513 HW2

October 2024

1 Problem 1 (Yash)

We wish to prove that \mathfrak{sl}_n is simple, meaning it contains no proper nontrivial ideals. Note that ideals of \mathfrak{sl}_n correspond to subrepresentations of the adjoint representation. So let $0 \neq V \subseteq \mathfrak{sl}_n$ be a subrepresentation. Then V contains a weight vector v, which is either contained in the Cartan subalgebra \mathfrak{h} or v is of the form $v = cE_{i,j}$ for some $i \neq j$ and $c \neq 0$.

First suppose $v \in \mathfrak{h}$. Then there exists simple $a \in \Delta$ such that $a(h) \neq 0$. Therefore, taking $E_{i,j} = e_a$, we obtain $[E_{i,j}, h] = -a(h)E_{i,j}$, so $E_{i,j} \in V$, returning to the other case.

So assume $E_{i,j} \in V$. Then $E_{k,j} = [E_{k,i}, E_{i,j}] \in V$ as well for any $k \neq i, j$. Hence, all elements of the form $E_{j,j} - E_{k,k} = [E_{j,k}, E_{k,j}] \in V$. But these elements form a basis of \mathfrak{h} , so V contains \mathfrak{h} in \mathfrak{sl}_n . Finally, note that for any $E_{l,m}$ and $E_{m,l}$ there exists some element in $t \in \mathfrak{h}$ such that $[E_{l,m}, t] = 2E_{l,m}$ and $[E_{m,l}, t] = -2E_{m,l}$ and we conclude that V contains all the basis elements of \mathfrak{sl}_n , so $V = \mathfrak{sl}_n$.

2 Problem 3b (Aaron)

For any element $h \in \mathfrak{h}$, by \mathfrak{sl}_n -invariance we have

$$\lambda(h)\operatorname{tr}(x,y) = \operatorname{tr}([h,x],y) = -\operatorname{tr}(x,[h,y]) = -\mu(h)\operatorname{tr}(x,y).$$

Hence, non-vanishing of tr(x, y) forces $\lambda = -\mu$.

3 Problem 3c

Observe directly that the trace form is nonzero. The radical of the form $\operatorname{tr} : \mathfrak{sl}_n \otimes \mathfrak{sl}_n \to \mathbb{C}$ is the kernel of the corresponding morphism of \mathfrak{sl}_n -representations $\mathfrak{sl}_n \to \mathfrak{sl}_n^*$. Since both \mathfrak{sl}_n and \mathfrak{sl}_n^* are simple, it follows that this morphism is an isomorphism. Hence the radical vanishes, so the trace form is non-degenerate. By a previous part, this form necessarily restricts to a non-degenerate pairing $(\mathfrak{sl}_n(\mathbb{C})_z \otimes \mathfrak{sl}_n(\mathbb{C})_{-z} \to \mathbb{C}$ at each $z \in \Phi \cup \{0\}$. Taking z = 0, we see that the trace form restricts to a nondegenerate form on the Cartan.

4 Problem 3d

By Schur's lemma, there is a unique map $\mathfrak{sl}_n \to \mathfrak{sl}_n^*$ up to scaling, so by adjunction (HW1,5b) we have

 $\dim \operatorname{Hom}_{\mathfrak{sl}_n}(\mathfrak{sl}_n \otimes \mathfrak{sl}_n, \mathbb{C}) = \dim \operatorname{Hom}_{\mathfrak{sl}_n}(\mathfrak{sl}_n, \mathfrak{sl}_n^*) = 1.$

5 Problem 4

Suppose t is semisimple. Consider a basis $\{v_i\}$ consisting of t-eigenvectors in V. Then in the corresponding basis $M_{i,j} = (v_k \to \delta_{j,k}v_i)$ of gl(V), the $M_{i,j}$ are eigenvectors for the adjoint action of t with all $M_{i,i}$ of eigenvalue 0. Hence $\mathfrak{sl}_n = span\{M_{i,j}, M_{i,i} - M_{j,j}\}$ has a basis of eigenvectors for the adjoint action of t.

Conversely, suppose t is not semisimple. Consider a basis $\{v_i\}$ under which t is in Jordan normal form. Consider any ordering on the corresponding $M_{i,j}$ and $M_{i,i} - M_{i+1,i+1}$ under which $M_{i,j} < M_{k,l}$ whenever l - k < i - j, and $M_{j,i} < M_{k,k} - M_{k+1,k+1} < M_{i,j}$ whenever i < j. Then in this ordered basis ad_t is upper triangular, but not diagonal. Indeed, there is an element $h = M_{i,i} - M_{i+1,i+1}$ such that $[t, h] = cM_{i,j}$. Hence ad_t is not semisimple.