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Abstract. For a simple Lie algebra g of type A, D, E we show that any

Belavin-Drinfeld triple on the Dynkin diagram of g produces a collection of

Drinfeld twists for Lusztig’s small quantum group uq(g). These twists give rise
to new finite-dimensional factorizable Hopf algebras, i.e. new small quantum

groups. For any Hopf algebra constructed in this manner, we identify the

group of grouplike elements, identify the Drinfeld element, and describe the
irreducible representations of the dual in terms of the representation theory of

the parabolic subalgebra(s) in g associated to the given Belavin-Drinfeld triple.

We also produce Drinfeld twists of uq(g) which express a known algebraic
group action on its category of representations, and pose a subsequent question

regarding the classification of all twists.

Introduction

Let g be a simple Lie algebra over C of type A, D, E, and let Γ be its Dynkin
diagram. A Belavin-Drinfeld triple on Γ is a choice of two subgraphs Γ1 and Γ2

and an isomorphism T : Γ1 → Γ2 satisfying a certain nilpotence condition. In [5,
Ch. 6] Belavin and Drinfeld showed that such a triple gives rise to solutions to
the classical Yang-Baxter equation in g ⊗ g, and in [14] Etingof, Schedler, and
Schiffmann showed that any Belavin-Drinfeld triple gives rise to (Drinfeld) twists
of the Drinfeld-Jimbo quantum group U~(g). Such a twist J of U~(g) produces a
new quantum group U~(g)J and new R-matrix, i.e. solution to the Yang-Baxter
equation (see Section 2). These new solutions to the Yang-Baxter equation quantize
the classical solutions of Belavin and Drinfeld, in the sense described in [12, 14].
Furthermore, one can show that any twist of the Drinfeld-Jimbo quantum group,
over C[[~]], arises as one of the quantizations of [14], up to gauge equivalence.

Here we follow the methods of [14, 4] to produce twists of Lusztig’s small quan-
tum group uq(g) from Belavin-Drinfeld triples. We also produce explicit twisted
automorphisms of uq(g) which arise out of an algebraic group action on its cate-
gory of representations. The action we consider here first appeared in the work of
Arkhipov and Gaitsgory [3], but can also be derived from De Concini and Kac’s
earlier quantum coadjoint action [8], as is explained in Section 9 below. Using the
Belavin-Drinfeld twists, and those twists associated to the algebraic group action,
we propose a question regarding the classification of all twists of the small quantum
group.

Belavin-Drinfeld triples and twists of uq(g). Recall that the small quantum
group is a finite dimensional quasitriangular Hopf algebra produced from the Cartan

Date: September 17, 2017.
This work was supported by NSF Postdoctoral Research Fellowship DMS-1503147.

1



2 CRIS NEGRON

data for g and a primitive lth root of unity q.1 In addition to a triple (Γ1,Γ2, T )
for g we need one more piece of data S. The element S is a choice of solution to a
certain equation involving T , which we describe below (see Section 3). Given any
Belavin-Drinfeld tiple (Γ1,Γ2, T ) we will have max{1, l|Γ−Γ1|(|Γ−Γ1|−1)/2} such
solutions S. We show

Theorem I (3.1). Any Belavin-Drinfeld triple (Γ1,Γ2, T ) for g and solution S

produces a twist J = JT,S for the small quantum group uq(g), and an associated
Hopf algebra uq(g)J .

The twist JT,S is given explicitly by the formula

JT,S = (T+ ⊗ 1)(R) . . . (Tn+ ⊗ 1)(R)S−1Ω
−1/2

L⊥
(Tn ⊗ 1)(Ω)−1 . . . (T ⊗ 1)(Ω)−1

where R is the R-matrix for uq(g), Ω is an element representing the negated Killing
form, and T+ is an extension of T to an endomorphism of the positive quantum
Borel in uq(g). The above theorem is a non-dynamical analog of [13, Sect. 5.2],
and a discrete version of [14, Cor. 6.1].

Recall that for any twist J of a Hopf algebra H we will have a canonical equiva-
lence between the associated tensor categories of finite dimensional representations
rep(H)

∼→ rep(HJ). In addition to studying the relationship between Belavin-
Drinfeld triples and solutions to the Yang-Baxter equation (i.e. R-matrices) for
finite dimensional Hopf algebras, we want to study variances of Hopf structures
under tensor-equivalence. With this purpose in mind we give an in depth study of
the Hopf algebras uq(g)J arising from our twists.

For the remainder of the introduction fix J = JT,S the twist associated to some
Belavin-Drinfeld data (Γ1,Γ2, T ) and S. Using the new R-matrix for uq(g)J , in con-
junction with the frameworks of [26], we identify the grouplike elements of uq(g)J ,
show that the Drinfeld element for uq(g)J is equal to that of the untwisted alge-
bra uq(g), verify invariance of the traces of the powers of the antipode under the
twists J = JT,S, and classify irreducible representations of the dual. (See Corol-
laries 7.8, 8.2, 8.3, and Theorem 7.4 below.) Our analyses of the Drinfeld element
and antipode give positive answers to some general questions of [24] and [28] in the
particular case of Belavin-Drinfeld twists of the small quantum group. We describe
our result on irreducibles more explicitly below.

In the statement of the following theorem we let pss be the semisimple Lie algebra
associated to the union of Dynkin diagrams Γ1 appearing in the Belavin-Drinfeld
triple (Γ1,Γ2, T ).

Theorem II (7.4). There is an abelian group L of order l(|Γ− Γ1|) and bijection

Irrep (C[L]⊗ uq(pss))
∼=→ Irrep

(
(uq(g)J)∗

)
induced by a surjective algebra map (uq(g)J)∗ → C[L]⊗ uq(pss).

By comparison, for the untwisted algebra uq(g) we have that Irrep (uq(g)∗) =

(Z/lZ)|Γ|, and the representation theory of the dual is rather banal from the per-
spective or irreducibles and the fusion rule. After twisting uq(sln+1), for example,
we can have a copy of the rather rich category rep (uq(sln)) in the category of rep-
resentations for the dual (uq(sln+1)J)∗. This will specifically be the case for (what
we call) maximal triples on An. One should compare this result to [13, Thm. 5.4.1].

1We will need l to be coprime to a small number of integers throughout this work.
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The Arkhipov-Gaitsgory action and twisted automorphisms. Take G the
connected, simply connected, semisimple algebraic group with Lie algebra g. In [3]
Arkhipov and Gaitsgory show that the category rep(uq(g)) is tensor equivalent to a
de-equivariantization of the category of corepresentations of the quantum function
algebra Oq(G). The de-equivariantization is a certain (non-full) monoidal subcate-
gory in Coh(G) which inherits a natural action of G by left translation (see [2, 15]).
From the aforementioned equivalence we then get an action of G on rep(uq(g)).

According to general principles, any autoequivalence of rep(uq(g)) should be
expressible as a twisted automorphism (φ, J), i.e. a pair of a twist J and a Hopf
isomorphism φ : uq(g)→ uq(g)J . Hence, the action of G should generate twists of
uq(g).

In Section 9 we show that any simple root α of g, or its negation −α, has an
associated 1-parameter family of twisted automorphisms (expλ±α, J

λ
±α), which then

give a 1-parameter subgroup ω±α in the group of autoequivalences of rep(uq(g)).
We identify these 1-parameter subgroups ω±α with the action of Arkhipov and
Gaitsgory.

Proposition (9.4). For γ±α : C→ G the 1-parameter subgroup given by exponen-
tiating the root space g±α, we have a diagram

G
AG actn

++
C

γ±α 99

ω±α // Aut(rep(uq(g))),

where ω±α is the 1-parameter subgroup specified by the twisted automorphisms
(expλ±α, J

λ
±α).

This result allows us to produce an explicit action of G on the collection TW(uq(g))
of gauge equivalence classes of twists. We let BD(uq(g)) ⊂ TW(uq(g)) denote the
subcollection of Belavin-Drinfeld twists {JT,S}T,S. We pose the following question,
which is also raised in [7].

Question (9.5). Do the Belavin-Drinfeld twists and the 1-parameter subgroups
{(expλ±α, J

λ
±α)}λ,α generate all twists of uq(g)? Equivalently, is the inclusion BD(uq(g))·

G→ TW(uq(g)) an equality?

As was stated above, for the Drinfeld-Jimbo algebra U~(g) one can show that
the Belavin-Drinfeld twists are the only twists, up to gauge equivalence. So the
appearance of G here already marks a deviation from the generic setting.

We note that a classification of twists for uq(sl2) is know, and can be deduced
from Mombelli’s work [22]. However, even for g = sl3 the problem is completely
open.

Organization. Sections 1 and 2 are dedicated to background. In Section 3 we
introduce and prove Theorem I. In Sections 4 and 5 we analyze relations between
Radford’s left and right subalgebras RJ(l) and RJ(r) in uq(g)J and the quantum

parabolics associated to Γ1 and Γ2. We prove an explicit description of the RJ(∗)
in Section 6, which leads to the proof of Theorem II in Section 7. In Section 8
we discuss the Drinfeld element and antipode of such a twist uq(g)J . Section 9 is
dedicated to the action of the algebraic group G on rep(uq(g)).
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1. The small quantum group, Belavin-Drinfeld triples, and
associated subgroups in the Cartan

We introduce the small quantum group uq(g), then give some information on
the Cartan subgroup G = G(uq(g)) and Belavin-Drinfeld tiples.

1.1. The small quantum group. Take g a simple and simply laced Lie algebra,
i.e. a Lie algebra of type A, D, E. Let Φ be a root system for g (in the dual of
some Cartan), Γ be a choice of simple roots, and l be an odd integer coprime to the
determinant of the Cartan matrix for g. We let Q = Z · Γ denote the root lattice
and (?, ?) be the scaling of the Killing form so that each (α, β) is the Cartan integer
for simple roots α, β. Take q a primitive lth root of unity.

The small quantum group uq(g) is the Hopf algebra

uq(g) = C〈Kα, Eα, Fα : α ∈ Γ〉/(Rels),

where Rels is the set of relations

[Kα,Kβ ] = 0, KαEβ = q(α,β)EβKα, KαFβ = q−(α,β)FβKα,

[Eα, Fβ ] = δα,β
Kα −K−1

α

q − q−1
,

[Eα, Eβ ] = [Fα, Fβ ] = 0 when (α, β) = 0,

E2
αEβ − (q + q−1)EαEβEα + EβE

2
α, when (α, β) = −1,

F 2
αFβ − (q + q−1)FαFβFα + FβF

2
α when (α, β) = −1.

Kl
α = 1, Elµ = F lµ = 0 ∀ µ ∈ Φ+. (1)

We will explain the (currently opaque) relations (1) more clearly below. The co-
product is given by

∆(Kα) = Kα ⊗Kα, ∆(Eα) = Eα ⊗ 1 +Kα ⊗ Eα, ∆(Fα) = Fα ⊗K−1
α + 1⊗ Fα

and the antipode is given by

S(Kα) = K−1
α , S(Eα) = −K−1

α Eα, S(Fα) = −FαKα.

We let G denote the group of grouplikes in uq(g), u+ and u− denote the subalge-
bras generated by the Eα and Fα respectively, and u+ and u− denote the positive
and negative quantum Borels in uq(g). Note that G is generated by the Kα and
that under the adjoint action of G on u± we will have u± = u± oC[G]. Note also
that uq(g) and the u± are graded by the root lattice Q = Z ·Γ, where the generators
Eα, Fα, and Kα have degrees α, −α, and 0 respectively.

There is an obvious group map Q→ G which sends an element γ =
∑
α nαα in Q

to the product Kγ :=
∏
αK

nα
α . This mapping induces an identification Q/lQ ∼= G.

We let Kγ to denote the image of an element γ ∈ Q (or γ ∈ Q/lQ) in G throughout.
We would like to employ Lusztig’s standard basis for uq(g), which we review

here. Recall that for a reduced expression w = σα1 . . . σαt of the longest word w in
the Weyl group, in terms of the simple reflections, we have length(w) = |Φ+| and

Φ+ = {σα1
. . . σαi−1

(αi) : 1 ≤ i ≤ length(w)}. (2)
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(See e.g. [30].) For each simple root α there is an automorphism Bα of uq so that
the Bα together give an action of the braid group B(Γ) on uq [21].2 Now for each
µ ∈ Φ+ we take

Eµ = Bα1
. . . Bαi−1

(Eαi), and Fµ = Bα1
. . . Bαi−1

(Fαi),

where µ = σα1
. . . σαi−1

(αi). The Eµ and Fµ defined here are the elements appear-
ing in the above relations (1).

Theorem 1.1 ([21]). For each µ ∈ Φ+, the element Eµ (resp. Fµ) is homogeneous
of degree µ (resp. −µ) with respect to the root lattice grading on uq(g). Furthermore,
the collection of elements

{
∏
µ∈Φ+

Enµµ : 0 ≤ nµ ≤ l − 1}, {
∏
ν∈Φ+

Fmνν : 0 ≤ mν ≤ l − 1},

give C-bases for u+ and u− respectively, and

{(
∏
ν∈Φ+

Fmνν )(
∏
µ∈Φ+

Enµµ ) : 0 ≤ nµ,mν ≤ l − 1}

gives a C[G]-basis for uq(g).

Homogeneity of the Eµ is equivalent to the statement that Eµ is a linear combi-
nation of permutations of the monomial Eα1

. . . Eαk , where µ = α1 + · · ·+αk with
the αi ∈ Γ. The analogous statement holds for the Fν as well. We note that the
homogeneity is not covered in [21], but can easily be seen from the fact that each
braid group operator Bα is such that deg(Bα(a)) = σα(deg(a)), for homogeneous
a ∈ uq. From the identifications u± = u± o C[G] the C-bases for u± produce
C[G]-bases for the quantum Borels.

We recall finally that uq(g) is quasi-triangular. The R-matrix is

R =
∏
µ∈Φ+

(
l−1∑
n=0

q−n(n+1)/2 (1− q2)n

[n]q!
Enµ ⊗ Fnµ

)
Ω,

where [n]q! is the standard q-factorial, Ω ∈ C[G]⊗ C[G] is given by

Ω =
1

|G|
∑

β,γ∈Q/lQ

q(β,γ)Kβ ⊗Kγ ,

and the product is ordered with respect to the ordering on Φ+ given by (2) (see [29]).
As we will see below Ω can be identified with the a negated Killing form on the
character group of G.

1.2. Belavin-Drinfeld triples and subgroups of G. We recall some information
from [13]. To ease notation we let G denote the character group of G, G = G∨.

The Killing form on Q induces a C×-valued form on G given by the formula
(Kα,Kβ) = q(α,β). Our assumption that l is coprime to the determinant of the
Cartan matrix for g ensures non-degeneracy of this form. Non-degeneracy of the
form allows us to identify Q/lQ with the character group of G by taking an element
γ of the root lattice to the function Kα 7→ q(γ,α).

Throughout this work we identify elements of the (truncated) root lattice with
characters on G via the Killing form. The isomorphism G → G induced by the
Killing form is such that Kα 7→ α.

2Our Bα are the Tα from [21].
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Now, the Cartan part Ω of the R-matrix for uq(g) provides a form on the char-
acter group G,

Ω : G × G → C×, (µ, ν) 7→ (µ⊗ ν)(Ω) =
1

|G|
∑

β,γ∈Q/lQ

q(β,γ)µ(Kβ)ν(Kγ).

When µ and ν are elements of the root lattice the above expression reduces to

Ω(µ, ν) = 1
|G|
∑
β,γ q

(β,γ)µ(Kβ)ν(Kγ) = 1
|G|
∑
β,γ q

(β,γ)+(β,µ)+(ν,γ)

= q−(µ,ν) 1
|G|
∑
β,γ q

(β+ν,γ+µ)

= q−(µ,ν) 1
|G|
∑
σ,τ q

(σ,τ) = q−(µ,ν).

So we see that Ω is identified with the negated Killing form. In particular Ω is
non-degenerate.

The following structure was introduced by Belavin and Drinfeld in [5].

Definition 1.2. A Belavin-Drinfeld triple (BD triple) on Γ is a choice of two
subsets Γ1,Γ2 ⊂ Γ and inner product preserving bijection T : Γ1 → Γ2 which
satisfies the following nilpotence condition: for each α ∈ Γ1 there exists n ≥ 1 with
Tn(α) ∈ Γ− Γ1.

We often take Tα = T (α). Having fixed some BD triple (Γ1,Γ2, T ) we can define
a number of subgroups in G and G. We take

L = (Z/lZ · {α− Tα : α ∈ Γ1})⊥ ,
where the perp is calculated with respect to the Killing form, and

L =
(
Z/lZ · {KαK

−1
Tα : α ∈ Γ1}

)⊥
.

We take also Gi = Z/lZ · Γi and the Gi = Z/lZ · {Kα : α ∈ Γi}.
We assume that l is such that restrictions of the form to Z/lZ ·{α−Tα : α ∈ Γ1}

and Gi are non-degenerate. To find such an l one simply considers the determinants
of the (integer) matrices [(α− Tα, β − Tβ)]α,β∈Γ1

and [(α, β)]α,β∈Γ1
and chooses l

coprime to these determinants. This will give L⊥ = Z/lZ · {α − Tα : α ∈ Γ1} and
split G and G as G = L×L⊥ = Gi×G⊥i , G = L×L⊥ = Gi×G⊥i . We also assume l
is such that the restriction of the form to Gi ×L⊥ is non-degenerate, which we can
do by [14, Lem 3.1], and which can be checked by considering the determinant of
the corresponding matrix. The following lemma was covered in [13, Sect. 5.2] (see
also [14, Cor 3.2]).

Lemma 1.3. Under the above assumptions on l, there are splittings G = G1 × L
and G = G2 × L, and a unique extension of T : Γ1 → Γ2 to a group automorphism
T : G → G with T |L = idL. This automorphism preserves the form on G.

We will denote this extension of T to an automorphism on G simply by T . By
a further abuse of notation we let T also denote the induced automorphism on the
dual. That is, T : G→ G is the map Kα 7→ KT (α). Preservation of the form means
specifically (Tµ, Tν) = (µ, ν) for each µ, ν ∈ G and (T ⊗ T )(Ω) = Ω.

Throughout this work we make copious use of the dualities

G! G, L! L, Gi! Gi, L⊥! L⊥, G⊥i ! G⊥i .
By this we mean both that the duality functor (?)∨ sends the group on the left to
the group on the right, and vice-versa, and that for any Kµ in the group on the left
the function (Kµ, ?) will be an element in the corresponding group on the right,
and vice-versa.



7

2. Twists and R-matrices

A (Drinfeld) twist of a Hopf algebra H is a unit J ∈ H ⊗H which satisfies the
dual cocycle condition

(∆⊗ 1)(J)(J ⊗ 1) = (1⊗∆)(J)(1⊗ J)

and (ε⊗ 1)(J) = (1⊗ ε)(J) = 1. From such a J we can define a new Hopf algebra
HJ which is equal to H as an algebra and has the new comultiplication

∆J(h) = J−1∆(h)J.

The antipode on HJ is given by

SJ(h) = Q−1
J S(h)QJ ,

where QJ = m((S ⊗ 1)(J)) and Q−1
J = m((1 ⊗ S)(J−1)) and m is multiplication.

(See e.g. [15, 27].)
Recall that a quasitriangular Hopf algebra is a Hopf algebra H with a unit

R ∈ H ⊗H satisfying R∆(h)R−1 = ∆op(h) for all h ∈ H, as well as the relations
(∆⊗ 1)(R) = R13R23 and (1⊗∆)(R) = R13R12. We have the additional relations

(ε⊗ 1)(R) = (1⊗ ε)(R) = 1, (S ⊗ 1)(R) = (1⊗ S−1)(R) = R−1

and R12R13R23 = R23R13R12 [10]. When H is quasitriangular with R-matrix R,
the twist HJ will naturally be quasitriangular with new R-matrix

RJ = J−1
21 RJ.

2.1. Bicharacters and twists on group rings. Let Λ be a finite abelian group.
We call an element B ∈ C[Λ]⊗C[Λ] = C[(Λ∨×Λ∨)∨] a (symmetric, antisymmetric,
etc.) bicharcter if its restriction B : Λ∨ ×Λ∨ → C is a (symmetric, antisymmetric,
etc.) bicharacter. An easy direct check verifies

Lemma 2.1. Any bicharacter B ∈ C[Λ]⊗ C[Λ] is a twist for C[Λ].

Indeed, up to so-called gauge equivalence, every twist of the group ring of an
abelian group of odd order is given by an antisymmetric bicharacter (see e.g. [16, ?]).

3. Twists from Belavin-Drinfeld triples

For the remainder of this study we fix g a simply laced simple Lie algebra with
root system Φ and a choice of simple roots Γ. We take l as in Section 1.2 and
uq = uq(g).

Let (Γ1,Γ2, T ) be a BD triple. Following [14, 13], we extend the group maps
T±1 : G → G constructed in Lemma 1.3 to Hopf endomorphisms of the quantum
Borels T± : u± → u± defined by

T+(Eα) =

{
ETα when α ∈ Γ1

0 when α ∈ Γ− Γ1,
T−(Fβ) =

{
ET−1β when β ∈ Γ2

0 when β ∈ Γ− Γ2.

There will be a unique minimal positive integer n such that Tn±|I± = 0, where I± is
the ideal in u± generated by all the Eα, or Fα. We call this integer the nilpotence
degree of T±.

We will be interested in antisymmetric bicharacters S in C[G]⊗C[G] solving the
following equation:

S2(α− Tα, ?) = Ω(α+ Tα, ?) ∀ α ∈ Γ1. (EQ–S)
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We verify below that such solutions always exist, and that there are exactly |L∧ZL|
of them, which is expected from [5, 14].

This section is dedicated to a proof of the following theorem.

Theorem 3.1. Consider any Belavin-Drinfeld triple (Γ1,Γ2, T ) and solution S

to (EQ–S). The element

JT,S = (T+ ⊗ 1)(R) . . . (Tn+ ⊗ 1)(R)S−1Ω
−1/2

L⊥
(Tn ⊗ 1)(Ω)−1 . . . (T ⊗ 1)(Ω)−1

is a twist for the small quantum group uq(g), where n is the nilpotence degree of
T+.

This result is a non-dynamical version of [13, Sect. 5.2], and a discrete version
of [14, Thm. 6.1]. To clarify our previous point, we have

Lemma 3.2. Antisymmetric bicharacter solutions S to equation (EQ–S) always
exist, and there are exactly |L ∧Z L| such solutions.

Proof. We decompose G as L⊕ L⊥ to get G ∧Z G = (L⊥ ∧Z G)⊕ (L ∧Z L). Since

L⊥ = (L⊥)∨ = (Z/lZ · {α− Tα : α ∈ Γ1})∨

we see that the equation (EQ–S) specifies uniquely an element S0 in L⊥∧ZG, which
we extend to a bicharacter on G which vanishes on L × L. Whence we have found
a solution to (EQ–S). We can add arbitrary elements of L∧Z L to arrive at the set
of all solutions S0 + L ∧Z L. �

One should note that when rank(L) = |Γ| − 1, the solution S will be unique.
Using our nilpotence assumption on T one sees that, up to an automorphism of the
Dynkin diagram, this occurs only in type A for the triple

Γ = An, Γ = {first n− 1 roots}, Γ2 = {last n− 1 roots}, T (αi) = αi+1.

We will call this the maximal triple on An.
We will need the following basic property of the R-matrix.

Lemma 3.3. The R-matrix for uq(g) satisfies (T+ ⊗ 1)(R) = (1⊗ T−)(R).

Proof. Any element W ∈ u+ ⊗ u− is uniquely specified by the corresponding func-
tion W : u∗+⊗u∗− → C and subsequent map tW : u∗+ → u−, f 7→ (f⊗1)(W ). By [26,
Prop. 2] and the fact that T± is a Hopf map, we see that when W = (T+ ⊗ 1)(R)
or (1 ⊗ T−)(R) the tW : u∗+ → u− are algebra morphisms. Since u+ is cordically
graded, u∗+ is generated in degrees 0 and −1 as an algebra, with (u∗+)0 = C[G]∗

and (u∗+)−1 = (
∑
αC[G]Eα)∗, and we see that the tW are determined by the re-

strictions tW |(u∗+)0 and tW |(u∗+)−1. These restrictions are in turn determined by
the homogeneous pieces

(T+ ⊗ 1)(R)0 = (T ⊗ 1)(Ω), (1⊗ T−)(R)0 = (1⊗ T−1)(Ω)

and
(T+ ⊗ 1)(R)1 = (q−1 − q)(

∑
α∈Γ1

ETα ⊗ Fα)(T ⊗ 1)(Ω),

(1⊗ T−)(R)1 = (q−1 − q)(
∑
β∈Γ2

Eβ ⊗ FT−1β)(1⊗ T−1)(Ω),

where we grade u+ ⊗ u− by the degree on u+. By T -invariance of the form Ω,
it follows that (T+ ⊗ 1)(R)0 = (1 ⊗ T−)(R)0 and (T+ ⊗ 1)(R)1 = (1 ⊗ T−)(R)1.
Whence we have the proposed equality. �
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3.1. General outline. In order to prove Theorem 3.1 we will basically repeat the
arguments of [14, 13], and so only sketch some of the unoriginal details.

Fix a triple (Γ1,Γ2, T ). Following the suggestions of [14, Remark 6.1], and the
general approach of [4], we will show that J is a twist by showing that both

(∆⊗ 1)(J)(J ⊗ 1) and (1⊗∆)(J)(1⊗ J)

solve a certain “mixed ABRR” equation. Solutions to this equation with a specified
“initial condition” are shown to be unique, so that we will have

(∆⊗ 1)(J)(J ⊗ 1) = (1⊗∆)(J)(1⊗ J).

Remark 3.4. (1) The letters ABRR throughout refer to the motivating work
of Arnaudon, Buffenoir, Ragoucy, and Roche [4].

(2) Our presentation is slightly more complicated than that of [14]. This is a
result of our choice to avoid the use of dynamical twists.

3.2. Discrete ABRR in 2-components. For a given solution S let Z denote the
restriction of S to L × L⊥, Σ denote the restriction to L⊥ × L, and take

Q = ZΣ = S|
(
(L × L⊥) + (L⊥ × L)

)
.

We view Z, Σ, and Q as bicharacters on G by letting them vanish on all other
factors of G × G. We also let ΩL denote the restriction Ω|(L × L).

Definition 3.5. We define A2
L and A2

R the be the linear endomorphisms of u+⊗u−
defined by

A2
L(ξ) = (T+ ⊗ 1)(RξQ)Q−1Ω−1

L , A2
L(ξ) = (1⊗ T−)(RξQ)Q−1Ω−1

L .

The left and right 2-component ABRR equations are the equations A2
L(X) = X

and A2
R(X) = X respectively.

We note that Q can be replaced with Σ and Z in the expressions for A2
L and A2

R

respectively. These alternate expressions are preferable for some calculations.
Since R decomposes as a sum R = Ω + R+, where R+ is in the nilpotent ideal

I+ ⊗ I−, we get a corresponding decomposition of A2
L as

A2
L(ξ) = (T+ ⊗ 1)(ΩξQ)Q−1Ω−1

L + (T+ ⊗ 1)(R+ξQ)Q−1Ω−1
L .

From this one finds that we can solve the left 2-component ABRR equation provided
we can solve to the equation (T ⊗ 1)(ΩX0Q)Q−1Ω−1

L = X0 in C[G] ⊗ C[G]. The
analogous stamentement holds for the right ABRR equation. Whence we have the
following discrete analog of [14, Cor. 4.1].

Lemma 3.6 (cf. [14]). Any solution B ∈ C[G]⊗ C[G] to the equation

(T ⊗ 1)(ΩX0Q)Q−1Ω−1
L = X0 (resp. (1⊗ T−1)(ΩX0Q)Q−1Ω−1

L = X0) (3)

extends uniquely to a solution J ∈ B+ I+⊗ I− to the ABRR equation A2
L(X) = X

(resp. A2
R(X) = X).

In the proof of the following lemma we use the fact that for any element Kµ ∈
C[G], and ν ∈ G, we have

(T±1(Kµ))(ν) = Kµ(T∓1ν).

This follows from the easy sequence

(T±1(Kµ))(ν) = KT±1µ(ν) = (T±1µ, ν) = (µ, T∓1ν) = Kµ(T∓1ν).
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Lemma 3.7. There are unique solutions JL, JR ∈ S−1Ω
−1/2

L⊥
+ I+ ⊗ I− to the left

and right 2-component ABRR equations, respectively.

Proof. We are claiming first that S−1Ω
−1/2
L solves the degree 0 ABRR equations

from the previous lemma. Reorganizing, and applying T−1⊗1, we see that S−1Ω
−1/2
L

solves ABRR on the left, say, if and only if the equation

ΩΩ
−1/2

L⊥
(T−1 ⊗ 1)(Ω−1

L Ω
1/2

L⊥
) = SQ−1(T−1 ⊗ 1)(S−1Q)

is satisfied. Using the fact that T |L = idL and Ω = ΩLΩL⊥ we reduce to

Ω
1/2

L⊥
(T−1 ⊗ 1)(Ω

1/2

L⊥
) = SQ−1(T−1 ⊗ 1)(S−1Q).

Applying to arbitrary elements µ, ν ∈ G gives the equivalent equation

Ω
1/2

L⊥
(µ+ Tµ, ν) = SQ−1(µ− Tµ, ν). (4)

By writing µ as a sum of elements in L and L⊥ we see that the above equation
holds if and only if it holds when µ ∈ L, or µ ∈ L⊥. When µ ∈ L both sides of
equation (4) vanish since T |L = idL. Suppose now µ ∈ L⊥. When ν ∈ L both
sides of the equation vanish by the definition of Q, and when ν ∈ L⊥ the equation
reduces to

Ω1/2(µ+ Tµ, ν) = S(µ− Tµ, ν),

which holds by equation (EQ–S). The check on the right is similar. �

Lemma 3.8. The elements JL and JR from Lemma 3.7 are equal. Rather, there
is a unique simultaneous solution J to both the left and right 2-component ABRR

equations in S−1Ω
−1/2

L⊥
+ I+ ⊗ I−.

Proof. One shows that the operators A2
L and A2

R commute, then proceeds as in [14,
Cor. 4.1]. �

We find now

Lemma 3.9 (cf. [14, Prop. 3.3]). Our proposed twist JT,S solves both the left and
right 2-component ABRR equations.

Proof. Let J denote the solution from Lemma 3.8. We have J = B + J+, where

B = S−1Ω
−1/2

L⊥
and J+ ∈ I+ ⊗ I−. From the appearance of T+ in A2

L, and the fact

that J = A2
L(J), we have

J = (A2
L)n(J) = (A2

L)n(B) + (A2
L)n(J+) = (A2

L)n(B),

where n is the nilpotence degree of T+. One establishes the equality

(A2
L)k(B) = (T+ ⊗ 1)(R) . . . (T k+ ⊗ 1)(R)B(T k ⊗ 1)(Ω)−1 . . . (T ⊗ 1)(Ω)−1

by induction on k, using the fact that (T ⊗ 1)(ΩBQ)Q−1Ω−1
L = B. This gives

(A2
L)n(B) = JT,S. �
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3.3. The 3-component and mixed ABRR equations. For any element ξ ∈
uq⊗uq take ξ12,3 = (∆⊗1)(ξ) and ξ1,23 = (1⊗∆)(ξ). So the dual cocycle equation
for a twist now appears as J12,3J12 = J1,23J23, where J12 and J23 are J ⊗ 1 and
1⊗ J respectively.

Definition 3.10. Take A3
L and A3

R to be the linear endomorphisms of u+⊗uq⊗u−
defined by

A3
L(η) = (T+ ⊗ 1⊗ 1)(R13R12ηQ12Q13)Q−1

13 Q
−1
12 (ΩL)−1

13 (ΩL)−1
12

A3
R(η) = (1⊗ 1⊗ T−)(R13R23ηQ13Q23)Q−1

23 Q
−1
13 (ΩL)−1

23 (ΩL)−1
13 .

The left and right 3-component ABRR equations are the equations A3
L(X) = X

and A3
R(X) = X.

Let us fix J = JT,S.

Lemma 3.11. The elements J1,23J23 and J12,3J12 solve the left and right 3-component
ABRR equations respectively.

Proof. Take T1 = (T+ ⊗ 1 ⊗ 1). We claim first that A3
L(J1,23J23) = A3

L(J1,23)J23.
Note that we may replace Q with Σ = S|L⊥×L in the equation for A3

L, and that for
any bicharacter B we have B12B13 = B1,23. Also recall that for any cocommutative
element h ∈ H we will have R∆(h) = ∆(h)R, and that since Σ ∈ C[L⊥×L] we will
have Σ1,23 = (1 ⊗ T k+ ⊗ 1)(Σ1,23) for any nonnegative integer k. Using these facts
together, along with the particular form of J = JT,S, one see that

T1(J23Σ1,23)Σ−1
1,23(ΩL)−1

1,23 = J23(T1(Σ))1,23Σ−1
1,23(ΩL)−1

1,23

= (T1(Σ))1,23Σ−1
1,23(ΩL)−1

1,23J23,

which implies A3
L(J1,23J23) = A3

L(J1,23)J23. We now note that

J1,23 = (1⊗∆)(J) = (1⊗∆)(A2
L(J)) = A3

L(J1,23)

to see A3
L(J1,23J23) = J1,23J23. The equality A3

R(J12,3J12) = J12,3J12 is proved
similarly. �

As was the case for the 2-component equations, one finds that solutions to the
equations A3

L(X) = X and A3
R(X) = X are uniquely determined by their compo-

nents in C[G]⊗uq ⊗u− and u−⊗uq ⊗C[G] respectively. (See also [14, Lem. 4.3].)
We also consider the mixed ABRR equation

A3
LA

3
R(X) = X.

Solutions to this equation are uniquely determined by their component in C[G] ⊗
uq ⊗ C[G], which we denote X0,0. Note that

(J12,3J12)0,0 = (J1,23J23)0,0 = S−1
12 S

−1
13 S

−1
23 (Ω

−1/2

L⊥
)12(Ω

−1/2

L⊥
)13(Ω

−1/2

L⊥
)23. (5)

So we would like to establish

Proposition 3.12. Both J12,3J12 and J1,23J23 solve the mixed ABRR equation
A3
LA

3
R(X) = X.

From this proposition one easily finds the proof of Theorem 3.1. We only prove
the proposition for J1,23J23, the situation for J12,3J12 being completely analogous.
Let us first give some technical lemmas. Recall Z = S|L × L⊥.

Lemma 3.13. The element Z solves the following equations:
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(i) (1⊗ T−1)(S−1Ω
1/2

L⊥
) = S−1Ω

−1/2

L⊥
(1⊗ T−1)(Z−1)Z.

(ii)
[
(ΩL)13(1⊗ 1⊗ T−1)(Z−1

13 )Z13, (1⊗ 1⊗ T k−)(R23)
]

= 0 for all k ≥ 1.

Proof. Equation (i) is equivalent to the equation

Ω
1/2

L⊥
(1⊗ T−1)(Ω

1/2

L⊥
) = S−1(1⊗ T−1)(S)(1⊗ T−1)(Z−1)Z,

which is seen to hold by (EQ–S), just as in the proof of Lemma 3.7. For (ii) first
note that for any µ ∈ G and ν ∈ G1 we have(

ΩL(1⊗ T−1)(Z−1)Z
)
(µ, ν)

= Ω(µ̄, ν)Z(µ, ν − Tν)
= Ω(µ̄, ν)S(µ̄, ν − Tν)
= Ω(µ̄, ν)Ω−1/2(µ̄, ν + Tν) = Ω(µ̄, ν)Ω−1(µ̄, ν) = 1,

where µ̄ is the component of µ in L under the decomposition G = L × L⊥. So we
see that the bicharacter in question vanishes on G × G1, and hence

ΩL(1⊗ T−1)(Z−1)Z ∈ C[G]⊗ C[G⊥1 ].

It follows that all elements in C ⊗ uq ⊗ (C〈G,Fβ : β ∈ Γ1〉) centralize (ΩL)13(1 ⊗
1⊗ T−1)(Z−1

13 )Z13. Since (1⊗ 1⊗ T k−)(R23) is in this subspace we have (ii). �

We can now give the

Proof of Proposition 3.12. As noted above, we only prove that J1,23J23 solves the
mixed ABRR equation. Since this element already satisfies A3

L(X) = X it suffices
to show that it also solves A3

R(X) = X. As in [14, Lem. 4.2], one checks that A3
L and

A3
R commute so that A3

R(J1,23J23) solves the left ABRR equation. By uniqueness
of solutions we find that A3

R(J1,23J23) = J1,23J23 if and only if these elements have
the same component in C[G]⊗ uq ⊗ u−. Let A3

R(J1,23J23)0 and (J1,23J23)0 denote

these components. Take (T−)3 = (1⊗ 1⊗ T−) and B = S−1Ω
−1/2

L⊥
.

Since J is in the subalgebra C〈G×G,Eα⊗Fβ : α, β ∈ Γ〉 we see that (J1,23J23)0 =
B1,23J23, and we need to establish

A3
R(J1,23J23)0 = B1,23J23.

We have

A3
R(J1,23J23)0 = (T−)3(Ω13R23B1,23J23Z12,3)Z−1

12,3(ΩL)−1
12,3

= (T−)3(Ω13B1,23R23J23Z12,3)Z−1
12,3(ΩL)−1

12,3.

Use the equality BΩL⊥ = S−1Ω
1/2

L⊥
and Lemma 3.13 (i) to get

A3
R(J1,23J23)0

= (T−)3((ΩL)13B12B13(ΩL⊥)13R23J23Z12,3)Z−1
12,3(ΩL)−1

12,3

= (ΩL)13B12(T−)3(B13(ΩL⊥)13R23J23Z12,3)Z−1
12,3(ΩL)−1

12,3

= (ΩL)13B12B13(T−)3(Z−1
13 )Z13(T−)3(R23J23Z12,3)Z−1

12,3(ΩL)−1
12,3.

Since J solves the 2-component ABRR equations this final expression reduces to

A3
R(J1,23J23)0 = (ΩL)13B1,23(T−)3(Z−1

13 )Z13J23(T−)3(Z13)Z−1
13 (ΩL)−1

13 .

By Lemma 3.13 (ii) this final equation reduces to the desired equality

A3
R(J1,23J23)0 = B1,23J23 = (J1,23J23)0.

This implies that J1,23J23 solves the right 3-component ABRR equation, and hence
the mixed ABRR equation A3

LA
3
R(J1,23J23) = J1,23J23. �
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Proof of Theorem 3.1. By uniqueness of solutions to the mixed ABRR equation,
Proposition 3.12, and (5), we see that J12,3J12 = J1,23J23. The remaning identity
(ε ⊗ 1)(J) = (1 ⊗ ε)(J) = 1 follows from the identity (ε ⊗ 1)(R) = (1 ⊗ ε)(R) = 1
and the fact that ε commutes with T±. �

4. Subalgebras from the R-matrix

We recall here some information from Radford’s work [26]. We will let D(H)
denote the Drinfeld double of a Hopf algebra H. Recall that this is a quasitriangular
Hopf algebra which, as a coalgebra, is simply the tensor coalgebra D(H) = H ⊗
(H∗)cop. Recall also that the two inclusions H → D(H) and (H∗)cop → D(H) are
Hopf algebra maps. This is all the information we will need about the Drinfeld
double, and we invite the reader to see [23, Sect. 10.3] for more information.

4.1. The right and left subalgebras from R. Let H = (H,R) be a quasitrian-
gular Hopf algebra. We can consider for any Q ∈ H⊗H the functions tQ : H∗ → H,
f 7→ (f ⊗ 1)(Q) and t′Q : H∗ → H, f 7→ (1 ⊗ f)(Q). Indeed, for any H1, H2 ⊂ H

with Q ∈ H1⊗H2 we can restrict these functions to tQ : H∗1 → H2, t′Q : H∗2 → H1.
For the R-matrix we have the right and left subspaces in H defined as follows.

Definition 4.1. For a quasitriangular Hopf algebra H = (H,R) we take R(r) =
tR(H∗) and R(l) = t′R(H∗).

We refer to these subalgebras as the Radford subalgebras associated to R. Using
the properties of the R-matrix one shows

Proposition 4.2 ([26, Prop. 2]). The subspaces R(l) and R(r) are Hopf subalgebras
in H. Furthermore, the maps tR and t′R provide Hopf morphisms (H∗)cop → H

and (H∗)op → H, and Hopf isomorphisms (R∗(l))
cop

∼=→ R(r) and (R∗(r))
op
∼=→ R(l).

Take HR = R(l)R(r). It turns out that this is a Hopf subalgebra in H, and that
it is the minimal Hopf subalgebra in H with R ∈ HR⊗HR. A quasitriangular Hopf
algebra is called minimal if H = HR. Strictly speaking, we will not be needing the
following result. It does, however, inform the approach of the current work, and so
we repeat it here.

Theorem 4.3 ([26, Thm. 2]). For a minimal Hopf algebra H there is a (unique)
surjective map of quasitriangular Hopf algebras Y : D(R(l)) → H with Y |R(r) the
inclusion and Y |(R∗(l))

cop = tR.

Taking the dual of Y , we see that there is a algebra inclusion

H∗ → R∗(l) ⊗R
op
(l)
∼= R(r) ⊗Rop(l)

given as the composite H∗
∆→ H∗ ⊗H∗ tR⊗t

′
R−→ R(r) ⊗Rop(l).

We note that although minimality is not preserved under twists, a stronger con-
dition called factorizability is preserved under twists. Indeed, a finite dimensional
quasitriangular Hopf algebra H is factorizable if and only if the Müger center of
rep(H) is trivial [15]. Small quantum groups are examples of factorizable Hopf
algebras, and so the twists uJq will be factorizable, and hence minimal as well.
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4.2. Bicharacters as R-matrces on abelian groups.

Lemma 4.4. Let Λ be a finite abelian group. Any bicharacter B ∈ C[Λ]⊗ C[Λ] is
an R-matrix for C[Λ].

Proof. We need to check the equations (∆⊗1)(B) = B13B23, (1⊗∆)(B) = B13B12,
and B∆(λ)B−1 = ∆(λ) for each λ ∈ Λ. The first two equations follow from the
fact that B is a bicharacter, and the final equation follows from the fact that Λ is
abelian. �

In the case of a bicharacter B giving an R-matrix for C[Λ], the two maps tB and
t′B restrict to, and are specified by, the standard group maps Λ∨ → Λ induced by
B.

Definition 4.5. For a finite abelian group Λ and bicharacter B ∈ C[Λ]⊗C[Λ], we
let Λ(r) and Λ(l) denote the images tB(Λ∨) and t′B(Λ∨) in Λ respectively.

We have B(r) = C[Λ(r)] and B(l) = C[Λ(l)].

5. Parabolic subalgebras in uq(g)J and Radford’s subalgebras

For this section fix a Belavin-Drinfeld triple (Γ1,Γ2, T ) and solution S to (EQ–S).
Fix also J = JT,S from Theorem 3.1. Recall uq = uq(g).

We saw in Section 4.1 that there are algebra surjections tRJ : (uJq )∗ → RJ(r) and

t′RJ : (uJq )∗ → (RJ(l))
op. Our main goal is to show that the map

Irrep(RJ(r))→ Irrep
(
(uJq )∗

)
induced by restriction is a bijection, modulo the action of a finite character group.
In order to understand the irreducible representations of RJ(r), and to establish the

proposed bijection, we need to understand the subalgebra RJ(r). The present section

is dedicated to a study of the subalgebras RJ(l) and RJ(r).

For any root α we will take ᾱ to be the component of α in L, under the decom-
position G = L × L⊥.

5.1. A preemptive change of coordinates. Let us take

Eα = q
1
4 (ᾱ,ᾱ)K

−1/2
ᾱ Eα and Fβ = q

1
4 (β̄,β̄)K

1/2

β̄
Fβ .

These new generators satisfy the appropriate relations so that we have an algebra
automorphism

change of coord’s : uq
∼=→ uq,

 Eα 7→ Eα

Fβ 7→ Fβ
Kµ 7→ Kµ.

Recall that each Eµ, µ ∈ Φ+, is a linear combination of permutations of the
monomial Eαi1 . . . Eαim , where µ = αi1 + · · · + αim with the αik simple. So each

Eµ is sent to q
1
4 (µ̄,µ̄)K

−1/2
µ̄ Eµ under the above change of coordinates. A similar

statement holds for the Fν , and we may adopt a consistent notation

Eµ = q
1
4 (µ̄,µ̄)K

−1/2
µ̄ Eµ and Fν = q

1
4 (ν̄,ν̄)K

1/2
ν̄ Fν ,

for µ, ν ∈ Φ+. These bold elements produce a C[G]-basis for uq = uJq just as in
Lemma 1.1.
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5.2. The quantum parabolics in uq(g)J and the R-matrix. For a fixed subset
Σ ⊂ Γ we let p+ = p+(Σ) denote the corresponding positive parabolic in g and
uq(p+) denote the Hopf subalgebra

uq(p+) = C〈G,Eα,Fβ : α ∈ Γ, β ∈ Σ〉 ⊂ uq(g).

We have the negative analog

uq(p−) = C〈G,Eβ ,Fα : β ∈ Σ, α ∈ Γ〉 ⊂ uq(g).

We let uq(p
ss) denote the small quantum group associated to the (union of) Dynkin

diagram(s) Σ in Γ. We suppose additionally that the perpendicular G⊥Σ to the
subgroup GΣ = Z/lZ · {Kβ : β ∈ Σ} in G is a complement to GΣ.

Lemma 5.1. Let Σ be a subset in Γ and p denote the corresponding positive (resp.
negative) parabolic. There is an algebra surjection

uq(p)→ C[G⊥Σ ]⊗ uq(pss),


Eβ 7→ Eβ when β ∈ Σ
Fβ 7→ Fβ when β ∈ Σ
Eα (resp. Fα) 7→ 0 when α ∈ Γ− Σ
Kγ 7→ Kγ

(6)

with kernel equal to the nilpotent ideal N = (Eα : α ∈ Γ − Σ) (resp. N ′ = (Fα :
α ∈ Γ− Σ)).

Proof. It suffices to prove the result for the positive parabolic. We arrive at the
result for the negative quantum parabolic by considering the automorphism of
uq(g) which exchanges the Eα and Fα, and inverts the Kγ , and hence exchanges
the positive and negative parabolics. Simply by checking relations we see that there
is a surjective algebra map C[G⊥Σ ] ⊗ uq(pss) → uq(p)/N defined on the generators
in the obvious way. We will show that this map is injective by counting dimensions.

We have that the nonnegative part of uq(p) is all of u+, and we see for grading
reasons that uq(p)− is free over C[G] with basis given by ordered monomials in
the Fν with ν a positive root in the Z-span on Σ (see Theorem 1.1). By the
commutativity relation between the E and F we see that the restriction of the
multiplication map θ : u(p)+ ⊗C[G] u(p)− → uq(p) is surjective. Since this map is
given by restricting the isomorphism uq(g)+ ⊗C[G] uq(g)− → uq(g), and since all
modules are flat over C[G], we see that θ is injective as well. It follows that uq(p)
has the obvious basis consisting of ordered monomials in the Eµ and Fν , where ν
is as above.

When we take the quotient we now see that uq(p)/N has a C[G]-basis of orderend
monomials in the Eµ′ and Fν , with µ′, ν ∈ Φ+ ∩ (Z · Σ). Since Ψ = Φ ∩ (Z · Σ)
is the root system for pss, we find by Lusztig’s basis for uq(p

ss) that uq(p)/N and
C[G⊥Σ ]⊗uq(pss) have the same dimension. Whence our surjection is an isomorphism.
The inverse is given by the same formulas as (6), and implies the existence of (6).

As for nilpotence of N , when we grade by the group Z{Γ−Σ} we see that Nk is
in degrees Z≥k{Γ−Σ}. Since uq(p) is finite dimensional it has no nonzero elements
in degrees Z≥k{Γ− Σ} for large k. �

5.3. Quantum parabolics and BD triples.

Definition 5.2. For any Belavin-Drinfeld triple (Γ1,Γ2, T ) we let uq(p1) and uq(p2)
denote the positive and negative quantum parabolics in uq(g) corresponding to Γ1

and Γ2 respectively.
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So uq(p1) contains only the Fα with α ∈ Γ1, and uq(p2) contains only the Eβ

with β ∈ Γ2. Recall our twist J = JT,S and the definition RJ = J−1
21 RJ . We have

also

J−1
21

= (1⊗ T )(Ω) . . . (1⊗ Tn)(Ω)S−1Ω
1/2

L⊥
(S−1 ⊗ Tn+)(R21) . . . (S−1 ⊗ T+)(R21)

= (T−1 ⊗ 1)(Ω) . . . (T−n ⊗ 1)(Ω)S−1Ω
1/2

L⊥
(Tn− ⊗ S)(R21) . . . (T− ⊗ S)(R21).

(7)

Lemma 5.3. There are containments RJ(r) ⊂ uq(p2) and RJ(l) ⊂ uq(p2).

Proof. This is immediate from the form of J and R, and the fact that (T k+⊗1)(R) =

(1⊗ T k−)(R). �

We consider C[G] as a quasitriangular Hopf algebra with R-matrix Ω. Then S−1

provides a twist for C[G] and new R-matrix S21ΩS−1 = S−2Ω. We take G(r) and

G(l) the right and left subgroups associated to S−2Ω, as in Section 4.2. Note that

by the duality tΩS−1 : G∨(l)
∼=→ G(r) we know that these two groups have the same

order. We want to prove

Proposition 5.4. The inclusions RJ(r) ⊂ uq(p2) and RJ(l) ⊂ uq(p1) are equalities

exactly when G(r) = G(l) = G. In general, we have that

RJ(r) = C〈G(r),Eβ ,Fγ : β ∈ Γ2, γ ∈ Γ〉
and

RJ(l) = C〈G(l),Eγ ,Fα : α ∈ Γ1, γ ∈ Γ〉
in uq(g).

Section 6 is dedicated to a proof of Proposition 5.4. As a corollary we will have

Corollary 5.5. Let N ⊂ RJ(r) denote the preimage of the ideal N = (Fβ : β ∈
Γ − Γ2) in uq(p2) along the inclusion RJ(r) → uq(p2). Take also Λ = G(r) ∩ G⊥2 .

Then we have a canonical algebra isomorphism

RJ(r)/N
∼=→ C[Λ]⊗ uq(pss2 ).

For the analogously defined N ′ ⊂ RJ(l) and Λ′ ⊂ G(l) we have also

RJ(l)/N
′ ∼=→ C[Λ′]⊗ uq(pss1 ).

Proof. The isomorphisms come from restricting the isomorphisms of Lemma 5.1
along the inclusion RJ(∗) → uq(p∗). �

5.4. An example. It seems, from considering examples, that the subalgebra RJ(r)
will often be the full parabolic uq(p2). This will always be the case, for example,
when considering twists associated to maximal triples (Γ1,Γ2, T ) on An (see the
discussion following Lemma 3.2). To construct an example for which the contain-
ment RJ(r) ⊂ uq(p2) is proper we need only construct an example for which the

containment G(r) ⊂ G is proper.

We claim that in the following example we will have G(r) ( G and RJ(r) ( uq(p2):

Take l = 3 and consider the tiple on A3

α1

• α2 •
α3
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with Γ1 = {α1}, Γ2 = {α3}, T (α1) = α3. We have here

L = Z/3Z · {α2, α1 + α3}, G⊥2 = Z/3Z · {α1, α2 +
1

2
α3}

and the Killing form on G⊥2 is given (in multiplicative notation) by

(α1, α1) = q2, (α1, α2 +
1

2
α3) = q−1, (α2 +

1

2
α3, α2 +

1

2
α3) = 1.

The (unique) solution S with S(α1 + α3, α2) = q−1 is such that

S−2Ω(α1 + α3, α1) = q−1, S−2Ω(α2, α1) = q
S−2Ω(α1 + α2, α2 + 1

2α3) = q, S−2Ω(α2, α2 + 1
2α3) = q−1

and hence

tS−2Ω(α1 + α3) = tS−2Ω(α2)−1 = K−1
α1
K−1
α2+ 1

2α3
mod G2.

It follows that G(r) = Z/3Z⊕G2 = (Z/3Z)2 is a proper subgroup of G = (Z/3Z)3.
Alternatively, the solution with S(α1 + α3, α2) = 1 yields G(r) = G.

6. A proof of Proposition 5.4

Fix J = JT,S. We will prove by direct calculation that RJ(r) is as proposed in

Proposition 5.4. Let J ′ be the twist associated to the triple Γ′1 = Γ2, Γ′2 = Γ1,
T ′ = T−1, and solution S′ = S−1. The result for RJ(l) can subsequently be deduced

from the fact that the algebra automorphism φ : uq → uq, which exchanges Eα
with Fα and sends Kγ to K−1

γ , is such that φ(RJ(l)) = RJ
′

(r).

6.1. Some supporting results.

Lemma 6.1. G(r) ⊂ RJ(r) and G2 ⊂ G(r).

Proof. We have the (u−, u+)-bimodule isomorphism u− ⊗C[G] u+ → uq given by
multiplication. The two projections u± → C[G] then give u−⊗C[G] u+ → C[G] and
hence a bimodule projection Π : uq → C[G]. Taking the dual gives an embedding
Π∗ : C[G]∗ → u∗q . We have

(Π⊗ 1)(RJ) = S−1Ω
1/2

L⊥
ΩS−1Ω

−1/2

L⊥
= S−2Ω ∈ C[G]⊗ uq.

Note that S−2Ω = (S−1
21 )−1ΩS−1 so that for any character µ ∈ G we have

(µΠ⊗ 1)(RJ) = tΩS−1 (µ)

and hence tRJ (GΠ) = G(r). This gives the proposed inclusion G(r) ⊂ RJ(r).
As for the inclusion G2 ⊂ G(r), note that for α ∈ Γ1 we have

S−2Ω(α− Tα, ?) = Ω−1(α+ Tα, ?)Ω(α− Tα, ?) = Ω−2(Tα, ?) = K2
Tα.

Since 2 is a unit in Z/lZ we see that each KTα ∈ G(r) and hence G2 ⊂ G(r). �

The inclusion G2 ⊂ G(r) and splitting G = G⊥2 ×G2 implies that G(r) splits as

G(r) = Λ×G2, where Λ = G⊥2 ∩G(r).
In the following lemma we use the fact that for any bicharacter B ∈ C[G]⊗C[G]

we have

B =
∑
µ,ν∈G

B(µ, ν)Pµ ⊗ Pν ,
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where Pµ = 1
|G|
∑
γ∈G µ(K−1

γ )Kγ is the idempotent associated to µ. We have

PµPν = δµ,νPµ and µ(Pν) = δµ,ν . For any bicharacter B and µ ∈ G we take

B(µ) = the unique character on G with B(µ, ν) = q(B(µ),ν) ∀ ν ∈ G.

Lemma 6.2. For any bicharacter B, and α, β ∈ Γ, we have

(Eα ⊗ Fβ)B = B(KB21(β) ⊗KB−1(α))(Eα ⊗ Fβ)

and

(Fβ ⊗ Eα)B = B(KB−1
21 (α) ⊗KB(β))(Fβ ⊗ Eα).

Proof. We have

EαKγ = q−(α,γ)KγEα ⇒ EαPµ = Pµ+αEα

and FβPν = Pν−βFβ . So for any bicharacter B we have

(Eα ⊗ Fβ)B = (
∑
µ,ν B(µ, ν)Pµ+α ⊗ Pν−β)(Eα ⊗ Fβ)

= (
∑
µ,ν B(µ− α, ν + β)Pµ ⊗ Pν)(Eα ⊗ Fβ)

= B(
∑
µ,ν B(µ, β)B−1(α, ν)Pµ ⊗ Pν)(Eα ⊗ Fβ)

= B(KB21(β) ⊗KB−1(α))Eα ⊗ Fβ .

We arrive at the equation for Fβ ⊗ Eα similarly. �

Considering the case B = Ω
1/2
L , and β ∈ Γ2, gives

(Eβ ⊗ FT−kβ)Ω
1/2
L = Ω

1/2
L (K

−1/2
¯T−kβ
Eβ ⊗K1/2

β̄
FT−kβ)

= Ω
1/2
L (K

−1/2

β̄
Eβ ⊗K1/2

β̄
FT−kβ) = q−

1
2 (β̄,β̄)Ω

1/2
L (Eβ ⊗ FT−kβ).

Similarly (Fα ⊗ ETkα)Ω
1/2
L = q−

1
2 (ᾱ,ᾱ)Ω

1/2
L (Fα ⊗ETkα) for α ∈ Γ1.

6.2. Proof of Proposition 5.4. As explained in the beginning of the section, we
need only prove the proposition for RJ(r). We prove the proposition in two parts.

First we establish the containment C〈G(r),Eα,Fβ : α ∈ Γ2, β ∈ Γ〉 ⊂ RJ(r), then we

establish the opposite containment.

Proof of Proposition 5.4. Part I: Take

Ω(k,m) =
∏

k≤i≤m

(T i ⊗ 1)(Ω) and Ω′(k,m) =
∏

k≤j≤m

(1⊗ T j)(Ω),

with the empty product equal to 1. Now J appears as

(1⊗ T−)(R) . . . (1⊗ Tn−)(R)S−1Ω
−1/2

L⊥
Ω(1, n)−1

and J−1
21 appears as

Ω′(1, n)S−1Ω
1/2

L⊥
(S−1 ⊗ Tn+)(R21) . . . (S−1 ⊗ T+)(R21).

It suffices to prove that each of the Eα and Fβ are in RJ(l), by Lemma 6.1.

From our C[G]-basis for uq we have the C[G]-linear projection

πEβ : uq → C[G]Eβ
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which annihilates each of the basis elements from Theorem 1.1, save for Eβ . More
specifically, we take πEβ to be the obvious projection composed with the scaling by

q(1− q2)−1. Then we have

(πEβ ⊗ 1)(RJ)

=
∑m(β)
k=0 S−1Ω

1/2

L⊥
Ω(0, k − 1)(Eβ ⊗ FT−kβ)Ω(k, n)S−1Ω

−1/2

L⊥
Ω(1, n)−1

=
∑
k S
−1Ω

1/2

L⊥
Ω(0, k − 1)(Eβ ⊗ FT−kβ)Ω(1, k − 1)−1S−1Ω

−1/2

L⊥

=
∑
k S
−1Ω

1/2

L⊥
Ω(0, k − 1)(Eβ ⊗ FT−kβ)Ω(0, k − 1)−1S−1Ω1/2Ω

1/2
L ,

where m(β) = 0 when β /∈ Γ2 and otherwise m(β) is minimal with T−m(β)β /∈ Γ2

and T−iβ ∈ Γ2 for 0 ≤ i < m(β). We have

Ω(0, k − 1)−1
21 (T−kβ) =

k∑
i=1

T−iβ and Ω(0, k − 1)(α) = −
k−1∑
j=0

T jβ

so that the final expression reduces to∑
k S
−1Ω

1/2

L⊥
(K∑k

i=1 T
−iβ ⊗K

−1∑k−1
j=0 T

jβ
)(Eβ ⊗ FT−kβ)S−1Ω1/2Ω

1/2
L

=
∑
k S
−2ΩL⊥Ω

1/2
L (K

1/2

S2Ω(T−kβ)
K∑

i T
−iβ ⊗K

−1/2
S−2Ω(β)K

−1∑
j T

jβ)(Eβ ⊗ FT−kβ)Ω
1/2
L

= q−
1
2 (β̄,β̄)

∑
k S
−2Ω(K

1/2

S2Ω(T−kβ)
K∑

i T
−iβ ⊗K

−1/2
S−2Ω(β)K

−1∑
j T

jβ)(Eβ ⊗ FT−kβ).

For εβ : C[G]Eβ → C, gEβ 7→ q
1
2 (β̄,β̄), we then have

(εβπ
E
β ⊗ 1)(RJ) =

m(β)∑
k=0

K
−1/2
S−2Ω(β)K

−1∑k−1
j=0 T

jβ
FT−kβ ∈ RJ(r). (8)

Note that the coefficients K
−1/2
S−2Ω(β)K

−1∑k−1
j=0 T

jβ
are all in G(r).

When m(β) = 0, i.e. when β ∈ Γ − Γ2, the sum (8) is just the element

K
−1/2
S−2Ω(β)Fβ . Since K

−1/2
S−2Ω(β) ∈ G(r) ⊂ RJ(r) this implies Fβ ∈ RJ(r). Since m(β) =

m(T−1β) + 1 when β ∈ Γ2, it now follows from (8) and induction on m(β) that all
Fβ ∈ RJ(r).

The computation for the Eβ , β ∈ Γ2, is quite similar. Namely, one show for
α ∈ Γ1 that (πFα ⊗ 1)(RJ) is the a sum

q−
1
2 (ᾱ,ᾱ)

m′(α)∑
k=1

S−2Ω(gk ⊗K1/2
S−2Ω(α)K

−1
Tkα+

∑k
j=1 T

jα
)(Fα ⊗ETkα),

where πFα is a scaling of the obvious projection and gk ∈ G, then proceeds by
induction on m′(α) just as above.

Part II: We now give the opposite containment RJ(r) ⊂ C〈G(r),Eα,Fβ : α ∈
Γ2, β ∈ Γ〉 to complete the proof. We adopt the same notation Ω(k,m) and Ω′(k,m)
as above. We have that RJ is a C[G] ⊗ C[G(r)]-linear combination of elements of
the form M1M2M3 with

M1 = Ω′(1, n)S−1Ω
1/2

L⊥
(Fξn ⊗ ETnξn)(1⊗ Tn)(Ω)−1 . . . (Fξ1 ⊗ ETξ1)(1⊗ T )(Ω)−1,

M2 = (Eζ ⊗ Fζ)Ω,
M3 = (Eη1

⊗ FT−1η1
)(T ⊗ 1)(Ω) . . . (Eηn ⊗ FT−nηn)Ω(0, n− 1)−1S−1Ω1/2Ω

1/2
L .

Here the ξk are in Z≥0Γ1 with T i(ξk) ∈ Z≥0Γ1 for each 0 ≤ i < k. We take a
similar restriction for the ηj ∈ Z≥0Γ2 and let ζ be arbitrary in the positive root
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lattice. For τ = α1 + · · ·+αm with the αi simple roots, by Eτ (resp. Fτ ) we simply
mean some permutation of the monomial Eα1 . . . Eαn (resp. Fα1 . . . Fαn). So we
are deviating from the notation of Theorem 1.1 here.

One simply moves all the bicharacters from the right to left, in order, using
Lemma 6.2, to find

M1M2M3

= qε(g1 ⊗ g2)S−2Ω
(

(
∏
i Fξi)Eζ(

∏
j Eηj )⊗ (

∏
i ET iξi)Fζ(

∏
j FT−jηj )

)
with g1 ∈ G and g2 ∈ G(r). Hence for any f ∈ u∗q we will have, for some constant
cf ∈ C,

(f ⊗ 1)(M1M2M3)
= cfg2tS−2Ω(f)(

∏
i ET iξi)Fζ(

∏
j FT−jηj ) ∈ C〈G(r),Eα,Fβ : α ∈ Γ2, β ∈ Γ〉.

Since RJ is a sum of such monomials M1M2M3 we find

RJ(r) = tRJ (u∗q) ⊂ C〈G(r),Eα,Fβ : α ∈ Γ2, β ∈ Γ〉.

�

7. Representation theory of the dual (uq(g)J)∗

In this section we describe the irreducible representations of the dual (uq(g)J)∗,
for J = JT,S as in Theorem 3.1. As always uq = uq(g).

7.1. Grouplikes and the parabolic subalgebras.

Lemma 7.1. Each Kµ ∈ L is grouplike in the twist uJq .

Proof. We claim that Kµ ⊗ Kµ commutes with J , so that ∆J(Kµ) = J−1(Kµ ⊗
Kµ)J = Kµ ⊗Kµ. From the particular form on J , we see that it suffices to show
that Kµ ⊗Kµ commutes with T k+Eν ⊗ Fν and Fν ⊗ T k+Eν for ν a positive root in

ZΓ1 with T iν ∈ ZΓ1 for all 0 ≤ i < k. But this is clear since ν − T kν ∈ L⊥ and
µ ∈ L. �

Take ♥ equal to either (r) or (l). By Lemma 7.1 we now see that the restriction
of the multiplication map C[L]⊗RJ♥ → uJq is a coalgebra map, where we just give

C[L] its usual group ring structure. If we let L act on RJ♥ by conjugation this

gives a Hopf map C[L] n RJ♥ → uJq . According to the particular form of RJ♥ given
in Proposition 5.4, and Lemma 1.3, we see that this map has image equal to the
corresponding quantum parabolic uq(pi). So we find

Lemma 7.2. The quantum parabolics uq(pi) are both Hopf subalgebras in the twist
uq(g)J .

From the Hopf map C[L] nRJ(l) → uJq we also get a dual Hopf map

(uJq )∗ → C[L]⊗ (RJ(l))
∗ 1⊗tRJ→ C[L]⊗RJ(r) (9)

which extends to an algebra map

(uJq )∗ → C[L]⊗RJ(r)/N ∼= C[L]⊗ C[Λ]⊗ uq(pss2 ),

by Corollary 5.5. (Recall our subgroup Λ = G(r) ∩G⊥2 from Corollary 5.5.) Below
we will need the following lemma.
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Lemma 7.3. Take C = L/(G(l)∩L). The subgroup Λ in G(r) is isomorphic to the
dual (G(l) ∩ L)∨, and we have an exact sequence 0→ C ∨ → L → Λ→ 0.

Proof. The dual Λ∨ gives the character group of (RJ(l))
∗, by Corollary 5.5. The

character group is identified with the group of grouplikes in RJ(l). Since the in-

tersection G(l) ∩ L provides exactly |Λ| = |G(r)/G2| = |G(l)/G1| grouplike ele-

ments in RJ(l) we see that Λ = (G(l) ∩ L)∨. Whence we have an exact sequence

0→ C ∨ → L → Λ→ 0. �

7.2. Irreducible representations of (uJq )∗. We take pss to be either of the (iso-
morphic) Lie algebras pss1 or pss2 . In this section we prove

Theorem 7.4. There is a bijection

Irrep (C[L]⊗ uq(pss))
∼=→ Irrep

(
(uJq )∗

)
given by restricting along an algebra surjection (uJq )∗ → C[L]⊗ uq(pss).

Remark 7.5. In Theorem 7.4 we take advantage of the existence of an abstract
algebra isomorphism C[C ∨ × Λ] ∼= C[L], where C is as in Lemma 7.3. Such an
isomorphism exists simply because both groups are abelian of the same order, by
Lemma 7.3. However, as we’ll see below, the character group of the dual (uJq )∗ is
naturally identified with L, so that the appearance of L is appropriate.

Before giving the proof we establish some background material.

Lemma 7.6. The subcoalgebra A in RJ(l) dual to the quotient RJ(r)/N , under the

Hopf isomorphism tRJ : (RJ(l))
∗ → RJ(r), is exactly the subalgebra C〈G(l),Eα,Fβ :

α ∈ Γ2, β ∈ Γ1〉.

From the statement it is clear that A is actually a Hopf subalgebra. We are
claiming that A is the minimal subspace in RJ(l) admitting a factoring (RJ(l))

∗ →
A∗ → RJ(r)/N .

Proof. Recall N is generated by all the Fα with α ∈ Γ− Γ2. For π the projection
RJ(r) → RJ(r)/N , one sees directly from the form of RJ that (1 ⊗ π)(RJ) is in the

product A′⊗(RJ(r)/N ) where A′ = C〈G,Eα,Fβ : α ∈ Γ2, β ∈ Γ1〉. But (1⊗π)(RJ)

is also in RJ(l) ⊗ (RJ(r)/N ) so that

(1⊗ π)(RJ) ∈
(
RJ(l) ⊗ (RJ(r)/N )

)
∩
(
A′ ⊗ (RJ(r)/N )

)
.

By flatness of everything over C, this intersection is exactly A⊗ (RJ(r)/N ). So the

surjective map (RJ(l))
∗ → RJ(r)/N factors through A∗. Since the dimensions of A

and RJ(r)/N agree we must have that A is in fact dual to RJ(r)/N . �

The Hopf subalgebra A is strongly related to the intersection of the quantum
parabolics uq(p1)∩uq(p2), which we denote Int. From considering bases of the two
quantum parabolics, as in Theorem 1.1, one arrives at the presentation

Int = uq(p1) ∩ uq(p2) = C〈G,Eα,Fβ : α ∈ Γ2, β ∈ Γ1〉.

Note that since the quantum parabolics are Hopf subalgebras, the intersection will
be a Hopf subalgebra as well.
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Lemma 7.7. Take C = L/(G(l)∩L). There is a coalgebra isomorphism C[C ]⊗A→
Int given by multiplication.

Proof. We have the multiplication map C[L] ⊗ A → uJq which is a surjection onto

the intersection Int. Choose for each ξ̄ ∈ C a representative ξ ∈ L and restrict the
above multiplication map to get an coalgebra embedding

C[C ]⊗A =
⊕
ξ̄∈C

Cξ̄ ⊗A→ uJq , ξ̄ ⊗ a 7→ ξ · a,

with image exactly Int. �

We have now the

Proof of Theorem 7.4. Let K be the kernel of the projection (uJq )∗ → Int∗ dual to

the inclusion Int → uJq . Note that K will be a Hopf ideal in the dual. We have

the Hopf maps (uJq )∗ → C[L]⊗RJ♥ of (9) which factor

(uJq )∗
∆→ (uJq )∗ ⊗ (uJq )∗

(?)|L⊗tRJ−→ C[L]⊗RJ♥.
We claim that the induced maps

F : (uJq )∗ → C[L]⊗RJ(r)/N and F ′ : (uJq )∗ → C[L]⊗RJ(l)/N
′

factor through Int∗. Equivalently, we claim that K is in their kernels. Let π and
π′ be the projections π : RJ(r) → RJ(r)/N and π′ : RJ(l) → RJ(l)/N

′.

We prove the result for RJ(r). Recall that N is the ideal generated by all the Fα
with α ∈ Γ− Γ2, and that K consists of all functions vanishing on Int. Note that
the intersection contains all of C[G], so that K|L = 0. Hence for each f ∈ K we
have

F (f) =
∑
i

(fi1 |L)⊗ πtRJ (fi2) =
∑
i

(fi1 |L)⊗
(
(fi2 ⊗ π)(RJ)

)
for some fi2 ∈ K. So it suffices to show (K ⊗ π)(RJ) = 0. However, we have
already seen in Lemma 7.6 that (1 ⊗ π)(RJ) lies in A ⊗ RJ(r)/N , and A ⊂ Int.

Hence (f ⊗ π)(RJ) = 0 for each f ∈ K, and we find (K ⊗ π)(RJ) = 0. So the
map F factors through Int∗, and a completely analogous argument shows that F ′

factors through Int∗ as well.
Since (uJq )∗ → Int∗ is a Hopf map the factorizations of F and F ′ imply that the

map

(uJq )∗
∆→ (uJq )∗ ⊗ (uJq )∗

F⊗F ′→ (C[L]⊗RJ(r)/N )⊗ (C[L]⊗RJ(l)/N
′) (10)

factors
(uJq )∗ → Int∗ → (C[L]⊗RJ(r)/N )⊗ (C[L]⊗RJ(l)/N

′). (11)

We note that that the map

(uJq )∗
∆→ (uJq )∗ ⊗ (uJq )∗ → (C[L]⊗RJ(r))⊗ (C[L]⊗RJ(l))

is an embedding, since its dual is a surjection, so that the kernels of (10) and (11)
are nilpotent. It follows that the kernel of the projection (uJq )∗ → Int∗ must be
nilpotent as well.

We have from Lemmas 7.6 and 7.7 that Int∗ ∼= C[C ∨] ⊗ RJ(r)/N . Recall from

Corollary 5.5 that RJ(r)/N is isomorphic to C[Λ] ⊗ uq(pss) and that C[C ∨ × Λ] ∼=
C[L], abstractly, to arrive at a surjection (uJq )∗ → C[L] ⊗ uq(pss) with nilpotent
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kernel. Restricting then gives the proposed bijection on irreducible representations.
�

Corollary 7.8. The set of grouplikes G(uJq ) is exactly L.

Proof. Since all the elements in L are grouplike, by Lemma 7.1, we need only know
that |G(uJq )| = |L|. But this just follows from the theorem, since grouplikes in uJq
are identified with one dimensional representations of (uJq )∗. �

To compare uq to uJq let us consider a maximal BD triple on An. In this case
there is a unique solution S to (EQ–S) and, as mentioned previously, the algebras
RJ♥ will be the full parabolics.3 We will have, for n = 2 and l = 5 for example, a
following variation in the dimensions of the coradicals:

dim Corad(u(sl3)) = 25, dim Corad(u(sl3)J) = 105.

The difference is made more stark from the fact that corepresentation theory of
uq(sln+1) is essentially trivial, at least when we restrict our attention to the irre-
ducibles and fusion rule, while the corepresentation theory of uq(sln+1)J should be
at least as complicated as the representation theory of uq(sln).

8. The Drinfeld element and properties of the antipode

Here we discuss preservation of the Drinfeld element under twisting. Basic infor-
mation on the Drinfeld element in a quasitriangular Hopf algebra, and its relation to
the antipode, can be found in [23, 15]. We fix a Belavin-Drinfeld triple (Γ1,Γ2, T ),
solution S, and twist J = JT,S of uq(g).

Let ρ ∈ G be the sum ρ =
∑
µ∈Φ+ µ. Then we have (ρ, α) = 2 for each simple

root α [18, Sect. 10.2]. This gives S2 = adKρ and the Drinfeld element for uq(g)

thus factors u = Kρv, where v is a central element with ∆(v) = (v ⊗ v)(R21R)−1,
i.e. a ribbon element. Note that ρ is in L as (ρ, α − T (α)) = 2 − 2 = 0 for each
α ∈ Γ. So Kρ remains grouplike in the twist uq(g)J .

Recall that under an arbitrary twist J of a quasitriangular Hopf algebra H the
Drinfeld element for HJ is the product uJ = Q−1

J S(QJ)u (see e.g. [11]). In our
case this means that the Drinfeld element for uq(g)J is given by

uJ = Q−1
J S(QJ)Kρv.

Centrality of v implies

∆J(v) = (v ⊗ v)J−1(R21R)−1J = (v ⊗ v)(RJ21R
J)−1.

So v is still a ribbon element for the twist, and Q−1
J S(QJ)Kρ is grouplike in the

twist. Since Kρ itself is grouplike we conclude that Q−1
J S(QJ) is grouplike as well.

Proposition 8.1. The twists J = JT,S are such that Q−1
J S(QJ) = 1.

In the proof of the proposition we employ what we call a T -grading on uJq . We
define this as any algebra Z-grading with the following properties:

(a) C[G] is homogeneous of degree 0.

3This basically follows from the fact that G⊥2 will be a free Z/lZ-module so that S(µ, ν) = 0

for any µ, ν ∈ G⊥2 , by antisymmetry. Thus S−2Ω|G⊥2 ×G⊥2 = ΩG⊥2
and we must have all of G⊥2 in

G(r).



24 CRIS NEGRON

(b) The Eα are of positive degree and the Fα are of negative degree with
deg(Fα) = −deg(Eα).

(c) deg(ETα) > deg(Eα) for each α ∈ Γ1.

It is easy to construct such a grading. For example, one can construct the acyclic
directed graph Graph(Γ, T ) with vertices Γ and an arrow from α to T (α) for each
α ∈ Γ1. One then takes

deg(Eα) = −deg(Fα) = |Graph≤α|,

where Graph≤α is the collection of all vertices with a path to α in Graph(Γ, T ),
including α. Note that the antipode preserves degree under any T -grading.

Proof. Under any T -grading on uq we will have that J and J−1 both lie in non-
negative degree in uq ⊗ uq, where deg(a⊗ b) = deg(a) + deg(b) for a, b ∈ uq. This
is clear from the explicit forms of the twist and its inverse given at Theorem 3.1

and (7). We have also J0 = S−1Ω
−1/2

L⊥
and (J−1)0 = SΩ

1/2

L⊥
. It follows, from the

expressions of QJ and Q−1
J given in Section 2, that both Q−1

J and S(QJ) lie in
nonnegative degree with

(Q−1
J )0 = m(S−1Ω

−1/2

L⊥
), S(QJ)0 = m(SΩ

1/2

L⊥
),

where m is multiplication. We have now
(
Q−1
J S(QJ)

)
0

= (Q−1
J )0S(QJ)0 and since

the multiplication map on any commutative algebra, such as C[G], is a ring map

(Q−1
J )0S(QJ)0 = m(S−1Ω

−1/2

L⊥
SΩ

1/2

L⊥
) = 1.

Finally we note that since Q−1
J S(QJ) is grouplike it must lie in degree 0. Therefore

Q−1
J S(QJ) =

(
Q−1
J S(QJ)

)
0

= 1. �

As an immediate corollary we have

Corollary 8.2. The Drinfeld element for uq(g)J is equal to the Drinfeld element
for uq(g).

8.1. Implications for the antipode. In [24] the question was posed as to whether
or not the order of the antipode and the traces of the powers of the antipode are
preserved under twisting. The question was answered positively for Hopf algebras
with the Chevalley property. Using the expression of the Chevalley property given
in [1, Prop. 4.2, 5] it is relatively easy to see that no small quantum group has the
Chevalley property. We can, however, verify the proposed invariance for Belavin-
Drinfeld twists.

Corollary 8.3. For S the antipode on uq(g) and SJ the antipode on the twist
uq(g)J , and J = JT,S, we have Tr(SmJ ) = Tr(Sm) for all m ∈ Z and ord(SJ) =
ord(S).

Proof. Since Q−1
J S(QJ) = 1 the proof of [24, Thm. 4.3] still works to get Tr(SmJ ) =

Tr(Sm). Since S and SJ are semisimple operators invariance of order follows from
invariance of the traces. �

We can also get invariance of the so-called regular object of [28, Sect. 5.4] using
the condition of [24, Prop. 7.3 (ii)]. This positively answers [28, Question (5.12)]
for the twists JT,S on small quantum groups.
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9. Twisted automorphisms and group actions on rep(uq(g))

We use below the notion of a 2-group. A 2-group is simply a monoidal category
in which all morphisms are invertible and all objects have a weak inverse, i.e. an
inverse up to isomorphism. For a tensor category C we let Aut(C ) denote the
2-group of autoequivalences of C as a tensor category, with natural isomorphisms,
and Aut(C ) denote the associated group of isoclasses of autoequivalences.

Following Davydov [6], for a Hopf algebra H we call a pair (φ, J) of a twist and
a Hopf isomorphism φ : H → HJ a twisted automorphism of H. Each twisted
automorphism can be identified with the tensor autoequivalence of rep(H) given
by composing

rep(H)
J→ rep(HJ)

resφ→ rep(H).

Indeed, twisted automorphisms form a 2-subgroup in the 2-group of autoequiva-
lences Aut(rep(H)) with product (φ′, J ′)·(φ, J) = (φφ′, Jφ⊗2(J ′)). The induced iso-
morphisms between twisted automorphisms are gauge equivalences (see 9.3 below).
Furthermore, Ng and Schauenburg have shown that when H is finite dimensional
any autoequivalence of rep(H) will be isomorphic to a twisted automorphism [25,
Thm. 2.2].

We take g simple and simply laced, q a primitive lth root of unity, for l as in
Section 1.2, and uq = uq(g). In this final section we introduce twists Jλα of the
small quantum group uq which are paired with automorphisms expλα so that each
pair (expλα, J

λ
α) provides a twisted automorphism of uq. We then relate a canonical

algebraic group action on rep(uq) to the twisted automorphisms (expλα, J
λ
α), and

pose a question regarding a set of “generators” for the collection of all twists of uq.

9.1. Twists via exponentiation: an extended quantum coadjoint action.
Recall that uq embeds as a Hopf subalgebra in Lusztig’s divided powers quantum
group

Uq = Uq(g) = C〈K±1
α , Eα, Fα, E

(l)
α , F (l)

α : α ∈ Γ〉/(relations).

We do not recall the specific construction of Uq here, and refer the reader instead
to [21, 20], and in particular [21, Sect. 6.5], for the details.

According to [20, Lem. 4.5] the commutator

ad
E

(l)
α

: Uq → Uq, x 7→ [E(l)
α , x]

preserves the subalgebra uq and the restriction ad
E

(l)
α
|uq is a nilpotnent operator.

The same is true if we scale by any λ ∈ C. Hence we can exponentiate this operator
to produce an algebra automorphism

expλα := exp(ad
λE

(l)
α
|uq)

of the small quantum group uq. We can similarly define

expλ−α := exp(ad
λF

(l)
α
|uq).

If we consider uq(sl2) for example, and expλ+ corresponding to the positive simple

root, we have expλ+(E) = expλ+(K) = 0 and

expλ+(F ) = F + λ

(
qK + q−1K−1

q − q−1

)
E(l−1).
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As E
(l)
α fails to be primitive, the automorphism expλα fails to be a Hopf map. We

have, in the ambient algebra Uq,

∆(E(l)
α ) = E(l)

α ⊗ 1 + 1⊗ E(l)
α +

∑
1≤i≤l−1

q−i(l−i)KiE(l−i)
α ⊗ E(i)

α

and can define the element

Θ(Eα) = ∆(E(l)
α )− (E(l)

α ⊗ 1 + 1⊗ E(l)
α )

in uq ⊗ uq. Note that Θ(Eα) is square zero, and hence we can exponentiate any
scaling λΘ(Eα) to arrive at a unit

Jλα = exp(λΘ(Eα)) ∈ uq ⊗ uq.

We define similarly Jλ−α = exp(λΘ(Fα)) for Θ(Fα) = ∆(F
(l)
α )− (F

(l)
α ⊗1−1⊗F (l)

α ).
One can check easily from the expressions of Θ(Eα) and Θ(Fα) that

(ε⊗ 1)(Jλ±α) = (1⊗ ε)(Jλ±α) = 1.

Theorem 9.1. For an arbitrary simple root α, and λ ∈ C, the unit Jλ±α is a twist

for uq(g). Furthermore, each pair (expλ±α, J
λ
±α) is a twisted automorphism of uq(g).

We will only prove the result for positive α, the computation for −α being
completely similar. Let us first give a technical lemma.

Lemma 9.2. The elements (∆ ⊗ 1)(Θ(Eα)) and Θ(Eα) ⊗ 1 commute, as do the
elements (1⊗∆)(Θ(Eα)) and 1⊗Θ(Eα).

Proof. Since Eα is in the Hopf subalgebra Uq(sl2) ⊂ Uq(g) generated by Kα and

the E
(n)
α , F

(n)
α , we may assume g = sl2. We may further restrict to the positive

Borel U+, in which E(l) is central. Take Θ = Θ(E) and pE(l) = E(l)⊗ 1 + 1⊗E(l).
We have now

(∆⊗ 1)(Θ)(Θ⊗ 1)
= (∆⊗ 1)(Θ)(∆E(l) ⊗ 1)− (∆⊗ 1)(Θ⊗ 1)(pE(l) ⊗ 1)
= (∆⊗ 1)

(
Θ(E(l) ⊗ 1)

)
− (∆⊗ 1)(Θ⊗ 1)(pE(l) ⊗ 1)

= (∆⊗ 1)
(
(E(l) ⊗ 1)Θ

)
− (pE(l) ⊗ 1)(∆⊗ 1)(Θ⊗ 1)

=
(
(∆⊗ 1)(E(l) ⊗ 1)− (pE(l) ⊗ 1)

)
(∆⊗ 1)(Θ)

= (Θ⊗ 1)(∆⊗ 1)(Θ).

This gives the first proposed commutativity

(∆⊗ 1)(Θ)(Θ⊗ 1) = (Θ⊗ 1)(∆⊗ 1)(Θ).

The verification of the relation

(1⊗∆)(Θ)(1⊗Θ) = (1⊗Θ)(1⊗∆)(Θ)

is completely similar. �

Since all of the elements in the statement of Lemma 9.2 are nilpotent in u⊗3
q we

can now exponentiate to get

exp
(
(∆⊗ 1)(λΘ(Eα)

)
+
(
λΘ(Eα)⊗ 1)

)
= exp

(
(∆⊗ 1)(λΘ(Eα))

)
exp

(
λΘ(Eα)⊗ 1

)
= (∆⊗ 1) (exp(λΘ(Eα))) exp

(
λΘ(Eα)⊗ 1

)
= (∆⊗ 1)

(
Jλα
) (
Jλα ⊗ 1

)
(12)

and
exp

(
(1⊗∆)(λΘ(Eα)) + (1⊗ λΘ(Eα))

)
= (1⊗∆)(Jλα)(1⊗ Jλα), (13)
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for arbitrary λ ∈ C.

Proof of Theorem 9.1. Again, we may assume g = sl2. By the above observa-
tions (12, 13) the dual cocycle condition for Jλα is equivalent to the equality

(∆⊗ 1)(λΘ) + (λΘ⊗ 1) = (1⊗∆)(λΘ) + (1⊗ λΘ),

where Θ = Θ(E). By dividing by λ on both sides we may take λ = 1. We then see
directly

(∆⊗ 1)(Θ) + (Θ⊗ 1) =
∑

0≤i,j,k<l
i+j+k=l

qi(j+k)+jkKi(j+k)E(i) ⊗KkE(j) ⊗ E(k)

= (1⊗∆)(Θ) + (1⊗Θ).

Hence Jλα is a twist.
As for compatibility with the automorphism expλα, we have the diagram

uq

ad
λE

(l)
α //

∆

��

uq

∆

��
uq ⊗ uq

ad
∆λE

(l)
α

// uq ⊗ uq

which implies the diagram

uq
expλα //

∆

��

uq

∆

��
uq ⊗ uq

exp(ad
∆λE

(l)
α

)
// uq ⊗ uq.

Since ∆E
(l)
α = E

(l)
α ⊗ 1 + 1⊗ E(l)

α + Θ(Eα), we have

exp(ad
∆λE

(l)
α

) = (expλα⊗ expλα)AdJλα ,

where Adu(x) = uxu−1, and the above diagram gives on elements

(expλα⊗ expλα)∆J−λα (x) = ∆(expλα(x)).

Replace x with exp−λα (x), compose with (exp−λα ⊗ exp−λα ), and swap λ for −λ to

find that ∆Jλα (expλα(x)) = (expλα⊗ expλα)∆(x). So we see expλα : uq → u
Jλα
q is a Hopf

map. �

One can check easily

(expλ±α, J
λ
±α) · (expλ

′

±α, J
λ′

±α) = (expλ
′+λ
±α , Jλ

′+λ
±α ).

It follows that the assignment λ 7→ (exp−λ±α, J
−λ
±α) gives a 1-parameter subgroup in

the 2-group of twisted automorphisms for uq, and hence a 1-parameter subgroup
C → Aut(rep(uq)) into the 2-group of autoequivalences Aut(rep(uq)). The nega-
tion here appears for technical reasons, but intuitively corrects the fact that the
multiplication of twisted automorphisms defined above appears to be backwards.
We denote this 1-parameter subgroup ω±α.
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Remark 9.3. The algebra automorphisms appearing in the 1-parameter subgroups
ω±α can be recovered alternatively from the quantum coadjoint action of De Concini
and Kac, via the reduction UDK

q → uq from the non-divided-powers quantum
group [8, Prop. 3.5]. So we are saying above that the induced quantum coad-
joint action on uq extends naturally to an action on the tensor category rep(uq).

9.2. Identification with the Arkhipov-Gaitsgory action. Take G the con-
nected, simply connected, semisimple algebraic group with Lie algebra g. As a set
we identify G with its C-points. Taking the (finite) dual of the exact sequence of
Hopf algebras C→ uq(g)→ Uq(g)→ U(g)→ C produces an exact sequence

C→ O(G)→ Oq(G)→ uq(g)∗ → C

with O(G) lying in the center of the quantum function algebra [9, Thm. 6.3,
Lem. 6.1]. According now to [3, Thm. 2.8] and [2, Prop. 4.1] we have a tensor
equivalence between the de-equivariantization corep (Oq(G))G and rep(uq(g)). We
take O = O(G) and Oq = Oq(G).

Recall that the de-equivariantization is the category of finitely generated left
O-modules with a compatible right Oq-coaction [2, Def. 3.7]. This category is
monoidal under the product ⊗O . The action of G on itself by left translation,
and pushing forward by the corresponding automorphisms of O, gives an action
of G on the de-equivariantization by tensor functors. Rather, we have a canonical
monoidal functor from G to the 2-group of tensor autoequivalences of corep (Oq)G.

The equivalence corep (Oq)G
∼→ rep(uq) of [3] is given by taking the fiber at the

identity ?|ε = C⊗O?, and via this equivalence we get an action of G on rep(uq).
We let γ±α denote the 1-parameter subgroup in G given by exponentiating the

root space g±α.

Proposition 9.4. For any simple root α ∈ Γ, the composite

C γ±α−→ G→ Aut
(
corep (Oq)G

) Ad
?|−1
ε→ Aut(rep(uq))

is isomorphic to the 1-parameter subgroup ω±α : λ 7→ (exp−λ±α, J
−λ
±α).

What one should mean by a general isomorphism of 1-parameter subgroups is not
exactly clear. From our perspective we would like a family of natural isomorphisms
between the two functors C→ Aut(rep(uq)) which satisfy all obvious commutativity
and additivity relations. We will focus here only on the production of a natural
family of natural isomorphisms which vary with λ.

Proof. We consider only the positive root α. Since high powers of E
(l)
α annihilate

any finite dimensional representation, each function f in the finite dual Oq will

vanish on high powers of E
(l)
α [20, Prop. 5.1]. Hence the exponent

exp(λE(l)
α ) : Oq → C

is a well-defined function. Restricting along the inclusion O → Oq recovers the

point γα(λ) = exp(λeα) in G. Let us fix xλ = γα(λ) and vλ = exp(λE
(l)
α ).

We aim to produce a family of isomorphisms between the autoequivalence of
rep(uq) induced by the pushforward isomorphisms

xλ∗ : corep(Oq)G → corep(Oq)G
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and the autoequivalences given by the twisted isomorphisms (exp−λα , J−λα ). To
be precise, xλ will act by left translation xλ : O → O, χ 7→ xλ(χ1)χ2, and the
pushforward xλ∗V of an object V in the de-equivariantization is equal to V along
with the restricted O-action and the unaltered Oq-coaction.

Take Advλ : Oq → Oq the linear automorphism f 7→ v−λ(f1)f2v
λ(f3). We note

that Advλ is a Hopf isomorphism from the cocycle twist of Oq via the 2-cocycle
J−λα : Oq ⊗ Oq → C to Oq, and so the sequence

corep(Oq)
J−λα→ corep((Oq)J−λα )

resAdv→ corep(Oq)

is an equivalence. This equivalence induces an equivalence on the de-equivariantization,
where we additionally restrict the action of O along Adx−λ . We denote this autoe-
quivalence by Fλ : corep(Oq)G → corep(Oq)G.

We can produce an isomorphism of functors xλ∗
∼=→ Fλ which is given on objects

as the composite

xλ∗V
comult−→ (xλ∗V )⊗ Oq

1⊗vλ−→ FλV.

Rather, we multiply on the left by the function vλ. We denote the isomorphism
simply by vλ.4

We now examine the equivalences on rep(uq) induced by the pushforwards xλ∗ .
The quasi-inverse to the reduction ?|ε : corep (Oq)G → rep(uq) is the induction-
like functor Ind = (Oq⊗?)uq , where uq acts on a product Oq ⊗ V diagonally by
h · (f ⊗ v) = (fS(h1) ⊗ h2v). The equivalence on rep(uq) induced by each xλ is
then the composition (?|ε) ◦ xλ∗ ◦ Ind. From the vλ we get an induced isomorphism
of 1-parameter subgroups

v̇λ = (?|ε) ◦ vλ ◦ Ind : (?|ε) ◦ xλ∗ ◦ Ind→ (?|ε) ◦ Fλ ◦ Ind.

Since Adx : O → O preserves the counit, and Adv induces the automorphism
exp−λα on the quotient u∗q (or rather its dual), taking the fiber at the identity gives

(FλInd(V ))|ε = (exp−λα
u∗q ⊗ V )uq = exp−λα

(u∗q ⊗ V )uq

for each uq-representation V . The subscript of exp−λα here means that we are
restricting the action of uq along this automorphism. But now the natural isomor-
phism of uq-modules ev1 ⊗ 1 : (u∗q ⊗ V )uq → V given by the counit of u∗q produces
the desired family of natural isomorphism

v̈λ : (?|ε) ◦ xλ∗ ◦ Ind
v̇λ−→ (?|ε) ◦ Fλ ◦ Ind

ev1⊗1−→ (exp−λα , J−λα ).

�

Recall that G is generated by the 1-parameter subgroups γ±α [19, Thm. 27.5].
Hence, after taking isoclasses, the group map G→ Aut(rep(uq)) is determined com-
pletely by its value on these 1-parameter subgroups. One can also show that the
action of G on rep(uq) is determined up to unique isomorphism by these 1-parameter
subgroups, but this more limited information is enough for us to formulate Ques-
tion 9.5 below, which proposes a set of generators for the groupoid of twists of
uq(g).

4The interested reader can check that the family of isomorphisms {vλ}λ satisfies all desired
commutativity and additivity relations to give an isomorphism between these two 1-parameter

subgroups in Aut
(
corep (Oq)G

)
.
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9.3. Autoequivalences of rep(uq(g)) and the classification of twists. Ques-
tion 9.5 below refers to gauge equivalence of twists. We say two twists J and J ′

are gauge equivalent if there is a unit v in H with J ′ = ∆(v)J(v−1 ⊗ v−1). We
let TW(H) denote the groupoid of twists of H, with morphisms given by gauge
equivalences.

We note that the information of an isomorphism from the autoequivalence spec-
ified by a twisted automorphisms (φ, J) to that of (φ′, J ′) is exactly the data of a
unit v ∈ H so that J ′ = ∆(v)J(v−1 ⊗ v−1) and φ′ = Advφ. We call such a unit a
gauge equivalence of twisted automorphisms. Hence we have naturally a 2-group
of twisted automorphisms with gauge equivalences.

As is noted in [6], the groupoid TW(H) admits a well-defined right action of the
2-group of twisted automorphisms. This action is defined simply by J ′ · (φ, J) =
Jφ⊗2(J ′). Take

G̃ =

{
The 2-subgroup of all twisted automorphisms which are iso-
morphic to an element in the image of G, in Aut(rep(uq))

}

=

{
The 2-subgroup of twisted automorphisms which are

gauge equivalent to a product of the (expλ±α, J
λ
±α)

}
.

Take also BD(uq) ⊂ TW(uq) the full subcategory of Belavin-Drinfeld twists {JT,S}T,S.
The following question is also raised in [7], where the authors investigate the alge-
braic structure of Aut(rep(uq)), and autoequivalence groups of finite tensor cate-
gories in general.

Question 9.5. Is the groupoid of twists of the small quantum group generated
by BD(uq) and the 1-paramater subgroups {(expλ±α, J

λ
±α)}λ? Equivalently, is the

inclusion BD(uq) · G̃→ TW(uq) an equivalence?
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