(k) will be the curved dg algebra

(k[λ1, . . . , λn, θ1, . . . , θn], 0, cAn(k)).

7.4. Example: PBW deformations of skew polynomial rings. Take
V = 〈x1, . . . , xn〉 and let SQ(V ) denote the skew polynomial ring

SQ(V ) = k〈x1, . . . , xn〉/(xjxk − qjkxkxj)
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for Q = [qjk] a multiplicatively skew symmetric matrix (qjk = q−1
kj ) with

qjj = 1. The Koszul dual of the skew polynomial ring in the skew exterior
algebra

ExtSQ(V )(k, k) =
∧

Q
V ∗ := k〈λ1, . . . , λn〉/(λkλj + qjkλjλk, λ

2
j ).

An augmented PBW deformation B of SQ(V ) will be given by some con-

stants cjki so that the relations on our PBW deformation B will be given
by

B = k〈x1, . . . , xn〉/(xjxk − qjkxkxj −
∑
i

cjki xi).

So α1 : R→ V will be the function xj ⊗ xk − qjkxk ⊗ xj 7→ −
∑

i c
jk
i xi.

Now, on the Koszul dual, the product λiλj in (
∧
QV
∗)2 is identified with

the function

xl⊗xm−qlmxm⊗xl 7→ −(λi(xl)λj(xm)−qlmλi(xm)λj(xl)) = −δilδjm+qlmδimδjl,

i.e. the negated dual of the relations xixj − qijxjxi. So

dB!(λi) = λiα1

= (xj ⊗ xk − qjkxk ⊗ xj 7→ −
∑

l c
jk
l λi(xl))

= (xj ⊗ xk − qjkxk ⊗ xj 7→ −cjki )

=
∑

j<k c
jk
i λjλk.

8. Hochschild cohomology via B! for Koszul rings

8.1. Koszul resolutions via twisting cochains. In this section we give a
presentation of Koszul resolutions based on the work of Keller and Lefévre-
Hasegawa. The original presentation, in the case that B is graded Koszul,
appears in [16, Section 4.7] and [15].

For the section we fix B to be a filtered Koszul algebra with a presentation

B = k〈V 〉/(r + α1(r) + α0(r))r∈R

and B! = (B!, dB! , cB!) its Koszul dual (curved) dg algebra of Proposition
7.4. Let grB = k〈V 〉/(R) so that B! is dual to the graded coalgebra W =
· · · ⊕ (R ⊗ V ∩ V ⊗ R) ⊕ R ⊕ V ⊕ k of Lemma 7.1. Positselski’s proof of
[28, Proposition 2.2], in particular equation (2) of the proof given therein,
implies

Lemma 8.1 ([28]). There is a unique curved dg structure on W given by
fW = α0 and dW |W−2 = α1 such that the identification B! = W ∗ is one of
curved dg algebras.

Proof. The proof of [28, Proposition 2.2] shows that such a curved dg coal-
gebra structure on W exists. The fact that B! = W ∗ as curved dg algebras
is immediate from the definition of the curved dg algebra structure on the
dual of a curved dg coalgebra given in Section 2.2. �
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Definition 8.2 (Koszul dual coalgebra). Given a filtered Koszul algebra B,
with grB = k〈V 〉/(R), the Koszul dual (curved) dg coalgebra to B will be
the, possibly curved, dg coalgebra (W,dW , fW ) of Lemma 8.1. We will often
write simply W for (W,dW , fW ).

Lemma/Definition 8.3 (The twisting cochain e). Let B be filtered Koszul
and W be its Koszul dual (curved) dg coalgebra. Let e : W → B be the
composition of the projection W → W−1 = V with the inclusion V →
B, v 7→ v. The map e : W → B is an acyclic twisting cochain.

Proof. We need to verify the formula

−fW − edW + µ(e⊗ e)∆ = 0.

It suffices to check that the above equation holds when evaluated at a ho-
mogeneous degree −2 element in W , since the left hand side vanishes on
elements of all other degrees. Recalling that W−2 = R, we evaluate on a
relation r =

∑
i ri ⊗ r′i to get

(−fW − edW + µ(e⊗ e)∆)(r)
= −fW (r)− edW (r) + µ(e(r)⊗ e(1) + e(1)⊗ e(r)−

∑
i e(ri)⊗ e(r′i))

= −α0(r)− e(α1(r))−
∑

i rir
′
i

= −α0(r)− α1(r) + α1(r) + α0(r)
= 0.

The fact that W is connected is clear, since W 0 = k. Now, in the case
where B is graded Koszul the above complex B ⊗eW ⊗e B, along with the
map ε : B ⊗e W ⊗e B → B is easily seen to recover the standard Koszul
resolution [31, proof of Proposition 3.3], [15, Section 4.7]. In general, one
can employ the filtration

Fi(B ⊗eW ⊗e B) =
∑

i1+i2+i3=i

Fi1B ⊗W−i2 ⊗ Fi3B,

which has associated graded complex equal to the Koszul resolution of grB,
and an easy spectral sequence argument to see that H<0(B⊗eW ⊗eB) = 0.
The fact that H0(B ⊗eW ⊗e B) = B is apparent. �

In following the standard terminology, we call the resolution ε : B ⊗e
W ⊗e B

∼→ B the Koszul resolution of a filtered Koszul ring B.

8.2. Hochschild cohomology via B!. As a consequence of Lemma 8.3,
we find that Corollary 5.4 specializes to the Koszul case to give

Corollary 8.4. For B filtered Koszul with Koszul dual (curved) dg algebra
B!, we have an identification of algebras HH•(B) = H•(B! ⊗e B).

Recall that the object B! ⊗e B is the dg algebra

B! ⊗e B =
(
B! ⊗B, dB!⊗B − [e,−]

)
.

If we suppose that grB = k〈V 〉/(R), then the element e is just the standard
identity element in (B! ⊗ B)1 = V ∗ ⊗ V . Indeed, given a basis {xi}i of V ,
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and dual basis {λi}i of V ∗, one can check that e is the element
∑

i λi ⊗ xi.
This element is called the “identity element” because it is identified with

the identity map under the natural isomorphism V ∗ ⊗ V
∼=→ Homk(V, V ).

Whence we have

HH•(B) = H•(B! ⊗e B) = H•
(
B! ⊗B, dB!⊗B − [

∑
i

λi ⊗ xi,−]
)
.

For the cohomologies HH•(B,M), we have the following immediate corol-
lary to Theorem 5.5. The second portion of the statement provides a slight
generalization of [32, Theorem 9.1] to allow for filtered, not just graded,
Koszul algebras. One could also consider this result in relation to Yeku-
tieli’s computations of rigid dualizing complexes for universal enveloping
algebras [33].

Corollary 8.5. Given a filtered Koszul algebra B, and B bimodule M we
have H•(B!⊗eM) = HH•(B,M). When M = BB ⊗BB then the H•(B!⊗e
(B ⊗B)) = H•(B,B ⊗B) as a bimodule.

Remark 8.6. It seems as though the most readily generalizable result is
the identification

HH•(B) = H•(Home
k(W,B)).

For example, if one is interested in moving away from the (graded) Koszul
case to the general case of connected graded algebras, one should replace the
Koszul dual algebra B! with the Koszul dual A∞-algebra (see [20]). Taking
the dual B! will give an A∞-coalgebra W which will be connected to B via
an A∞-twisting cochain e : W → B (similar to the [16, Section 4.4]). It may
then be the case that we still have that the cohomology of the twisted homs
Home

k(W,B) is the Hochschild cohomology algebra.
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